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Influence of Geometry and Edge Cooling
on Thermal Spreading Resistance
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This paper presents a simple geometric transformation for predicting thermal spreading resistance in isotropic
and compound rectangular flux channels using the solution for an isotropic or compound circular flux tube. It is
shown that the results are valid for a wide range of channel aspect ratios and source to base coverage ratio. Because
the circular disk solution requires a single series summation, it is preferable to the rectangular flux channel solution,
which requires the evaluation of two single-series and one double-series summation. The effect of edge cooling is
also addressed in flux tubes and flux channels. A new analytical solution is obtained for thermal spreading resistance
in a rectangular flux channel with edge cooling. This solution contains many limiting cases, including a previously
published solution for adiabatic edges. Comparisons are made with the circular flux tube with edge cooling and
with adiabatic edges. Simple relationships are developed for edge-cooled systems to assess the importance of edge
cooling. This alleviates the issue of computing or recomputing eigenvalues when the edge-cooling conditions change
or have no impact. It is shown that this simple approach provides good results for a wide range of dimensionless
parameters.

Nomenclature
Ab = baseplate area, m2

An, Bn = Fourier coefficients
Amn, Bmn = Fourier coefficients
As = heat source area, m2

a, b = radial dimensions, m
a, b, c, d = linear dimensions, m
Bi = Biot number, ht/k
Bie = Biot number, heb/k
Bie,x = Biot number, he,x c/k
Bie,y = Biot number, he,yd/k
h = contact conductance or film coefficient, W/m2 · K
J0(·), J1(·) = Bessel functions of first kind, orders 0 and 1
k = thermal conductivity, W/m · K
L = length scale

√
As , m

m, n = indices for summations
Q = heat flow rate qs As , W
qs = heat flux, W/m2

R = thermal resistance, K/W
Rs = spreading resistance, K/W
Rt = total resistance, K/W
R1D = one-dimensional resistance, K/W
R� = dimensionless resistance, k RL
T = temperature, K
T f = sink temperature, K
T̄s = mean source temperature, K
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t, t1, t2 = total and layer thicknesses, m
α = equation parameter (1 − κ)/(1 + κ)
βmn = eigenvalues

√
(δ2

m + λ2
n) and

√
(λ2

xm + λ2
yn)

δm = eigenvalues (mπ/c)
δxm, δyn, δn = eigenvalues
ε = relative source size a/b
εb = baseplate aspect ratio c/d
εx = relative source size a/c
εy = relative source size b/d
ζ = dummy variable m−1

θ = temperature excess T − T f , K
θ̄ = mean temperature excess T̄ − T f , K
κ = relative conductivity k2/k1

λn = eigenvalues nπ/d
λxm , λyn = eigenvalues
ξ = subvariable, Eq. (26)
τ = relative thickness t/L
φ, ϕ = spreading resistance functions
ψ = dimensionless spreading parameter 4ka Rs

� = equation parameter (ζ + h/k2)/(ζ − h/k2)

Subscripts

b = base
e = equivalent
eff = effective
f = fluid
m, n = mth and nth terms
s = source
t = total
x = x dir
y = y dir

Introduction

T HERMAL spreading resistance in rectangular flux channels
is of interest to electronic packaging engineers working with

discrete heat sources in heat sink, circuit board, and many other
applications where heat enters through a portion of the contacting
surface.1,2 In this paper, geometric equivalences between the circular
disk and rectangular flux channel are established, and the effect of
edge cooling is examined.
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A review of the literature shows that a number of useful solu-
tions for rectangular flux channels has been obtained for a variety
of configurations.3−8 However, these solutions, which are based on
Fourier series expansions,9,10 require the evaluation of single and
double summations. Although these solutions are not computation-
ally intractable in the present day, a solution requiring the eval-
uation of a single series is much more efficient for practitioners.
Such is the case for thermal spreading resistances in circular flux
tubes.11,12

This paper will demonstrate that a simple geometric equivalence
can be used for predicting thermal spreading resistances in rectan-
gular flux channels using the solution for an equivalent circular flux
tube. It will be shown that the solution is a weak function of shape
and aspect ratio of the heat source and substrate. Theoretical results
will be presented for a range of parameters, and simple expressions
will be developed to assist in the computations.

Further, a review of the literature also shows that a number of
useful solutions for rectangular flux channels has been obtained for
a variety of configurations including compound and isotropic flux
channels, single and multiple eccentric heat sources, and orthotropic
spreaders.1−8 One issue not yet examined is the effect of edge cool-
ing. This issue was recently addressed for circular flux tubes.13

This paper addresses the issue of edge cooling in rectangular flux
channels by presenting a new solution. Further, simple expressions
are established to show the relative importance of edge cooling
in thermal resistance calculations. This is done for both the circu-
lar flux tube and rectangular flux channel. The need for a simple
predictive approach for edge-cooled systems is motivated by the
fact that for each unique value of edge heat-transfer coefficient a
unique set of eigenvalues must be tabulated, making computations
more tedious. However, this is not the case for systems with adi-
abatic edges. Theoretical results will be presented for a range of
parameters.

Problem Statement
Thermal spreading resistance arises in multidimensional appli-

cations where heat enters a domain through a finite area (refer to
Figs. 1 and 2). In typical applications, the system is idealized as
having a central heat source placed on one of the heat spreader sur-
faces, while the lower surface is cooled with a constant conductance,
which can represent a heat sink, contact conductance, or convective
heat-transfer coefficient. All edges are assumed to be adiabatic or
edge cooled. Further, the region outside the heat source in the source
plane is also assumed to be adiabatic.

Fig. 1 Circular flux tube with edge cooling.

Fig. 2 Rectangular flux channel with edge cooling.

In this idealized system, the total thermal resistance of the system
is defined as

Rt = (T̄s − T f )/Q = θ̄s/Q (1)

where θ̄s is the mean source temperature excess, T f is the sink
temperature, and Q is the total heat input of the device over the
contact region. The mean source temperature is given by

θ̄s = 1

As

∫∫
As

θ(x, y, 0) dAs (2)

In applications involving adiabatic edges, the total thermal resis-
tance is composed of two terms: a uniform flow or one-dimensional
resistance and a spreading or multidimensional resistance, which
vanishes as the source area approaches the substrate area, that is,
As → Ab. These two components are combined as follows:

Rt = R1D + Rs (3)

Thermal spreading resistance analysis of a rectangular spreader
requires the solution of Laplace’s equation

∇2T = ∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 0 (4)

in three dimensions, and for circular disk spreaders

∇2T = ∂2T

∂r 2
+ 1

r

∂T

∂r
+ ∂2T

∂z2
= 0 (5)

in two dimensions.
In most applications the following boundary conditions are ap-

plied:

∂T

∂n

∣∣∣∣
x = 0,y = 0,r = 0

= 0, n = x, y, r

∂T

∂n

∣∣∣∣
x = c,y = d,r = b

= 0, n = x, y, r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6)

along the edges, x = c, y = d, or r = b, and at the centroid of the
substrate, x = 0, y = 0, or r = 0. Over the top surface z = 0,

∂T

∂z

∣∣∣∣
z = 0

= 0, As < A < Ab

∂T

∂z

∣∣∣∣
z = 0

= −qs

k
, 0 < A < As

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7)

where As is the area of the heat source and Ab is the area of the base
or substrate. Finally, along the lower surface z = t ,

∂T

∂z

∣∣∣∣
z = t

+ h

k
[T (x, y, t) − T f ] = 0 (8)

where h is a uniform convection heat-transfer coefficient or contact
conductance.

In many systems edge cooling can be a significant factor. In the
present solution all edges are assumed to be cooled with a constant
edge heat-transfer coefficient he in the case of a circular flux tube, or
different edge coefficients he,x and he,y in the case of a rectangular
flux channel (refer to Figs. 1 and 2):

r = b,
∂θ

∂r
+ he

k
θ = 0 (9)

or

x = c,
∂θ

∂x
+ he,x

k
θ = 0

y = d,
∂θ

∂y
+ he,y

k
θ = 0

⎫⎪⎬⎪⎭ (10)
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Fig. 3 Compound disk with circular heat source.

Fig. 4 Compound flux channel with rectangular heat source.

where he,x and he,y denote the values of the edge heat-transfer co-
efficient, along the x edge and y edge, respectively.

When edge cooling is present, the resistance remains multidimen-
sional for all conditions except for the special case of he = 0.

In compound systems (refer to Figs. 3 and 4), Laplace’s equation
must be written for each layer in the system, and continuity of
temperature and heat flux at the interface is required, yielding two
additional boundary conditions:

T1(x, y, t1) = T2(x, y, t1)

k1
∂T1

∂z

∣∣∣∣
z = t1

= k2
∂T2

∂z

∣∣∣∣
z = t1

⎫⎬⎭ (11)

For a compound system Eq. (8) is written to represent T2, that is,

∂T2

∂z
+ h

k
(T2 − T f ) = 0 (12)

Geometric Equivalence
The necessary solutions for the systems to be examined are found

in the papers by Yovanovich et al.3,11 They are given in the following
for the sake of completeness because they will be nondimension-
alized in a more appropriate manner. Thermal spreading resistance
solutions in isotropic and compound disks (refer to Figs. 3–6), flux
channels, and half-spaces are presented in Yovanovich et al.11,12

A general solution for the compound disk was first obtained by
Yovanovich et al.12 The general solution12 is

4k1a Rs = 8

πε

∞∑
n = 1

An(n, ε)Bn(n, τ, τ1)
J1(δnε)

δnε
(13)

where

An = −2ε J1(δnε)

δ2
n J 2

0 (δn)
(14)

and

Bn = φn tanh(δnτ1) − ϕn

1 − φn
(15)

Fig. 5 Isotropic disk with
circular heat source.

Fig. 6 Isotropic flux channel with rectangular heat source.

The functions φn and ϕn are defined as follows:

φn = κ − 1

κ
cosh(δnτ1)[cosh(δnτ1) − ϕn sinh(δnτ1)] (16)

and

ϕn = δn + Bi tanh(δnτ)

δn tanh(δnτ) + Bi
(17)

The eigenvalues δn are roots of J1(δn) = 0 and Bi = hb/k2, τ = t/b,
and τ1 = t1/b.

Thermal spreading resistance in rectangular systems was recently
obtained by the authors.3 In Yovanovich et al.,3 the authors obtained
a general solution for a compound rectangular flux channel having
a central heat source (refer to Fig. 4). This general solution also
simplifies for many cases of semi-infinite flux channels and half-
space solutions.3 More recently, the authors4 developed a solution
for a single eccentric heat source on compound and isotropic flux
channels. The results of Muzychka et al.4 were also extended to
systems having multiple arbitrarily located heat sources.

The spreading resistance of Yovanovich et al.3 is obtained from
the following general expression according to the notation in Fig. 4:

Rs = c2

2k1a2d

∞∑
m = 1

sin2(mπa/c)

(mπ)3
· ϕ(δm)

+ d2

2k1b2c

∞∑
n = 1

sin2(nπb/d)

(nπ)3
· ϕ(λn)

+ cd

k1a2b2

∞∑
m = 1

∞∑
n = 1

sin2(mπa/c) sin2(nπb/d)

(mπ)2(nπ)2βmn
· ϕ(βmn) (18)

where

ϕ(ζ ) = (αe4ζ t1 + e2ζ t1) + �
[
e2ζ(2t1 + t2) + αe2ζ(t1 + t2)

]
(αe4ζ t1 − e2ζ t1) + �

[
e2ζ(2t1 + t2) − αe2ζ(t1 + t2)

] (19)

and

� = ζ t + ht/k2

ζ t − ht/k2
and α = 1 − κ

1 + κ

with κ = k2/k1. The eigenvalues for these solutions are
δm = mπ/c, λn = nπ/d, and βmn = √

(δ2
m + λ2

n) and are denoted by
ζ in Eq. (19). Equation (19) simplifies for an isotropic disk to give

ϕn = ζ t + ht/k1 tanh(ζ t)

ζ t tanh(ζ t) + ht/k1
(20)

where k1 is now the thermal conductivity of the flux channel.
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Fig. 7 Equivalence between a rectangular flux channel and circular
flux tube.

Next, these two solutions are compared, and it is shown that con-
siderable computational effort is saved by modeling the rectangular
flux channel as an equivalent circular flux tube for a wide range of
channel aspect ratios.

Given the two solutions for the circular disk and rectangular flux
channel, it is now possible to show that there exists a geometric
equivalence between the two systems as shown in Fig. 7. Geometric
equivalence was established by Muzychka et al.14 for computing the
spreading resistance in annular sectors. In determining this equiva-
lence, we choose to maintain the volume of material in the system.
In doing so, the following conditions must be satisfied:

As,R = As,C Ab,R = Ab,C tR = tC (21)

or

ae =
√

As/π be =
√

Ab/π t = t (22)

This is equivalent to nondimensionalizing the circular disk solu-
tion using the the characteristic length scale L= √

As = √
πa. This

length scale has been utilized in the past.15−17

This leads to the following dimensionless spreading resistance
defined as R�

s = k
√

As Rs for an isotropic circular flux tube1,17:

R�

s = 4√
πε

∞∑
n = 1

J 2
1 (δnε)

δ3
n J 2

0 (δn)
· φn (23)

where

φn = δnε
√

πτ + Bi tanh
(
δnε

√
πτ

)
Bi + δnε

√
πτ tanh

(
δnε

√
πτ

) (24)

The one-dimensional resistance can be written in dimensionless
form as

R�

1D = (1 + 1/Bi)τε2 (25)

Thus, the spreading, one-dimensional, and total resistances are a
function of

R� = f (ε, τ, Bi) (26)

where τ = t/
√

As , Bi = ht/k, and ε = √
(As/Ab) = a/b.

The solution for spreading resistance in a rectangular flux
channel can be nondimensionalized in a similar manner using

Fig. 8 Nonconforming source/substrate system.

L= √
As = 2

√
(ab). The resulting expression is written as follows:

R�

s =
∞∑

m = 1

sin2(mπεx )
√

εxεyεb

(mπ)3ε2
x

· φx

+
∞∑

n = 1

sin2(nπεy)
√

εxεyεb

(nπ)3ε2
yεb

· φy

+ 2
∞∑

m = 1

∞∑
m = 1

sin2(mπεx ) sin2(nπεy)
√

εxεyεb

ε2
x ε

2
y m2n2π5

√
m2/ε2

b + n2
· φxy (27)

This expression is valid for the system depicted in Fig. 8. If the
flux channel is rotated 90 deg, that is, interchange x and y values,
it gives the same value for the spreading resistance. The spreading
functions φ, which account for the effects of the conductance h and
finite thickness t , are

φ(ξ) = ξτ + Bi tanh(ξτ )

Bi + ξτ tanh(ξτ )
(28)

where

φx = φ
(
ξ → 2πm

√
εxεyεb

/
εb

)
φy = φ

(
ξ → 2πn

√
εxεyεb

)
φxy = φ

(
ξ → 2π

√
m2

/
ε2

b + n2√εxεyεb

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (29)

The one-dimensional resistance can be written in dimensionless
form as

R�

1D = (1 + 1/Bi)τεxεy (30)

Thus, the dimensionless spreading, one-dimensional, and total
resistances are now a function of

R�

s = f (εx , εy, εb, τ, Bi) (31)

where εx = a/c, εy = b/d, εb = c/d, τ = t/
√

As , and Bi = ht/k.
Equation (27) simplifies for the special case when εb = 1, that is,

a square flux channel. Similar results can be obtained for compound
disks and flux channels. Comparisons will be made for isotropic
systems, but the analysis is also valid for compound systems.

We can now compare the solution for the disk and the flux channel
using Eqs. (23) and (24) and (27) and (28). Two configurations are
examined. These are the square flux channel with a central square
heat source and a rectangular flux channel with a rectangular heat
source, which might or might not conform to the aspect ratio of
the flux channel as shown in Fig. 8. In the case of the flux tube
solution, 200 terms were used in the summation in Eq. (23). In the
case of the flux channel, 200 terms were used in each of the single
summations and 50 by 50 terms in the double summation of Eq. (27).
This provides accuracy to at least four decimal places.

First, for the special case of a square flux channel with a square
heat source, the solution simplifies considerably because εb = 1 and
εx = εy = ε. The solutions for both the circular disk and square flux
channel are given in Figs. 9–11 for a range of dimensionless thick-
ness τ , Bi , and ε. Excellent agreement is obtained for these two
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Fig. 9 Equivalence for a square channel for τ = 0.001.

Fig. 10 Equivalence for a square channel for τ = 0.1.

Fig. 11 Equivalence for a square channel for τ = 1.

cases, as can be seen in Figs. 9–11. It is clear that preserving the
volume of the material, by transforming the square flux channel into
a circular flux tube, gives equivalent results for the dimensionless
spreading resistance at the same coverage ratio ε = √

(As/Ab).
Next we examine the effect of flux channel and heat

source aspect ratios. Three flux channel aspect ratios are ex-
amined: εb = c/d = 1, 2, 4. Equivalent results are obtained if
εb = c/d = 1, 1

2 , 1
4 . For each of these cases, the source aspect ratio

is varied such that εx = 0.2, 0.4, 0.6, 0.8 and εy = 0.2, 0.4, 0.6, 0.8.
This leads to 16 combinations for each flux channel considered.18

Further, we have also considered three dimensionless thicknesses
τ = 0.01, 0.1, 1 and two Biot numbers Bi = 10, 100. To compare
the circular flux tube and the rectangular flux channel, the results
must be plotted using the common aspect ratio defined as

ε =
√

As/Ab = √
εxεy (32)

Thus for each case examined an equivalent circular aspect ratio
is determined from εx and εy . This leads to nine unique predictions
using the flux tube solution. Therefore, for some aspect ratios two
solutions are determined for the flux channel as a result of source
orientation, while there is only one equivalent flux tube solution.
The results of this comparsion are presented in Figs. 12–14. It is

Fig. 12 Equivalence model for Bi = 100 and εb = 1.

Fig. 13 Equivalence model for Bi = 100 and εb = 2.
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Fig. 14 Equivalence model for Bi = 100 and εb = 4.

clear that for most combinations with τ < 1 there exists an equiva-
lence between the two systems for which the error is much less than
±10%. The accuracy increases as Bi increases and as τ decreases
for all values of ε considered. In general, the accuracy for con-
forming rectangular systems exceeds that of similar nonconforming
systems.

The error in the total resistance will be much less once the one-
dimensional resistance is combined with the spreading resistance.
Thus the present approach allows for a simple and convenient
method for computing the thermal resistance in rectangular flux
channels using the circular flux tube solution. Additional results are
presented graphically in Muzychka et al.18

Systems with Edge Cooling
The solution for the total thermal resistance Rt for the general

system shown in Fig. 1 was recently obtained by one of the authors.13

It can be written in the following dimensionless form:

R�

t = 4√
πε

∞∑
n = 1

J 2
1 (δnε)φn

δ3
n

[
J 2

0 (δn) + J 2
1 (δn)

] (33)

and

φn = δnε
√

πτ + Bi tanh
(
δnε

√
πτ

)
Bi + δnε

√
πτ tanh

(
δnε

√
πτ

) (34)

where R�

t = Rt k
√

As , τ = t/
√

As , Bi = ht/k, ε = √
(As/Ab) =

a/b, and δn are the eigenvalues. The eigenvalues are obtained from
application of the second boundary condition along the disk edges
and require numerical solution to the following transcendental equa-
tion:

δn J1(δn) = Bie J0(δn) (35)

where δn = λnb, Bie = heb/k is the edge Biot number, and J0(·)
and J1(·) are Bessel functions of the first kind of order zero and
one, respectively. A unique set of eigenvalues must be computed for
each value of Bie. Simplified expressions for predicting the eigen-
values were developed by Yovanovich13 using the Newton–Raphson
method.

It is now clear that the dimensionless total resistance depends
upon

R�

t = f (ε, τ, Bie, Bi) (36)

whereas the dimensional total resistance depends upon

Rt = f (a, b, t, he, h) (37)

In the case of a rectangular flux channel, no solution exists for
edge cooling. Thermal spreading resistance in a rectangular flux
channel with adiabatic edges was recently obtained by the authors.3

The solution methodology is the same, and the resulting solution is
quite similar, with the exception of the definition of the eigenvalues.
The solution for an isotropic flux channel with edge cooling can be
obtained by means of separation of variables.19,20 The solution is
assumed to have the form θ(x, y, z) = X (x) ∗ Y (y) ∗ Z(z), where
θ(x, y, z) = T (x, y, z) − T f . Applying the method of separation of
variables yields the following general solution for the temperature
excess in the substrate, which satisfies the thermal boundary condi-
tions along the two planes of symmetry, x = 0 and y = 0:

θ(x, y, z) =
∞∑

m = 1

∞∑
n = 1

cos(λxm x) cos(λyn y)

× [Amn cosh(βmnz) + Bmn sinh(βmnz)] (38)

where λxm , λyn , and βmn = √
(λ2

xm + λ2
yn) are the eigenvalues. The

eigenvalues are obtained from the following equations:

δxm sin(δxm) = Bie,x cos(δxm) (39)

and

δyn sin(δyn) = Bie,y cos(δyn) (40)

where Bie,x = he,x c/k, δxm = λxmc, Bie,y = he,yd/k, and δyn =
λynd. These equations must be solved numerically for a finite num-
ber of eigenvalues for each specified value of the edge cooling Biot
numbers. The separation constant βmn is now defined as

βmn =
√

(δxm/c)2 + (δyn/d)2 (41)

Application of the lower surface boundary condition yields the
following relation:

Amn = −Bmn · φmn (42)

where

φmn = tβmn + (ht/k) tanh(βmnt)

ht/k + tβmn tanh(βmnt)
(43)

The final Fourier coefficients are obtained by taking a double
Fourier expansion of the upper surface condition. This yields the
following expression:

Bmn = −Q
∫ a

0
cos(λxm x) dx

∫ b

0
cos(λyn y) dy

4kabβmn

∫ c

0
cos2(λxm x) dx

∫ d

0
cos2(λyn y) dy

(44)

Upon evaluation of the integrals, one obtains

Bmn = −Q sin(δxma/c) sin(δynb/d)

kabβmn[sin(2δxm)/2 + δxm][sin(2δyn)/2 + δyn]
(45)

With both Fourier coefficients now known, the mean surface tem-
perature excess is found from Eq. (2). Using this result and Eq. (1),
the total resistance becomes

Rt = cd

ka2b2

∞∑
m = 1

∞∑
n = 1

× sin2(δxma/c) sin2(δynb/d)φmn

δxmδynβmn[sin(2δxm)/2 + δxm][sin(2δyn)/2 + δyn]
(46)

The total resistance now depends on

Rt = f (a, b, c, d, t, k, h, he,x , he,y) (47)
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The total resistance is nondimensionalized using L= √
As =

2
√

(ab) to give

R�

t = 2
√

εxεyεb

εbε2
x ε

2
y

∞∑
m = 1

∞∑
n = 1

1

δxmδyn

√
δ2

xm

/
ε2

b + δ2
yn

× sin2(δxmεx ) sin2(δynεy)φmn

[sin(2δxm)/2 + δxm][sin(2δyn)/2 + δyn]
(48)

where

φmn = ξτ + Bi tanh(ξτ )

Bi + ξτ tanh(ξτ )
(49)

and

ξ = 2
√

εxεyεb

√
δ2

xm

/
ε2

b + δ2
yn (50)

Thus, the dimensionless total resistance depends upon

R�

t = f (εx , εy, εb, τ, Bi, Bie,x , Bie,y) (51)

where

εx = a/c εy = b/d εb = c/d

Bi = ht/k Bie,x = he,x c/k Bie,y = he,yd/k

τ = t
/√

As R�

t = k
√

As Rt

This general result has many geometric special cases. These in-
clude semi-infinite flux tubes t → ∞, infinite plate c, d → ∞, half-
space3 t, c, d → ∞, two-dimensional strips b = d or a = c, and
adiabatic edges3 hex → 0 and he,y → 0. A particularly interesting
property is the case when adiabatic edges are present. It can be
shown in this case that when Bie,x → 0 and Bie,y → 0 the double
summation, which represents the total resistance, consists of the
one-dimensional resistance when m = n = 1 and the spreading re-
sistance when the remaining terms are summed.

Next, solutions for the edge-cooled flux tube and flux channel are
examined, and it is shown that considerable computational effort
can be saved by modeling the rectangular system as an equivalent
circular disk for a wide range of channel aspect ratios.

Given the solutions for the circular flux tube and rectangular flux
channel with edge cooling, it is now possible to show that there exists
a physical equivalence between these systems and systems with
adiabatic edges (refer to Fig. 15). In determining this equivalence,
we choose to maintain the total convective heat-transfer rate at the
edges and bottom surface. This is achieved by means of the following
energy balance:

Qtotal = Qbase + Qedges (52)

or

heff Ab(T̄b − T f ) = hb Ab(T̄b − T f ) + he Ae(T̄e − T f ) (53)

For small aspect ratios ε and thin substrates τ , T̄e ∼ T̄b, which
leads to the following condition:

heff Ab = h Ab + he Ae (54)

where heff is an effective bottom surface heat-transfer coefficient.
Using the edge and lower surface areas of the disk, we can write

heff = h + he(Ae/Ab) = h + he(2t/b) (55)

Fig. 15 Circular flux
tube with edge cooling
transferred to bottom
surface.

It can now be seen from this expression that when the edge-
cooling coefficient is small and/or the relative thickness and/or rel-
ative contact are small the effect of edge cooling is negligible. Sim-
ilarly, for the rectangular flux channel, we can obtain a similar re-
sult, which now contains the two edge-cooling coefficients such
that

heff = h + he,x (Ae,x/Ab) + he,y(Ae,y/Ab) (56)

or

heff = h + he,x (t/d) + he,y(t/c) (57)

Once again, similar behavior is seen in terms of the relative
significance of edge cooling. Finally, it can also be shown that
the equivalent rectangular flux channel with edge cooling can be
modeled as an equivalent circular disk with edge cooling (re-
fer to Fig. 16) using the earlier results of this paper provided
that

he = he,x c + he,yd

c + d
(58)

in addition to

ae =
√

As/π be =
√

Ab/π t = t (59)

We now examine the influence of edge cooling in the flux tube
and/or channel. For simplicity, only the flux tube solution is con-
sidered because it only depends upon four variables, whereas the
rectangular flux channel depends upon seven variables. In the com-
putations 200 terms were used in Eq. (33) to provide four decimal
place accuracy. The solution for the circular flux tube with edge
cooling is plotted in Figs. 17–19, for a range of dimensionless thick-
nesses and source aspect ratio. Nine combinations of lower surface
Bi number and edge Bie number were considered.21 These are ob-
tained by choosing Bi = 1, 10, 100 and Bie = 1, 10, 100. It is clear
from the figures that the total resistance for adiabatic and edge-
cooled systems is equivalent, when source aspect ratio is small and
relative thickness is small. However, for larger values of edge Biot
number and in systems with large source aspect ratios and/or large
relative thickness, the effect of edge cooling becomes important and
cannot be neglected. Additional results can be found in Muzychka
et al.21
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Fig. 16 Rectangular flux channel with edge cooling transferred to
bottom surface.

Fig. 17 Comparison of edge-cooled disk for Bi = 1, Bie = 100.

Fig. 18 Comparison of edge-cooled disk for Bi = 10, Bie = 100.

Fig. 19 Comparison of edge-cooled disk for Bi = 100, Bie = 100.

Summary
This paper examined the exact solutions of the circular flux tube

and rectangular flux channel for both isotropic and compound sys-
tems. It was shown that the solution for the circular flux tube can
be used to model the rectangular flux channel when an appropriate
geometric equivalence is established. Graphical results were pre-
sented for a wide range of system parameters. It was shown that the
equivalence is accurate for moderately sized contacts of any aspect
ratio. The issue of edge cooling in circular flux tubes and rectangular
flux channels was also addressed. A new solution was obtained for
the rectangular flux channel with edge cooling. This solution was
shown to have many special limiting cases. Simple expressions were
developed for predicting the impact of edge cooling. Comparisons
were made with the exact solution for edge cooling and the solution
for flux tubes with adiabatic edges. This simplified approach allows
for efficient computation as the eigenvalues are only computed once
in systems with adiabatic edges.
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