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ABSTRACT Ry = total resistance, K/W
t,t1,t2 = total and layer thicknesses, m
A review of thermal spreading resistance in compound tofs — effective thickness, m
and orthotropic systems is presented. Transformation T —  temperature, K
of the governing equations and boundary conditions for T, —  mean source temperature, K
orthotropic systems is discussed. Relationships between Ty —  sink temperature, K
the solutions for isotropic and orthotropic systems are de- Xe,Ye = heat source centroid, m

veloped. Solutions for spreading resistance are presented

in both cylindrical and cartesian systems. Greek Symbols

a = equation parameter, = }_—Z
NOMENCLATURE Bmn = eigenvalues, = /A2, + 42
a,b = radial dimensions,m On = eigenvalues, (nn/b,mn/c)
a,b,ec,d = linear dimensions, m € = relative contact size, = a/b
Ay = baseplate area, m? 0 = temperature excess, =T — Ty, K
A, = heat source area, m> 0 = mean temperature excess, =T — Ty, K
An, Ay, Ay =  Fourier coefficients K = relative conductivity, ko /k1
B, Am = eigenvalues, (mn/a,nr/d)
Bi = Biot number, hL/k ¢, = spreading resistance functions
h = contact conductance or P = gspreading parameter, 4dkaR,
film coefficient, W/ m? - K 0 = equation parameter, == CFh/ks
k = thermal conductivity, W/m-K _ : : — Chikn
! Vi T = relative thickness, = ¢/L
Zeff = effs.cttlve clond:}cltlwtly, W/mK ¢ —  dummy variable, m™!
= arbitrary length scale, m ; = / :
m,n = indices f}(,)r sugmmations ¢ ) transform variable, = 2/+/kip/kip
Q = heat flow rate, W, = g4, Subscripts
q = heat flux, W/m? i = index denoting layers 1 and 2
R = thermal resistance, K/W ip = inplane
Rip = one-dimensional resistance, K/W tp = through plane
Ry = spreading resistance, K/W r = r-plane
z = x-plane
* Assistant Professor zy = Xxy-plane
Distinguished Professor Emeritus, Fellow ATAA y = y-plane
t Associate Professor < = zplane
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application in electronics cooling, both at the board and
chip level and in heat sink applications. It also arises



in the thermal analysis of bolted joints and other me-
chanical connections resulting in discrete points of con-
tact. Recently, a comprehensive review of the theory and
application of thermal spreading resistances was under-
taken by one of the authors'. Since this review, a number
of new solutions and applications of spreading resistance
theory have been addressed. These include, but are not
limited to, prediction of thermal resistance of electronic
devices known as Ball Grid Arrays (BGA)?2, the effect
of heat source eccentricity®, the effect of heat spreaders
in compound systems?~7, and the effect of orthotropic
properties®?.

This paper presents a general review of thermal
spreading resistance theory in compound and orthotropic
systems. Presently, only a few analyses have been under-
taken for orthotropic systems®®. These solutions have
only been presented for the circular disk and rectangular
strip. Solutions for the thermal spreading resistance in
compound disks and rectangular flux channels will be re-
viewed. It will be shown that with the appropriate trans-
formation, these solutions may be applied to orthotropic
systems with little effort. These new solutions may then
be applied to a number of orthotropic systems, such as
printed circuit boards.

THERMAL SPREADING RESISTANCE

Thermal spreading resistance arises in multi-
dimensional applications where heat enters a domain
through a finite area. The total thermal resistance of the
system may be defined as

Rp=istl= M

In applications involving spreading resistance, the to-
tal thermal resistance is composed of two terms: a uni-
form flow or one-dimensional resistance and a spread-
ing or multi-dimensional resistance which vanishes as the
source area approaches the substrate area. These two
components are combined as follows:

Ry =Rip+ R, (2)

Thermal spreading resistance analysis requires the so-
lution of Laplace’s equation

V- (kVT) =0 3)

in more than one dimension. In most applications the
following boundary conditions are applied:

oT;
on

along the edges and center of the disk or channel, and

0 n==zc,y,r (4)

% = 0, A> A,

0z )
o1y q

— = —=, A< A,

Oz k.’ <

on the top surface where A is the area of the heat source,
and

oTn B
W‘Fk—z(TN—Tf)—O (6)

on the bottom surface. In compound systems, Laplace’s
equation must be written for each layer in the system,
and continuity of temperature and heat flux at the mate-
rial interface is required, yielding two additional bound-
ary conditions:
T, = Ti+1

O, _, 0T @
9z oz

Due the nature of the solution procedure, the total
thermal resistance may be analyzed as two problems.
One is steady one-dimensional conduction which yields
the uniform flow component of the thermal reistance,
while the other is a multi-dimensional conduction anal-
ysis using Fourier Series or Integral Transform methods
to solve an eigenvalue problem. This paper is mainly
concerned with the solution to the thermal spreading re-
sistance component in systems with one or two layers.

k;

COMPOUND SYSTEMS

An overview of thermal spreading resistance in carte-
sian and cylindrical systems is given for compound flux
tubes, refer to Figs. 1 and 2. Solutions for many special
cases involving spreading resistance in disks, flux tubes,
and half spaces are reported in Yovanovich!'. Since the
publication of the review!, new solutions for spreading re-
sistance in rectangular flux channels have been obtained
for many special cases. These and other similar solutions
in cylindrical coordinates are presented below.

Cylindrical Systems

Thermal spreading resistance solutions in isotropic and
compound disks, refer to Fig. 1, flux channels and half
spaces are presented in Yovanovich et al.56. A general
solution for the compound disk was first obtained by
Yovanovich et al.b. The general solution® for ¢ = 4k,aR,
is

0= D AR m ) I ®

where



2¢J1 (0,€)
A, =———7127
2720.) ©)
and 4, tanh(5,)
n Lan n) — ¥n
B, = 10
1= 6,) (10
The functions ¢, and ¢,, are defined as follows:
k—1 .
On = cosh(d, 1) [cosh(8,71) — @n sinh(6,71)]
(11)
and 5, + Bitanh(6,7)
n + Bitannh(0,T
On = (12)

0 tanh(8,7) + Bi

The eigenvalues 6,, are solutions to J;(d,) = 0 and
Bi = hb/ks.
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Fig. 1 - Compound disk with circular

heat source.
Rectangular Systems

Thermal spreading resistance in rectangular systems
has recently been examined by the authors®?. In
Yovanovich et al.%, the authors obtained a solution for
a compound rectangular flux tube having a central heat
source, refer to Fig. 2. This general solution also simpli-
fies for many cases of semi-infinite flux channels and half
space solutions. More recently, the authors® developed a
solution for a single eccentric heat source on compound
and isotropic flux channels. The results of Muzychka et
al.? were also extended to systems having multiple arbi-
trarily placed heat sources.

The spreading resistance of Yovanovich et al.* is ob-
tained from the following general expression according to
the notation in Fig. 2:

B 1 2. sin®(ad,y,)
T 2a2cdky Z 83, +¢(0m)

m=1

1 2. sin®(bAn)
+2b2cdk12:: PERS

sin? ) sin®(bA,)
a2b2cdk1 Zznzz: 52 )\2 Bm,n

(An)

©(Bm,n) (13)

where

_ (ae4<t1 + e2<t1) + 0 (62<(2t1+t2) + aeQC(t1+t2))
SO(C) - (ae4<t1 — 62<t1) + 0 (62<(2t1+t2) — aeQC(t1+t2))
(14)

and

_ C+h/k
(= h/k

11—k

d =
an 1+&

with kK = ko /k1. The eigenvalues for these solutions are:

Om =mm/c, Ay = nw/d and By, = /02, + A2.
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Fig. 2 - Compound flux channel with

rectangular heat source.
Source Eccentricity

The general solution for the mean temperature ex-
cess of a single eccentric heat source was obtained by
Muzychka et al.>. The thermal spreading resistance for
a source using the notation of Fig. 3, is

cos(Am Xe) sin(3 Amc)

_ZZA

AmC
(0n 50n
2 Z 4,5 ch Salln(2 2
. i i . cos(8,Y,) 31n(§5n)(\i) (;E;SE;\WXC) sin(zAme)
m=1n=1 e
where

2 [sin (LX;F”) )\m) —gin (7(2)(;_”) )\m)]
abeks A2,6(Am)

(16)



2 [sin (wdn) —sin ((2Y“2—_d)5n)]

An = abd ki 526(0n) (a7)
and
o 16 cos(Am X.) sin(3 Amc) cos(8,Y7) sin(36,d)
me abedk, ﬂm,n)\mdn(b(ﬂm,n)
18)
where
¢(€) . {sinh({tl) —+ h/kl COSh(Ctl) (19)

~ (cosh(Cty) + h/k; sinh((t)

for an isotropic system, where ( is replaced by the
eigenvalues:A,, = mn/a, 4, = nw/b, or Bnn, =

VA2, + 62, accordingly.
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Fig. 3 - Eccentric Heat Source.

For a compound system

(et — eXt1) 4 g (X (2htta) _ qeX(ti+t))

¢(C) - (ae4<t1 + 62<t1) + 0 (624(2751"1‘752) + aeQC(t1+t2))
(20)
where
¢+ h/ks 11—«
= — d =
C—hl/ks 1+x

with & = ka/k1, and ( is replaced by Am, dn, O Bmn,
accordingly.

The solution above may be used to calculate the total
thermal resistance for a source located at any point on a
compound or isotropic rectangular flux channel. Details
of the local surface temperature distribution may be com-
puted from additional expressions presented in Muzychka

et al.3, for single or multiple heat sources.
ORTHOTROPIC SYSTEMS

Laplace’s equation, Eq. (3), may be expanded for an
orthotropic system and written as

8T 8T 8T
ky——+ky—5 +k,— =0 21
oz? + oy Oy? + 0z2 1)
in cartesian co-ordinates, or
8T 10T 8T
ke | =— +—-—— k,— =0 22
(8r2+r8r)+ 0z2 (22)

in cylindrical co-ordinates.

The above equations may be transformed such that the
governing equation and boundary conditions are reduced
to those for an equivalent isotropic system. The solution
for the orthotropic system is then easily obtained from
this equivalent system. A transformation'? for composite
orthotropic materials was proposed for thermal spreading
resistance of a circular heat source on a half-space. This
transformation will be applied to isotropic spreading re-
sistance solutions for finite circular and rectangular disks.
Further discussion on the transformation of orthotropic
systems to isotropic systems may be found in Carslaw
and Jaeger'! and Ozisik!2.

Results will be presented for two cases: the orthotropic
disk, i.e., k. # k. and the orthotropic channel where the
in plane and through plane conductivities are different,
ie ky = ky # k. In addition, several other special cases
which naturally arise from the general solutions, such as
the half-space and semi-infinite flux tube, will also be
discussed.

Circular Systems

In a cylindrical orthotropic system, refer to Fig. 4,
Laplaces’s equation, Eq. (22) may be transformed using

€ =2/08, where 8 = \/k,/kr, and 8 =T — Ty, to yield,
8% 108 0%
o Tror Toe 0 23)

which is subjected to the following transformed boundary
conditions:

o6
r = O,b, E = 0
o8 q
= 0, —_— = - 9 0 S r<a
¢ 1513 kess
(24)
% =0 a<r<b
af - b g
t o6 h
= -, —_ = —_ 0
¢ g o kefs
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Fig. 4 - Finite Circular Orthotropic Disk

Equations (23,24) are now in the same form as that
for an isotropic disk, except an effective thermal conduc-
tivity ke = Vkrk, now replaces the isotropic thermal
conductivity, and ter = ¢/3 now replaces the thickness.
The solution for this case is!

16 Ji (b€
o= gen, = B3 GO oo
where
6, tanh(6, 7o) + Bi
by = (OnTess) (26)

on + Bi tanh(dnreff)

The dimensionless thickness and Biot number now be-
come: Tepp = tepr/b and Bi = hb/kess, where the effec-
tive conductivity is k.pr = v/krk,, effective thickness is
terr = t/5, and € = a/b. The eigenvalues ,, are obtained
from J1(d,,) = 0.

Rectangular Systems

In a rectangular orthotropic system, refer to Fig. 5,
with k, = k, = kg, Laplaces’s equation, Eq. (21), may

also be transformed using £ = z/8, where 8 = \/k, /kzy,
and 8 =T — Ty, to yield,

Lo %
oy = 0¢

o0

- (2)

which is subjected to the following transformed boundary
conditions:

o0
ox

o8

dy

o6 q
o¢ kegr
o6

¢
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Fig. 5 - Finite Rectangular Orthotropic Flux
Tube

Equations (27,28) are now in the same form as those
for an isotropic flux tube, except an effective thermal
conductivity ke = y/kzyk. now replaces the isotropic
thermal conductivity. The solution for this case is found
in*

1 >, sin®(ad,y,)
R, = 2(12cdkeffmz::1 FER

1 >, sin?(bA,)
+2b2cdkeffz oY

sin’ ) sin® (bA,)
- 0(Bm.n) (29)
a2b2cdkff Zlnz:l 52 )\2,8mn
where
e2<teff —+ 1 — (1 _e2<teff h ke
90(4) _ ( )C ( ) / ff (30)

(€%t — 1)C + (1 + €%t )1/ kegy

where ( is a dummy variable denoting the respective
eigenvalues. The eigenvalues for these solutions are:

Om =mm/c, Ay = nw/d and By, = /02, + A2.



Series-Parallel Models for k

In orthotropic systems such as printed circuit boards,
series and parallel models are often used to define &, and
k.. These are defined as®:

N
Z kit;
=

kr koy = ; (31)
and
t
k., = ~ (32)
i
— k;
=1

In general, thermal spreading resistance in multilay-
ered systems is a strong function of the size and dis-
tribution of conducting layers. However, if the source
size is considerably larger than the thickness of individ-
ual layers'?, the above relations for determining effective
series and parallel conductivities may be applied.

Special Cases

The general solutions given by Egs. (25) and (29)
contain a number of special limits. These include: semi-
infinite flux tubes and half-spaces. In addition, the effect
of flux distribution over a circular heat source may also
be considered®. These and other special cases are dis-
cussed in Yovanovich!, Muzychka et al.?, and Yovanovich
et al.*®. Finally, the effect of source eccentricity for a
rectangular orthotropic disk may be considered using the
solution of Muzychka et al.> and applying the appropri-
ate transformations to the solution presented earlier for
the compound isotropic disk.

SUMMARY AND CONCLUSIONS

A review of thermal spreading resistance solutions for
compound and orthotropic systems was presented. New
solutions for orthotropic systems were obtained using
simple transformations on isotropic spreading resistance
results. A number of special cases involving orthotropic
systems were discussed. It was shown that orthotropic
spreading resistance solutions can be obtained by apply-
ing the following rules:

k— keff =4/ kipktp

where, k;p and ki, represent the in-plane and through-
plane thermal conductivity, and

(33)

t
t = tepr = —

8
where 8 = /kip/kip, and

(34)

hL

Kets

Finally, simple relationships for computing the in-

plane and through-plane thermal conductivity for com-
posite systems were presented.
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