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ABSTRACT Jo(+),J1(-) = Bessel functions of first kind
This paper presents a simple geometric approach k = thermal conductivity, W/m-K

to predicting thermal spreading resistance in isotropic L=+/A;, = arbitrary length scale, m

and compound rectangular flux channels using the so- m,n = indices for summations

lution for an isotropic or compound circular flux tube. Q = heat flow rate,= gsAs, W

It is shown that the results are valid for a wide range s = heat flux, W/m?

of channel aspect ratios and source to base coverage R = thermal resistance, K/W

ratio. Since the circular disk solution requires a sin- Rip = one-dimensional resistance, K /W

gle series summation it is preferable to the rectangular R = spreading resistance, K/W

flux channel solution which requires the evaluation of R = total resistance, K/W

two single series and one double series summation. R* = dimensionless resistance, = kRL

t,tq,to = total and layer thicknesses, m

Keywords: Conduction, Spreading Resistance, Heat

Spreaders, Contact Heat Transfer, Electronic Packag- ; - temperature,tK . K
; = mean source temperature
mn S )

g Ty = sink temperature, K
NOMENCLATURE Greek Symbols

a,z d - f.adlal g}meHS}ons,m o = equation parameter, = (1 — k)/(1 + k)

a,b,c, = linear dimensions, m . _

= lues, = /02, + A2

A = baseplate area, m?> Bmn elgenva ues, m T

Ab = heatpsourceraré;n m? Om = eigenvalues, (mr/c)

As B _ Fourier Coef‘ﬁcien,ts € = relative source size, = a/b

B?’ "o Biot number, hL/k € = relative source size, = a/c

L B contact con d’uctance or €y = relative source size, = b/d

o film coefficient, W/m? - K € = baseplate aspect ratio, = c¢/d
’ 0 = temperature excess, =T — Ty, K
t Assistant Professor 0 = mean temperature excess, =T —T¢, K
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T = relative thickness, = t/L

¢ = dummy variable, m~!
Subscripts

b = Dbase

e = equivalent

m,n = mt" and nt* terms

S = source

t = total

T = x-dir

y = y-dir

INTRODUCTION

Thermal spreading resistance in rectangular flux
channels is of interest to electronic packaging engineers
working with discrete heat sources in heat sink, cir-
cuit board and a host of other applications where heat
enters through a portion of the contacting surface.2
In the first part of this paper, geometric equiva-
lences between the circular disk and rectangular flux
channel are established. A review of the literature
shows that a number of useful solutions for rectan-
gular flux channels have been obtained for a variety
of configurations.>~" However, these solutions which
are based on Fourier series expansions,®? require the
evaluation of single and double summations. Although
these solutions are not computationally intractable in
the present day, a solution requiring the evaluation
of a single series is much more efficient. Such is the
case for thermal spreading resistances in circular flux
tubes.'%!! This paper will demonstrate that a geomet-
ric equivalence may be obtained for predicting thermal
spreading resistances in rectangular flux channels us-
ing the solution for an equivalent circular flux tube.
It will be shown that the solution is a weak function
of shape and aspect ratio of the heat source and sub-
strate. Theoretical results will be presented for a range
of parameters and simple expressions will be developed
to assist in the computations.

PROBLEM STATEMENT

Thermal spreading resistance arises in multi-
dimensional applications where heat enters a domain
through a finite area. In typical applications, the sys-
tem is idealized as having a central heat source placed
on one of the heat spreader surfaces, while the lower
surface is cooled with a constant conductance which
may represent a heat sink, contact conductance, or
convective heat transfer. All edges are assumed to be
adiabatic as is the region outside of the heat source on
the source plane.

In this idealized system, the total thermal resistance
of the system may be defined as

(1)

where 6, is the mean source temperature excess and @
is the total heat input of the device. The mean source
temperature is given by

g, — Ais //A 0(z,y,0) dA, @)

In applications involving adiabatic edges, the total
thermal resistance is composed of two terms: a uni-
form flow or one-dimensional resistance and a spread-
ing or multi-dimensional resistance, which vanishes as
the source area approaches the substrate area. These
two components are combined as follows:

Rt = RID + Rs (3)

Thermal spreading resistance analysis of a rectangu-
lar spreader requires the solution of Laplace’s equation
o*T  9°T O°*T
ViT=—S+—5+—-5=
ox2 = Oy?2 022

in three dimensions, and for circular disk spreaders

0 (4)

0T
=9
in two dimensions.

In most applications the following boundary condi-
tions are applied:
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along the edges, © = ¢,y = d or r = b, and at the
centroid of the substrate, z = 0,y = 0 or r = 0. Over
the top surface z =0,

n=a,y,r (6)
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where A, is the area of the heat source and A, is the
area of the base or substrate. Finally, along the lower
surface z = t,

oT h

0z + k(
where h is a uniform convection heat transfer coeffi-
cient or contact conductance.

In compound systems, Laplace’s equation must be
written for each layer in the system, and continuity of
temperature and heat flux at the material interface is
required, yielding two additional boundary conditions:

T —Ty) =0 (8)

T, =T,
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For a compound system Eq. (8) is written to repre-
sent, Th, i.e.,

> h
%+E(T2-Tj‘):0 (10)

Due to the nature of the solution, the total ther-
mal resistance may be analyzed as two problems.
One is steady one-dimensional conduction which yields
the uniform flow component of the thermal reistance,
while the other is a multi-dimensional conduction anal-
ysis using Fourier series or finite integral transform
methods to solve an eigenvalue problem. This pa-
per is mainly concerned with modeling the solution
to the thermal spreading resistance component in sys-
tems with one or two layers. The necessary solutions
for the systems to be examined are found in the pa-
pers by Yovanovich et al.*>'® They are given below
for the sake of completeness since they will be non-
dimensionalized in a more appropriate manner.

Cylindrical Systems

Thermal spreading resistance solutions in isotropic
and compound disks, (refer to Figs. 1 and 2), flux
channels and half spaces are presented in Yovanovich
et al.'%11 A general solution for the compound disk
was first obtained by Yovanovich et al.'' The general

solution!! is

8 — Ji(6,€)
4 s — An ) BTL s Iy 11
kiaR — nZ::l (n,€)Bn(n,,71) 5e (11)
where
2¢J1 (0n€)
Ay = ———5—-—= 12
I 00) 12
and
_ ¢ptanh(0,) — @y
B, = Lt (13)
The functions ¢, and ¢, are defined as follows:
k—1 .
On = cosh (8, 1) [cosh(,71) — pp sinh(6,71)]
(14)
and
0 + Bitanh(6,,7
Pn = ( ) (15)

0n, tanh(0,,7) + Bi

The eigenvalues d,, are solutions to Ji(d,) = 0 and
= hb/kg, T = t/b, and T1 = tl/b

Fig. 1 - Compound Disk with Circular Heat
Source
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Fig. 2 - Isotropic Disk with Circular Heat
Source

Rectangular Systems

Thermal spreading resistance in rectangular sys-
tems was recently obtained by the authors.® In
Yovanovich et al.?, the authors obtained a solution
for a compound rectangular flux tube having a cen-
tral heat source, (refer to Fig. 3). This general so-
lution also simplifies for many cases of semi-infinite
flux channels and half space solutions.?> More recently,
the authors* developed a solution for a single eccen-
tric heat source on compound and isotropic flux chan-
nels. The results of Muzychka et al.* were also ex-
tended to systems having multiple arbitrarily located
heat sources.

The spreading resistance of Yovanovich et al.? is ob-
tained from the following general expression according
to the notation in Figs. 3 and 4:

sin? mﬂ'a/c
2k1 (L2 d Z ! QO((Sm)
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+ 2k1 b?c = (nm)?
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where
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and

_ Ct+ht/ks

®= = ht/ks

with Kk = ko/k1. The eigenvalues for these solutions

are: 0y, = mw/c,\, = nr/d and By = /02, + A2

and are denoted by ¢ in Eq. (17). Equation (17) sim-
plifies for an isotropic disk to give

_ Ct + ht/ky tanh(Ct)

Pn = Cttanh(Ct) + ht [k

where k; is now the thermal conductivity of the flux
channel.

In the next section these two solutions are com-
pared, and it is shown that considerable computational
effort is saved by modeling the rectangular flux chan-
nel as an equivalent circular flux tube for a wide range
of channel aspect ratios.

(18)
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Fig. 3 - Compound Flux Channel with Rectan-
gular Heat Source
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ANALYSIS

Given the two solutions for the circular disk and
rectangular flux channel, it is now possible to show
that there exists a geometric equivalence between the
two systems as shown in Fig. 5. Geometric equiva-
lence was established by Muzychka et. al.'? for com-
puting the spreading resistance in annular sectors. In
determining this equivalence, we choose to maintain
the volume of material in the system. In doing so, the
following conditions must be satisfied:

AS,R - As,C’
Apr = Abc (19)
tr =tc
or
ae =/ Ag/m
(20)
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This is equivalent to non-dimensionalizing the cir-
cular disk solution using the the characteristic length
scale £ = /A; = y/ma. This length scale has been
examined in the past in references.'?~!?
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5 - Equivalence Between a Rectangular
Flux Channel and Circular Flux Tube

Fig.

This leads to the following dimensionless spreading
resistance defined as R} = kv/As;R; for an isotropic
circular flux tube:
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where
by = dne/T + Bitanh(d,e/7T) (22)
" Bi+ 0pe/mtanh(8,e/7T)

The one dimensional resistance may be written in
dimensionless form as:

. 1
1D = <T+ E) 62 (23)

Thus, the spreading, one dimensional, and total re-
sistances are a function of

R* = f(e, T, Bi) (24)

where 7 = t/\/As, Bi = h\/As/k, and e = \/As /Ay =
a/b.

The solution for spreading resistance in a rectangu-
lar flux channel may be non-dimensionalized in a sim-
ilar manner using £ = v/A; = 2Vab. The resulting
expression may be written as follows:
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The spreading functions ¢ which account for the ef-
fects of the film coefficient h and finite thickness ¢ are:

m=1m=1

&+ Bitanh(¢r)

P(§) = Bi + & tanh(é7) (26)

where

Gp = O — 27rm\/m/eb)
¢y = P(§ = 2mn,[e€,6) (27)
bay = (€ = 2m\/m? /€] + 12, /E,€,6)

The one dimensional resistance may be written in
dimensionless form as:

1
p = (T + B > €x€y (28)

Thus, the dimensionless spreading, one dimensional,
and total resistances are now a function of

R* :f(ezaeyyeb)T)Bi) (29)

where €, = a/c, €, = b/d, e, = ¢/d, T = t/\/As, and

| = hy/A k.

Similar results may be obtained for compound disks
and flux channels. The comparisons in the next section
will be made for isotropic systems, but the analysis is
also valid for compound systems.

RESULTS AND DISCUSSION

We may now compare the solution for the disk and
the flux channel using Eqgs. (21) and (25). Two con-
figurations are examined. These are the square flux
channel with a central square heat source, and a rect-
angular flux channel with a rectangular heat source
which may or may not conform to the aspect ratio of
the flux channel as shown in Fig. 6. In the case of the
flux tube solution 200 terms were used in the summa-
tion in Eq. (21). In the case of the flux channel, 200
terms were used in each of the single summations and
50 terms in the double summation of Eq. (25). This
provided accuracy to at least four decimal places.

P

h, T,

Fig. 6 - Non-conforming Source/Substrate Sys-
tem

First, for the special case of a square flux channel
with a square heat source, the solution simplifies con-
siderably, since €, = 1, and €, = €, = €. The solutions
for both the circular disk and square flux channel are
given in Figs. 7-11 for a range of dimensionless thick-
ness 7, Bi, and €. Excellent agreement is obtained for
these two cases.

Next we examine the effect of flux channel and heat
source aspect ratios. Three flux channel aspect ratios
are examined: ¢, = 1 : 1,2 : 1,4 : 1. For each of
these cases, the source aspect ratio is varied such that
€, = 0.2,0.4,0.6,0.8 and ¢, = 0.2,0.4,0.6,0.8. This
leads to sixteen combinations for each flux channel
considered. Further, we have also considered three di-
mensionless thicknesses: 7 = 0.01,0.1,1 and two Biot
numbers: B¢ = 10,100. In order to compare the cir-
cular flux tube and the rectangular flux channel, the
results must be plotted using the common aspect ratio
defined as:

6:\/A5/Ab:m (30)

Thus for each case examined an equivalent circular
aspect ratio is determined from €, and €,. This leads
to nine unique predictions using the flux tube solu-
tion. Therefore, for some aspect ratios two solutions



are determined for the flux channel due to source ori-
entation, while there is only one equivalent flux tube
solution. The results of this comparsion are presented
in Figs. 12-17. It is clear that for most combinations
with 7 < 1, there exists an equivalence between the
two systems for which the error is less than + 10 per-
cent. The accuracy increases as Bi increases and as 7
decreases for all values of e considered.

SUMMARY AND CONCLUSIONS

This paper examined the exact solutions of the cir-
cular flux tube and rectangular flux channel for both
isotropic and compound systems. It was shown that
the solution for the circular flux tube may be used to
model the rectangular flux channel when an appropri-
ate geometric equivalence is established. Graphical re-
sults were presented for a wide range of parameters. It
was shown that the equivalence is accurate for moder-
ately sized contacts of any aspect ratio. These results
will be utilized in Part II to facilitate an equivalence
in similar systems with edge cooling.
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