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Spreading Resistance of Isoflux Rectangles and Strips
on Compound Flux Channels

M. M. Yovanovich,* Y. S. Muzychka," and J. R. Culham?
University of Waterloo, Waterloo, Ontario N2L 3G, Canada

The general expression for the spreading resistance of an isoflux, rectangular heat source on a two-layer rect-
angular flux channel with convective or conductive cooling at one boundary is presented. The general expression
depends on several dimensionless geometric and thermal parameters. Expressions are given for some two- and
three-dimensional spreading resistances for two-layer and isotropic finite and semi-infinite systems. The effect of
heat flux distribution over strip sources on two-dimensional spreading resistances is discussed. Tabulated values
are presented for three flux distributions, the true isothermal strip, and a related nonisoflux, nonisothermal prob-
lem. For narrow strips, the effect of the flux distribution becomes relatively small. The dimensionless spreading
resistance for an isoflux square source on an isotropic square flux tube is discussed, and a correlation equation is
reported. The closed-form expression for the dimensionless spreading resistance for an isoflux rectangular source

on an isotropic half-space is given.

Nomenclature
A = channel conduction area, m>
A, = heat source area, m?

= characteristic length of contact area, m
= half-lengths of source area, m

= Biot number, h L/ k,

d = half-lengths of flux channel, m

= contact conductance or film coefficient, W/m? - K
= index denoting layer 1 and layer 2

= Bessel function of first kind, order v

= thermal conductivities, W/m - K

= arbitrary length scale, m

= indices for summations

= heat flow rate, W
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q = heat flux, W/m?

R = thermal resistance, K/'W

R, = spreading resistance, K/W

R = total resistance, K/'W

Rip = one-dimensional resistance, K/'W
Tiink = mean sink temperature, K

Tiource = mean source temperature, K

T, T, = layer temperatures, K

t,t;,t, = total and layer thicknesses, m

u = relative local position in strip, x /¢

= Cartesian coordinates, m

= conductivity parameter, (1 —«)/(1 +«)

= eigenvalues, /(8% + A?)

= gamma function

= eigenvalues, (mm/c)

= relative contactsize; ¢, =a/c and e, =b/d
= eigenvalue

= relative conductivity, k, / k,

= eigenvalues, (nm/d)

= heat flux shape parameter, —1, 0,
= aspect ratio of rectangularsource area, a /b > 1

=
N

€1, €

RE>ANMN SR =

Presented as Paper 98-0873 at the 36th Aerospace Sciences Meeting,
Reno, NV, 12-15 January 1998; received 29 May 1998; revision received
7 June 1999; accepted for publication 15 June 1999. Copyright © 1999
by the authors. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission.

*Professor and Director, Microelectronics Heat Transfer Laboratory, De-
partment of Mechanical Engineering. Fellow ATAA.

Postdoctoral Fellow, Microelectronics Heat Transfer Laboratory, Depart-
ment of Mechanical Engineering.

#Research Associate Professor, Department of Mechanical Engineering.

495

7,71, T2 = relative layer thickness, /L, t, /L, and t, /L,
respectively

®m. $, = two-dimensional spreading functions

Punn = three-dimensional spreading function

¥ = dimensionless spreading resistance,=R k| L

Introduction

HERMAL spreadingresistance occurs whenever heat leaves a
heat source of finite dimensions and enters into a larger region,
as shown in Fig. 1. Figure 1 shows a planar rectangularheat source
situated on one end of a compound heat flux channel that consists of
two layers having thicknesses f; and #, and thermal conductivities
ki and k,, respectively. The heat flux channel is cooled along the
bottom surface through a uniform film coefficient or a uniform con-
tact conductance /. The heat source area can be rectangularhaving
dimensions2a by 2b or it may be a strip of width 2a, when 2b =2d.
The dimensions of the heat flux channel are 2c by 2d, as shown in
Fig. 1. The lateral boundaries of the heat flux channel are adiabatic.
The heat flow rate through the heat flux channel Q is related
to the mean temperature of the heat source Tou.., the mean heat
sink temperature Ty, and the total system thermal resistance Ry
through the relationship

QRmtal = Tsource - Tsink (1)

The total thermalresistanceof the systemis defined by the relation

R = Ry + Rip )

where R; is the thermal spreading resistance of the system and R,p
is the one-dimensional thermal resistance defined as

Rip=t/kiA+1/kbA+1/hA (3)
The conductionarea in Eq. (3) is A =4cd. For an isoflux source
area, the heat flow rate through the system is Q =g A;, where ¢q is
the uniform heat flux and A; = 4ab is the heat source area.
For the general case of a rectangular source area on a rectangular
heat flux channel, as shown in Fig. 1, the spreading resistance will
depend on several geometric and thermal parameters such as

R, = f(a,b,c,d, t,th,ki, ky, h) “4)

This paper has three objectives.One is to obtaina general solution
for the system shown in Fig. 1. Second is to report several two- and
three-dimensional cases that arise from the general solution. Third
is to report several previously unpublished results that examine the
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perfect contact

Fig. 1 Finite compound channel with rectangular heat source.

effect of heat flux distribution for the two-dimensional strip heat
source.

Several investigators' =7 have examined spreading resistance in
rectangularisotropic two- and three-dimensionalsystems. Recently,
Yovanovich® reviewed and summarized past work in the area of
spreading resistance for circular and rectangular systems. As a re-
sult, several solutions of practical interest in engineering systems
are now available. The general solution presented in the next sec-
tion reduces to several cases that were previously unavailable®

Problem Statement
The temperature distributions 7} and 7, within the two layers
must satisfy the Laplace equation
V2T, =0, i=1,2 (5)
where for the rectangularheat source/rectangular flux channel sys-
tem, the three-dimensional Laplacian operator is
a2 a2 a2
Vi=—+—+—
axz  9y?  9z2
Along the common interface z =f;, the two temperatures must
satisfy the perfect contact conditions

oTy

0T,
"oz

T, =T, k
1 2 28Z

=k (6)
Along the lateral boundaries x = ¢ and y = %d, the two tem-

peratures must satisfy the adiabatic conditions

oT; oT;

= =0, i =1,2 7
0x ' ™

) 3y

Along the bottom surface z =1, + f,, the Robin boundary condi-
tion must be satisfied:

h -
= (T - T 8
7o =B~ T ®)

The parameter 4 can representa uniform film coefficient or a uni-
form contact conductance. Over the top surface z =0, the boundary
conditions are 1) the isoflux condition

Ty g

== —b b
0z kl, =r= (9)

—a<x<a,

over the heat source area and 2) the adiabatic condition

oT,
—1_9 (10)
0z

for all points that lie outside the heat source area.
The separationof variables method was employed to find the solu-
tions for 7 and 7;, by assuming solutions of the form 7;(x, y, z) =

X;(x) xY;(y) x Z;(z). The computer algebra system MAPLE V
(Ref. 9) was used to accomplish all of the required algebraic manip-
ulations to obtain the two temperature distributions. The spreading
resistance was obtained by means of the definition proposed by
Mikic and Rohsenow!:

Rs‘ = (’fsource - fcontact plane)/ Q (1 1)

The mean temperature of the heat source area is obtained from

_ 1 a b
Tyource = — T, (X, Y, 0) dx d)’ (12)
4ab J |,
and the mean temperature of the contactplane z =0 is obtained from
_ 1 c d
Tconmctplane = m /;C /;d Tl (X, Y, O)dXd)’ (13)

General Spreading Resistance Expression
The methodology just described was used to obtain the solution
for the general problem defined earlier. The spreading resistance
is obtained from the following general expression that shows the
explicit and implicit relationships with the geometric and thermal
parameters of the system:

1 =~ sin’(as,,)
R, = (8,
S 2a%cdk, ’”2::1 83 %)
1 =~ sin(bir,)
+ (A
2h2cdk, ; A3 9 ()

1 = sin’ (ad,,) sinz(bxn)
— i,22 1.0 14
+ a?b?cdk, Z Z 82028 & (Bmn) (14)

m=1n=1 men

The general expression for the spreading resistance consists of
three terms. The single summations account for two-dimensional
spreading in the x and y directions, respectively, and the double
summation term accounts for three-dimensionalspreading from the
rectangularheat source. Figure 2 shows the superpositionof the two
strip solutions and the rectangular solution that yield the general
expression.

The eigenvalues are §, = mm/c, A, = nn/d, and B,, =
/(82 +22). The eigenvalues § and A, corresponding to the two
strip solutions, depend on the flux channel dimensions and the in-
dices m and n, respectively. The eigenvalues 8 for the rectangular
solution are functions of the other two eigenvalues.

The contributionsof the layer thicknessest, and t,, the layer con-
ductivitiesk; and k,, and the uniform conductance’ to the spreading
resistance are determined by means of the general expression

(ae®n 4 e2%ny + (p(ez;(zn +0) L e +t2))

$() = (ae*n — e2n) + (p(ez;(ZtH—tz) — qeXn +t2)) (15)
where
¢ + Bi/k L
Y= T Bk
a=(1-k)/0+«)
k—Zc ——1
n I

ek

Fig. 2 Superposition of solutions.
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Table 1 Summary of solutions for isoflux source

Figure Configuration Limiting values

Rectangular heat source: three-dimensional solutions

1 Finite compound rectangular flux channel a,b,c,d,t;,tr, ki, ky, h
3 Semi-infinite compound rectangular flux channel thy — 00
4 Finite isotropic rectangular flux channel ki=ks
5 Semi-infinite isotropic rectangular flux channel t — 00
6 Isotropic half-space c—00,d —> 00,1 = 00
7 Compound half-space c— 00,d — 00, 1) —> 00
Strip heat source: two-dimensional solutions
8 Finite compound rectangular flux channel a,c,b=d,t;,tr, ki, ky, h
9 Semi-infinite compound rectangular flux channel thy — 00
10 Finite isotropic rectangular flux channel ki=ks
11 Semi-infinite isotropic rectangular flux channel t — 00
y
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Fig. 3 Semi-infinite coated channel with rectangular heat source.

withk =k, /k; and Bi = hL/k,, where L is an arbitrary length scale
employed to define the dimensionless spreading resistance:

¥ = Rk L (16)

thatis based on the thermal conductivity of the layer adjacent to the
heatsource. Varioussystemlengths may be used, and the appropriate
choice depends on the system of interest. In all summations ¢(¢) is
evaluated in each series using £ =4,,, A,, and B,,, ..

Spreading Resistance for Three-Dimensional Systems

The dimensionless spreading resistance ¥ depends on six inde-
pendentdimensionlessparameterssuch as 1) the relative sizes of the
rectangularsourcearea (¢, =a/cande, =b/d),2)thelayerconduc-
tivity ratio (k =k, / k), 3) the relative layer thicknesses (t; =, /L
and 1, =1,/L), and 4) the Biot number (Bi =hL/k,). Thus, cor-
relation of the general solution or graphical representation of the
resistance is not possible. However, the general solution reduces to
many special cases, such as those shown in Figs. 3-11. This sec-
tion examines all of the three-dimensional solutions that may be
obtained from the general solution given by Eqgs. (14) and (15). All
of the special three-dimensional cases are summarized in Table 1.

Semi-Infinite Compound Rectangular Flux Channel

The general expression for ¢ (¢) reduces to a simpler expression
when t, — 0o (Fig. 3). The solution for this particular case arises
from Eq. (14) with

(@ =Dk 4 (€*" 41)
o) = (€21 + D + (e — 1) (an

where the influence of the contact conductance has vanished.
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Fig. 4 Finite isotropic channel with rectangular heat source.
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Fig. 5 Semi-infinite isotropic channel with rectangular heat source.

Finite Isotropic Rectangular Flux Channel

The general expression for ¢ (¢) reduces to a simpler expression
when « = 1 (Fig. 4). The solution for this particular case arises from
Eq. (14) with

(@ + )¢ = (1 = e*")Bi/L

#() = (€% — 1)¢ + (1 +e%)Bi/L

(18)

where the influence of « has vanished.

Semi-Infinite Isotropic Rectangular Flux Channel

When the relative thickness 7 is sufficiently large, ¢ — 1, for the
three basic solutions of Eq. (14), then ¢ = v/ (€1, €,) is independent
of v and Bi. This correspondsto the case of arectangularheat source
on a semi-infinite rectangular flux channel (Fig. 5). This solution
was first reported by Mikic and Rohsenow.!
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i T=0

Fig. 6 Isotropic half-space with rectangular heat source.

T T=0

Fig. 7 Compound half-space with rectangular heat source.
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Fig. 8 Finite compound channel with strip heat source.
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Fig. 9 Semi-infinite compound channel with strip heat source.

Fig. 10 Finite isotropic channel with strip heat source.
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Fig. 11 Semi-infinite isotropic channel with strip heat source.

The general solution may also be used to obtain the solution
for an isoflux square area on the end of a square semi-infinite flux
tube.® For the special case of a square heat source on a semi-infinite
square, isotropic flux tube, the general solution reduces to a simpler
expression that depends on one parameter only. The solution' was
recast into the form®

\/A_ 2 | osin’(mme)
AR = ol =

N 1 i i sin® (mme) sin® (nme) (19)
w2e? m?n?/m? 4+ n?

m=1n=1

where the characteristic length was selected as £ = /A,. The rel-
ative size of the heat source was defined as € =/(A,/A,), where
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A, is the flux tube area. A correlation equation was reported for
Eq. (19):

kv/ AR, = 0.47320 — 0.62075¢ + 0.1198¢* (20)

in the range 0 < € < 0.5, with a maximum relative error of approxi-
mately 0.3%. The constant on the right-hand side of the correlation
equation is the value of the dimensionless spreading resistance of
an isoflux square source on an isotropic half-space when the square
root of the source area is chosen as the characteristic length.

Isoflux Rectangular Heat Sources on a Half-Space

The spreading resistance for an isoflux rectangular source of di-
mensions 2a X 2b on an isotropic half-space (Fig. 6) whose thermal
conductivity is k has a closed-form solution®:

1 1
ky/ A R, = ﬁ sinh™! (—) + —sinh™!p
4 4 4

3
1 1\’
1+E_<1+E> 2D

where o =a/b > 1istheaspectratio of therectangle. When the scale
lengthis £ = /A,, the dimensionlessspreading resistance becomes
aweak functionof . For a squareheatsource, the numerical value of
the dimensionlessspreadingresistanceis ki/A; R, = 0.4732, which
is very close to the numerical value for the isoflux circular source
on an isotropic half-space and other singly connected heat source
geometries, such as an equilateral triangle and a semicircular heat
source.

The solution for the rectangular heat source on a compound half
space (Fig. 7) can be obtained from the general solution for the
finite compound flux channel, provided that £, — oo, ¢ — 00, and
d — 00. No closed-form solution such as that given by Eq. (21)
exists. The size of the computational domain may be determined
by comparing the series solution with the closed-form solution
[Eq. (21)] using the dimensions of the source and the conductiv-
ity of the more conductive material to determine the approximate
outer dimensions, which have little influence on the isotropicresult.

+

w|

Spreading Resistance for Two-Dimensional Systems

Several two-dimensionalsolutionsmay be obtained from the gen-
eral solution presented earlier. Four special cases that are summa-
rized in Table 1 are discussed next.

Finite Compound Rectangular Flux Channel

When the rectangular heat source on the system shown in Fig. 1
hasdimensionssuch that 2b = 2d, the systemshown in Fig. 8 results.
The solution may be written as

1 = sin*(aé,)
R, = (S 22
A achI”; ) (22)

where ¢ is given by Eq. (15).

Semi-Infinite Compound Rectangular Flux Channel

The solution for R; when f, - oo (Fig. 9) is obtained from
Eq. (22) with ¢ defined by Eq. (17).

Finite Isotropic Rectangular Flux Channel

The solution for Ry whenx = 1 (Fig. 10)is obtained from Eq. (22)
with ¢ defined by Eq. (18). For this system the appropriate scale
length may be chosento be £ = c, the half-widthof the flux channel.
The general solution may then be written in an alternative form:

1 00

.2 .
Z sin“(nme) |:nrr + Bi tanh(nrrr)i| 23)

n3 nm tanh(nwt) + Bi

kR, =
S omle?

n=1

withe =a/c, Tt =t/c, and Bi=hc/k.

Semi-Infinite Isotropic Rectangular Flux Channel

Whentherelativethicknessexceedsthe critical value t > 2.65/x,
the earlier result reduces to the result for the case shown in Fig. 11,
an isoflux strip on an isotropic, semi-infinite flux channel for which
the spreading resistance is obtained from the expression’

1 00

)
Z sin“(nme) (24)

n3

kR, =
’ e

n=1

that depends on the relative strip size only.

Effect of Heat Source Flux Distribution

The effect of the heat flux distributionon a semi-infinite isotropic
strip source was examined by Yovanovich Flux distributions are
of the form f(u) = (1 —u?)*, where u =x/a is the arbitrary rela-
tive position in the strip source and the flux shape parameter is .
Yovanovich’ reported the general result

%S} . i+l
1 3\ 1 sin(are)[ 2 172
o= #(M - 5): 2 —[7} o S
(25)

where J, 1 1/» is the Bessel function of the first kind of order u + %
By means of the general expression, Yovanovich’ obtained results
for three flux distributions: 1) equivalentisothermalflux distribution,
when pu=— ;, 2) isoflux strip, when u =0, and 3) parabolic flux
distribution, when p = % The general expression with p = —% for
the equivalentisothermal flux distributionreduces to the previously
reported result!

[o ]

kR, = ——

1
— sin(nmwe)Jy(nme) (26)
m2e n?

n=1

This expression can be compared against the true isothermal
closed-form expressior’-?

kR, = (1/m)b({sin[(7/2)e]}™") (27

For € < 0.2, the earlier result approaches the asymptote kR, =
7 V(2/me).
The parabolic flux distribution result’ was obtained by setting
p=73:
2 1
Z = sin(nmwe)Jy(nmwe) (28)

n=1

kR, =
R

Numerical values of 1 = kR, are given in Table 2 for the flux
distributionsdefined by the flux distributionparameter u = —%, 0, %

Table 2 Numerical values of ¥ for g =- %, 0, and %

Parameter € 0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60 0.80

n= —% Eq. (26) 1.1011 0.8808 0.7518 0.6609 0.5902 0.3729 0.1658 0.0607 0.0067
nw=0 Eq. (24) 1.1377 0.9172 0.7883 0.6970 0.6263 0.4083 0.1984 0.0882 0.0255
n= % Eq. (28) 1.1545 0.9340 0.8051 0.7138 0.6430 0.4247 0.2134 0.1007 0.0338
T = const Eq. (27) 1.1015 0.8811 0.7523 0.6611 0.5905 0.3738 0.1691 0.0675 0.0160
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Table 3 Typical numerical values of Eq. (29) and the average
of Egs. (24) and (26)

€ 0.02 0.20 0.40 0.60 0.80
Eq. (29) 1.122 0.3936 0.1860 0.0794 0.0214
[Eq. (24)+Eq.(26)]/2 1.120 0.3911 0.1838 0.0779  0.0208
% Difference 0.24 0.65 1.21 1.95 3.04
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Fig. 12 Infinite channel with abrupt )
change in channel width. K 7l E

RN

and the true isothermal result for a range of the relative strip size
parameter €.

For completeness, the analytical, closed-form result for the flux
channel shown in Fig. 12 is reported. In this case the flux chan-
nel is isotropic, the cross section changes abruptly from a width
of 2a to a width of 2b. The boundary condition over the interface
between the upper and lower parts is not known. For the general
case, e =a/b < 1, the boundary condition is neither isothermal nor
isoflux. The true conditionis an unknown variable temperature dis-
tributionand an unknown variable flux distribution. When € = 1, the
temperature and flux distributions are known; however, the spread-
ing resistance is not present. The spreading resistance can be ob-
tained by means of the closed-form result*

1 1 1+e€ 1—¢€2
e 2 (] 2]

We observe that the numerical values for the equivalentisother-
mal flux distribution [Eq. (26)] and the true isothermal [Eq. (27)]
approach each other as € — 0; however, there are large differences
in the numerical values for € > 0.6. The numerical values for the
parabolic distribution are greater than the isoflux values, which are
greater than the values for the isothermal strip. For very narrow
strips, € < 0.02, the maximum difference between the highest val-
ues corresponding to pu = % and the lowest values corresponding
topu= —% differ by less than 5%. This implies that the spreading
resistance for very narrow strips depends weakly on the heat flux
distribution.

In Table 3 the numerical values obtained from Eq. (29) are com-
pared against the mean values of Eqs. (24) and (26) for a range of
the relative strip sizes. The differencesare less than 1% for e <0.20,
and the differences become negligible for e — 0.

Conclusion

A general expression for the spreading resistance of an isoflux
rectangular source on the surface of a finite compound rectangu-
lar flux channel is presented. The series solution consists of three
summations that correspond to two strip solutions and a rectangle
solution.In general, the dimensionlessspreadingresistancedepends
on several dimensionless geometric and thermal parameters.

Results are presented for isotropic finite and semi-infinite rectan-
gular flux channels for the strip source. Results are also presented for
the isoflux rectangular and square source areas on an isotropic half-
space. A correlation equation is reported for the three-dimensional
spreading resistance for an isoflux square source on an isotropic
semi-infinite square flux tube.

Expressionsthat show the effect of heat flux distributionover the
strip source area are presented. Tabulated values of the dimension-
less spreadingresistancefor variousflux distributionsare also given.
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