A wavelet domain detail compensation filtering technique for InSAR interferograms

Liang Chang, Xiufeng He & Jonathan Li

To cite this article: Liang Chang, Xiufeng He & Jonathan Li (2011) A wavelet domain detail compensation filtering technique for InSAR interferograms, International Journal of Remote Sensing, 32:23, 7985-7995, DOI: 10.1080/01431161.2010.531787

To link to this article: http://dx.doi.org/10.1080/01431161.2010.531787

Published online: 06 Oct 2011.

Article views: 196

View related articles

Citing articles: 1 View citing articles
A wavelet domain detail compensation filtering technique for InSAR interferograms

LIANG CHANG†, XIUFENG HE*† and JONATHAN LI†‡
†Institute of Satellite Navigation and Spatial Information Systems, Hohai University, Nanjing, Jiangsu 210098, China
‡Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada, N2L 3G1

(Received 13 May 2010; in final form 30 August 2010)

The quality of interferogram filtering affects the accuracy of interferometric synthetic aperture radar (InSAR) applications. This article presents a new wavelet domain filtering method for phase noise reduction in an InSAR interferogram. The method first transforms the real and imagery parts of the original interferogram into the wavelet domain using the stationary wavelet transform (SWT). Then the coefficients for each sub-band are filtered with detail compensation. Finally, the wavelet coefficients are reconstructed in the space domain by the inverse SWT. The results show that the proposed method can suppress the speckle effectively, maintain details of the interferogram well, and greatly reduce the number of residues.

1. Introduction

Interferometric synthetic aperture radar (InSAR) techniques, which use images acquired by two repeat passes over the same area, are being used increasingly to monitor landslides and volcanic deformation (Lundgren et al. 2001, Ohkura and Shimada 2001). During the past two decades, significant progress has been made in further developing differential InSAR (DInSAR) technology for earthquakes (Massonnet et al. 1993), ground movements (Fruneau et al. 1996, Usai 2001), volcanic eruptions (Massonnet et al. 1995, Webley et al. 2002), etc. However, the phase noise in the interferogram interferes with the phase unwrapping process and affects the quality of deformation information extracted from the interferogram. Furthermore, the contaminated fringes (lines of discontinuity due to phase wrapping) in the interferogram make simple linear low-pass filtering techniques inoperative (Sethu et al. 2008). Therefore, it is important to design a filter that can reduce noise effectively for applications of the interferogram.

Many techniques have been developed to reduce interferometric phase noise. The Frost filter (Frost et al. 1982) is an adaptive and exponentially weighted averaging filter based on the ratio of the local standard deviation to the local mean of the degraded image. Both pivoting mean filtering (Eichel et al. 1996) and pivoting median filtering (Lanari et al. 1996) are simple sliding-window spatial filters. Based on 16 directional
masks to adaptively filter noise, the Lee filter was developed to preserve phase gradient and reduces phase noise according to the coherence (Lee et al. 1998). A modification of the Lee adaptive complex filter was proposed by Wu et al. (2006) to remove the limitation of the stationary orientation angle of the filtering window. The Boxcar filter was implemented on a rectangular window by Goldstein and Werner (1998). The Goldstein filter (Goldstein and Werner 1997) and the modified Goldstein filter (Baran et al. 2003) were used to solve this problem by using a frequency domain approach. Li et al. (2008) further modified the Goldstein filter by incorporating interferometric coherence and the look number. Yu et al. (2007) proposed an adaptive contoured window filter to remove the decorrelation noise from InSAR phase images. Other filtering techniques used for this purpose include the wavelet transform (López-Martínez and Fábregas 2002, Zha et al. 2008) and fuzzy logic (Aiazzi et al. 2005). Meng et al. (2007) processed the InSAR interferogram on a nonlinear two-stage filter structure. Sethu et al. (2008) proposed a noise reduction technique using selective weighting of the wavelet coefficients of the noisy image. Li and Liao (2010) applied a method based on the minimum mean squared error (MMSE) criterion to auto-register the synthetic aperture radar (SAR) images together with reducing the interferometric phase noise simultaneously. However, there is a contradiction between speckle reduction and detail reservation in many current interferogram filters.

The InSAR interferogram phase can be represented in the time and frequency domains at the same time, and this can be realized by several solutions such as detrended fluctuation analysis (DFA) (Peng et al. 1994, Chen et al. 2002, Varotsos 2005a,b, Varotsos et al. 2005, Varotsos and Kirk-Davidoff 2006) and wavelet analysis (Fukuda and Hirosawa 1999, Audit et al. 2002, Valens 2004, Mallat 2008). DFA is capable of eliminating the non-stationarities in the interferogram (Chen et al. 2002). DFA has already proved its usefulness in several complex systems, such as surface air-pollutants (Varotsos et al. 2005), the total ozone content (Varotsos 2005a,b) and the global tropospheric temperature (Varotsos and Kirk-Davidoff 2006). In wavelet analysis the use of a fully scalable modulated window solves the signal-cutting problem. The window is shifted along the signal and the spectrum is calculated for every position. This process is then repeated many times with a slightly shorter (or longer) window for every new cycle. The final result is a collection of time–frequency representations of the signal, all with different resolutions (Valens 2004). A comparison between wavelet analysis and DFA can be found in Oświecimka et al. (2006). Wavelet analysis was chosen in this study because of its ease of implementation.

This article presents a novel wavelet domain detail compensation filtering method for phase noise reduction in InSAR interferograms. After decomposing an InSAR interferogram with wavelet analysis, the sub-band images are filtered with detail compensation. The idea of detail compensation is similar to the two-stage filter structure proposed by Meng et al. (2007). In our method, the interferogram is filtered twice. First, the three wavelet-decomposed high-frequency components of the interferogram are filtered with a facile filtering method (e.g. with the periodic pivoting mean filter (Eichel et al. 1996) or the periodic pivoting median filter (Lanari et al. 1996)) and then the difference interferogram can be obtained by subtracting the filtered interferogram from the original interferogram. Next, the difference interferogram is filtered again, and its outcome can be seen as the compensation to the original interferogram. Finally, the detail compensated filtered interferogram is obtained by adding the compensation to the filtered interferogram for the first time.
2. Principles of wavelet transform denoising

2.1 The discrete wavelet transform

The discrete wavelet transform (DWT) is a useful technique that can transform a discrete time signal to a discrete wavelet representation. Based on sub-band coding, it decomposes signals into basis functions through shifting and scaling:

\[X(t) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} C_m^n \psi_{m,n}(t), \]

(1)

\[C_m^n = \langle X(t) \psi_{m,n}(t) \rangle, \]

(2)

\[\psi_{m,n}(t) = 2^{-m/2} \psi(2^{-m}x - n), \]

(3)

where \(X(t) \) is the signal to be analysed, \(m \) and \(n \) are the pixel coordinates, \(C_m^n \) is the DWT coefficient, \(\psi_{m,n}(t) \) is the wavelet function and \(\langle \cdot \rangle \) denotes the inner products.

Multiresolution analysis is the design method of most of the practically relevant DWT and the justification for the algorithm of the fast wavelet transform (FWT). In a two-dimensional (2D) wavelet transform, multiresolution analysis is carried out in row and column directions with a low-pass (L) and a high-pass (H) filter, decomposing the images and forming a pyramidal tree. During the decomposition, each (sub)image is downsampled by a factor of 2. An example is illustrated in figure 1 (Fukuda and Hirosawa 1999).

2.2 The stationary wavelet transform

The wavelet coefficients of DWT are sampled with scale change without violating the Nyquist criterion (Panda 2007). However, the classical DWT suffers a drawback: it is not time invariant. This means that, even with periodic signal extension, the DWT of a translated version of a signal \(X \) is not, in general, the translated version of the DWT of \(X \). To preserve the invariance by translation, the down sampling operation

![Wavelet decomposition diagram](https://example.com/wavelet-decomp.png)

Figure 1. Wavelet decomposition of an image into four subimages. LL denotes the horizontal and vertical directions at low frequency; LH denotes the horizontal direction at low frequency together with the vertical direction at high frequency; HL denotes the horizontal direction at high frequency and the vertical direction at low frequency; and HH denotes the horizontal and vertical directions at high frequency. \(\downarrow 2 \) denotes downsampling by a factor of 2.
must be suppressed and the decomposition obtained is then redundant and is called a stationary wavelet transform (SWT) (Mallat 2008).

3. The detail compensation filtering technique

3.1 Detail compensation

Some details of the interferogram will also be filtered out along with noise during the filtering process. To preserve as many details as possible, the idea of detail compensation is introduced. First, we filter the original interferogram and get the difference interferogram by subtracting the filtered interferogram from the original interferogram. Second, the difference interferogram is filtered for a second time with the purpose of compensation for lost details. Third, the filtered detail-compensated interferogram is obtained by adding the filtered difference interferogram in the second step to the filtered original interferogram in the first step.

In this article, to preserve the translation invariance during the wavelet transform and to compensate for the detail loss, the detail compensation is applied to the SWT decomposed high-frequency sub-bands.

3.2 Realization of the detail compensation filter

The practical procedure for the wavelet domain detail compensation filtering method for an InSAR interferogram consists of the following steps (see figure 2).

(1) Decompose the real and imaginary parts of the InSAR interferogram into four sub-bands using SWT, respectively.

Figure 2. The flowchart of the wavelet domain detail compensation filtering method for an InSAR interferogram.
A detail compensation filter for InSAR interferograms

(2) All of the high-frequency sub-bands for each wavelet subspace are filtered with detail compensation. The high-frequency component \(D \) is filtered by some facile filtering method to get \(D' \), and the difference component \(\Delta D \) is given by

\[
\Delta D = W (D - D'),
\]

where \(W \) is an operator to wrap real values to the principal interval \([-\pi, \pi]\). The difference component \(\Delta D \) is then filtered again by the facile filtering method to get \(D' \). Finally we obtain the compensated high-frequency component:

\[
D_{\text{new}} = W (D' - D'').
\]

During the filtering process, the size of the filtering windows at each wavelet level is defined as

\[
w_i = w_0 2^{i-1} - 1, \quad i \geq 2,
\]

where \(w_0 = 7 \) denotes the size of the filtering window at the first level.

(3) Both the filtered real part and the imaginary part are reconstructed with the inverse SWT.

(4) The filtered interferogram with detail compensation is obtained by extracting the phase value from the reconstructed real and imaginary parts.

Figure 2 shows the flowchart of the detail compensation interferogram filtering method based on the SWT. \(C_{Aj} \), \(C_{Vj} \), \(C_{Hj} \) and \(C_{Dj} \) \((j = 1, 2, 3)\) refer to the low-frequency components, high-frequency components in the vertical direction, high-frequency components in the horizontal direction and high-frequency components in the diagonal direction for each wavelet subspace, respectively. \(C_{V_{\text{new}j}} \), \(C_{H_{\text{new}j}} \) and \(C_{D_{\text{new}j}} \) \((j = 1, 2, 3)\) refer to the high-frequency components for each wavelet subspace after detail compensation in the directions explained above.

4. Experimental results

The European remote sensing satellite (ERS) tandem images in single look complex (SLC) CEOS format acquired on 2 and 3 January 1996 over the city of Zhengjiang, Jiangsu, China (Track 00318/Orbit 23352 and 03679) were used to generate an interferogram of size \(256 \times 256 \). The SAR images were processed with GAMMA Remote Sensing software (GAMMA Remote Sensing Research and Consulting AG, Gümligen, Switzerland; http://www.gamma-rs.ch/) using the two-pass differential interferometric approach. The phase trend expected for a smooth curved Earth was removed from the interferogram, and then the flattened interferogram was obtained, as shown in figure 3(a).

To evaluate the performance of the proposed method, the interferogram was filtered with a two-stage filter structure (Meng et al. 2007), a Lee filter (Lee et al. 1998), Frost filter (Frost et al. 1982), Boxcar filter (Goldstein and Werner 1998), wavelet packet transform and a Wiener filter (Zha et al. 2008) and a selective weighting filter (Sethu et al. 2008) (figure 3(b)–(g)). Moreover, to test the validity of the detail compensation and the SWT-based methods, comparisons between DWT- and SWT-based methods were made, as well as those between detail compensation and non-detail compensation methods (figure 3(h)–(k)).
Figure 3. Comparison of (a) the original interferogram and (b)–(k) the filtered interferograms, using: (b) a two-stage filter structure, (c) a Lee filter, (d) a Frost filter, (e) a Boxcar filter, (f) the wavelet packet transform and a Wiener filter and (g) a selective weighting filter; a periodic pivoting mean filter based on DWT (h) without and (i) with detail compensation; and a periodic pivoting mean filter based on SWT (j) without and (k) with detail compensation.

From figure 3(b)–(g) it can be seen that the edge of the interferogram filtered by the Lee filter (figure 3(c)) is distorted, and that the Boxcar filter results in an over-smoothed image (figure 3(e)). Figure 3(f) shows that the interferogram generated by the wavelet packet transform and the Wiener filter cannot remove the residues effectively. Moreover, the image in figure 3(g) reveals that the selective weighting filter loses some details. Figure 3(h) shows that the periodic pivoting mean filter based on DWT can remove most of the noise, but there exist many residues near the edge of the image. Figure 3(i), like figure 3(e), is also over-smoothed. By comparing the SWT-based methods with the DWT-based methods, it can be concluded that the former perform better than the latter.

However, it is difficult to evaluate the performances of figure 3(b), (d) and (k). To show the comparisons more clearly, profiles (the second column in azimuth direction is chosen) along the range direction of the interferograms were extracted and are shown in figure 4. From the comparisons of figure 4(b), (d) and (k), it can be seen that the profile in figure 4(k) has a few glitches as well as a few residues (table 1). The reason for the serious glitches in figure 4(b) may be that the second column in the
A detail compensation filter for InSAR interferograms

azimuth direction occupies less than half of the filter’s neighbourhood. Figure 4(d) relieves some of the glitches, but it is still worse than figure 4(k). Furthermore, the performances of figure 4(e) and (i) are consistent with previous analyses from figure 3(e) and (i), which show that both the Boxcar filter and the periodic pivoting mean filter based on DWT with detail compensation result in over-smoothed images. Thus, the comparisons from figures 3 and 4 reveal that the periodic pivoting mean filter based on SWT with detail compensation (figure 3(k)) performs better in both glitch mitigation and detail compensation.

The residues have a considerable impact on InSAR interferogram phase unwrapping, and the number of residues becomes an important indicator to measure the performances of interferogram filters. The numbers of residues of the original interferogram and the filtered interferograms are summarized in table 1. In addition, to evaluate the performances of the filtering algorithms, we used the universal image quality index (IQI) proposed by Wang and Bovik (2002) and the signal-to-noise ratio (SNR) and the mean square error (MSE). As shown in table 1, the SWT-based filters have more ideal IQI, SNR and MSE values than the DWT-based filters. The two-stage filter structure and selective weighting filter have similar indicators with the proposed technique, but they perform badly when the profiles along the range direction of the interferograms are compared.
Table 1. The number of residues, image quality index (IQI), mean square error (MSE) and signal-to-noise ratio (SNR) together with elapsed time for the original interferogram and interferograms generated by different filtering methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>No. of residues</th>
<th>IQI</th>
<th>MSE (rad)</th>
<th>SNR (dB)</th>
<th>Elapsed time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>597</td>
<td>–</td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Two-stage filter structure</td>
<td>97</td>
<td>0.315</td>
<td>1.38</td>
<td>4.40</td>
<td>2.17</td>
</tr>
<tr>
<td>Lee filter</td>
<td>68</td>
<td>0.255</td>
<td>1.80</td>
<td>3.24</td>
<td>8.10</td>
</tr>
<tr>
<td>Frost filter</td>
<td>89</td>
<td>0.199</td>
<td>1.93</td>
<td>2.94</td>
<td>5.94</td>
</tr>
<tr>
<td>Boxcar filter</td>
<td>4</td>
<td>0.104</td>
<td>2.35</td>
<td>2.22</td>
<td>0.06</td>
</tr>
<tr>
<td>Wavelet packet transform and Wiener filter</td>
<td>157</td>
<td>0.600</td>
<td>1.07</td>
<td>5.53</td>
<td>5.38</td>
</tr>
<tr>
<td>Selective weighting filter</td>
<td>61</td>
<td>0.250</td>
<td>1.62</td>
<td>3.74</td>
<td>5.06</td>
</tr>
<tr>
<td>Periodic pivoting mean filter based on DWT</td>
<td>136</td>
<td>0.229</td>
<td>1.88</td>
<td>3.07</td>
<td>4.70</td>
</tr>
<tr>
<td>Periodic pivoting mean filter based on DWT with detail compensation</td>
<td>10</td>
<td>0.093</td>
<td>2.41</td>
<td>1.98</td>
<td>11.19</td>
</tr>
<tr>
<td>Periodic pivoting mean filter based on SWT</td>
<td>126</td>
<td>0.311</td>
<td>1.61</td>
<td>3.75</td>
<td>65.44</td>
</tr>
<tr>
<td>Periodic pivoting mean filter based on SWT with detail compensation</td>
<td>81</td>
<td>0.299</td>
<td>1.70</td>
<td>3.50</td>
<td>145.84</td>
</tr>
</tbody>
</table>

5. Conclusions

In this article, we have proposed a new InSAR interferogram filtering method. This method was presented by integrating the difference idea and the character of the SWT. Comparisons with the two-stage filter, Lee filter, Frost filter, Boxcar filter, wavelet packet transform and Wiener filter, selective weighting filter and the DWT-based filter are also made. The results of the study can be summarized as follows.

1. The proposed technique can overcome the drawback of the sliding-window spatial filters which distort the pixels that occupy less than half of the filter’s neighbourhood.
2. By compensating for the InSAR interferogram details with the proposed method, it can effectively suppress the speckle, reduce the residues and maintain the details.
3. Compared with the detail compensation filters based on DWT, the detail compensation filters based on SWT perform better in both suppressing the speckle effectively and smoothing the interferogram moderately.

As the proposed technique is implemented in the wavelet domain and filtered with a facile filter, it is relatively expensive and complex to compute (see table 1). Further research will be directed towards improving the computational efficiency.

Acknowledgements

We are very grateful to the two anonymous referees for their constructive comments and valuable suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 40974001), the National Key Technology R&D
Programme of China (Grant No. 2008BAB29B01-6) and Fundamental Research Funds for the Central Universities (Grant Nos 2010B14514 and 2010B14714). Some figures in this article were generated with GMT software (Generic Mapping Tools software, Hawaii, USA; Wessel and Smith 1998).

References

