Space Embeddings and Application to Approximation

Function space emdeddings for non-tensor product spaces and application to high-dimensional approximation

Michael Gnewuch
University of Osnabrück, Germany

August 23, 2024

Based on ongoing joint work with
Peter Kritzer (RICAM Linz) & Klaus Ritter (RPTU Kaiserslautern)

Motivation: Tractability Analysis

Of interest: Approximation problems, defined on scale of function spaces $(H_d)_{d\in\mathbb{N}}$, where d refers to number of variables.

Important goal: To find algorithms that break curse of dimensionality, preferably for large classes of scales of function spaces.

An approach to achieve this goal:

- Exploit structure of suitable (scales of) function spaces for analysis of promising algorithms.
- Establish embedding theorems for scales of function spaces to transfer results from scales with favourable structure to other scales of interest.

Already known: Several general embedding results if H_d is d-fold tensor product of reproducing kernel Hilbert space (RKHS) H_1 ; examples include weighted RKHSs based on product weights and spaces of increasing smoothness, see Hefter & Ritter'14; G., Hefter, Hinrichs, Ritter'17; G., Hefter, Hinrichs, Ritter, Wasilkowski'19; G., Hefter, Hinrichs, Ritter'22; G., Hinrichs, Ritter, Rüßmann'24,...

Outline of this talk: We discuss new general embedding approach for non-tensor product case and apply it to prove new results for L^{∞} -approximation on RKHS of functions that depend on infinitely many variables (= limiting case of tractability analysis).

Function Spaces of Infinitely Many Variables

Spaces of univariate functions: D domain, $k:D\times D\to \mathbb{R}$ bounded reproducing kernel (RK) with $1\notin H(k)$. Then $H(1+k)=H(1)\oplus H(k)$.

$$\kappa := \sup_{x \in D} \sqrt{k(x, x)} < \infty.$$

Spaces of multivariate functions: For $u \in \mathcal{U} := \{u \subset \mathbb{N} \,:\, |u| < \infty\}$ put

$$k_u(\mathbf{x}_u, \mathbf{y}_u) := \prod_{j \in u} k(x_j, y_j), \quad \mathbf{x}_u = (x_j)_{j \in u}, \mathbf{y}_u = (y_j)_{j \in u} \in D^u.$$

Then $H(k_u) = \bigotimes_{j \in u} H(k)$.

Spaces of ∞ -variate functions: $(\gamma_u)_{u\in\mathcal{U}}$ weights satisfying

$$\sum_{u \in \mathcal{U}} \gamma_u \kappa^{2|u|} < \infty \quad \text{(summability condition)},$$

$$K_{\gamma}(\mathbf{x}, \mathbf{y}) := \sum_{u \in \mathcal{U}} \gamma_u k_u(\mathbf{x}_u, \mathbf{y}_u), \qquad \mathbf{x}, \mathbf{y} \in D^{\mathbb{N}}.$$

Then $f \in H(K_{\gamma})$ has orthogonal function decomposition

$$f(\mathbf{x}) = \sum_{u \in U} f_u(\mathbf{x}_u), \quad f_u \in H(k_u), \quad \text{ with } \quad \|f\|_{K_{\boldsymbol{\gamma}}}^2 = \sum_{u \in U} \gamma_u^{-1} \|f_u\|_{k_u}^2.$$

```
Function
Space Embeddings
and
Application
to Approximation
```

Examples of Classes of Weights

- $(\gamma_j)_{j\in\mathbb{N}}$ non-increasing sequence in $]0,\infty[$.
- (i) Product weights [Sloan & Woźniakowski'98]:

$$\gamma_u := \prod_{j \in u} \gamma_j \,.$$

(ii) Product and order dependent (POD) weights [Kuo, Sloan & Schwab'12] :

$$\gamma_u := \Gamma_{|u|} \prod_{j \in u} \gamma_j \,,$$

where $1 \leq \Gamma_k \leq c \cdot (k!)^b$ for c > 0 and $b < \operatorname{dec}((\gamma_j)_{j \in \mathbb{N}})$, where

$$\mathrm{dec}((\gamma_j)_{j\in\mathbb{N}}) := \sup\left\{t \geq 0 \,:\, \sum_{j\in\mathbb{N}} \gamma_j^{1/t} < \infty\right\} \quad \text{("polynomial decay rate")}$$

(Example:
$$\gamma_j \asymp j^{-\alpha} \ln(j)^{\beta} \implies \det((\gamma_j)_{j \in \mathbb{N}}) = \alpha$$
.)

Lemma 1a. γ product or POD weights, C > 0. Then

$$\sum_{u \in \mathcal{U}} \gamma_u C^{2|u|} < \infty \quad \Longleftrightarrow \quad \sum_{u \in \mathcal{U}} \gamma_u < \infty \quad \Longleftrightarrow \quad \sum_{j \in \mathbb{N}} \gamma_j < \infty \,.$$

Examples of Classes of Weights

(iii) Finite-order weights of order $\omega \in \mathbb{N}$ [Dick, Sloan, Wang & Woź.'06]:

$$\gamma_u = 0$$
 for all $u \in \mathcal{U}$ with $|u| > \omega$.

Lemma 1b. γ finite order weights of order ω , C > 0. Then

$$\sum_{u \in \mathcal{U}} \gamma_u C^{2|u|} < \infty \quad \Longleftrightarrow \quad \sum_{u \in \mathcal{U}} \gamma_u < \infty.$$

Remark. For summable (general) weights γ :

$$H(K_{\boldsymbol{\gamma}}) = \bigotimes_{j \in \mathbb{N}} H(1 + \gamma_j k) \quad \Longleftrightarrow \quad \boldsymbol{\gamma} \quad \text{are product weights}.$$

Approximation Problem: Solution Operator, Algorithms & Cost

Solution operator: $B(D^{\mathbb{N}})$ space of bounded fcts. on $D^{\mathbb{N}}$ with norm $\|\cdot\|_{\infty}$.

$$S_{\gamma}: H(K_{\gamma}) \to B(D^{\mathbb{N}}), f \mapsto f,$$

$$||S_{\gamma}|| = \sup_{\mathbf{x} \in D^{\mathbb{N}}} \sqrt{K_{\gamma}(\mathbf{x}, \mathbf{x})} = \sum_{u \in \mathcal{U}} \gamma_u \kappa^{2|u|} < \infty.$$

Admissable algorithms: Linear algorithms

$$A_n(f) = \sum_{i=1}^n f(\mathbf{x}^{(i)}) g_i , \quad \mathbf{x}^{(i)} \in D^{\mathbb{N}} , g_i \in B(D^{\mathbb{N}}) .$$

Cost: Fix default value $a \in D$.

Unrestricted Subspace Sampling [Kuo, Sloan, Wasilkowski, Woźniakowski'10a]

$$cost(A_n) := \sum_{i=1}^{n} |\{j \in \mathbb{N} : x_j^{(i)} \neq a\}|$$

Approximation Problem: Error Criterion

Error criterion: Worst-case error

$$e(A_n; S_{\gamma}, K_{\gamma}) := \sup_{\|f\|_{K_{\gamma}} \le 1} \|A(f) - f\|_{\infty}$$

n-th minimal randomized error:

$$e(n, K_{\gamma}) := \inf\{e(A; S_{\gamma}, K_{\gamma}) : A \text{ adm. alg...}, \cos(A) \le n\}$$

"(Polynomial) Convergence rate" of $e(n, K_{\gamma})$:

$$dec(K_{\gamma}) := dec ((e(n, K_{\gamma}))_{n \in \mathbb{N}})$$

Analysis of Algorithms

Task: Analyze the error of a promising adm. algorithm A on $H(K_{\gamma})$.

Problem: Norm on $H(K_{\gamma})$ may not be well-suited for error analysis.

Remedy: Find RK \widehat{k} on D and weights γ^\uparrow , s.t. corresponding kernel $\widehat{K}_{\gamma^\uparrow}$ on $D^\mathbb{N}$ induces norm on $H(\widehat{K}_{\gamma^\uparrow})$ appropriate for error analysis and

$$H(K_{\gamma}) \hookrightarrow H(\widehat{K}_{\gamma^{\uparrow}}).$$

How to Find a Suitable Embedding Space $H(\widehat{K}_{oldsymbol{\gamma}^\uparrow})$?

Step I: Choose suitable kernel \widehat{k} on D.

Take \hat{k} with $H(1)\cap H(\hat{k})=\{0\}$ and $H(1+k)=H(1+\hat{k})$ as vector spaces that has features supporting the error analysis.

Example 1. For $a \in D$ exists always kernel \hat{k} s.t. $\hat{k}(a,a) = 0$ ("anchor condition") and $H(1+k) = H(1+\hat{k})$ as vector spaces.

 γ^{\uparrow} weights with $\sum_{u\in\mathcal{U}}\gamma_u^{\uparrow}\widehat{\kappa}^{2|u|}<\infty$, where $\widehat{\kappa}:=\sup_{x\in D}\sqrt{\widehat{k}(x,x)}$.

Then $\widehat{K}_{{m{\gamma}}^\uparrow}({f a},{f a})=0$ and decomposition

$$f = \sum_{u \subset_f \mathbb{N}} f_u, \quad f_u \in H(\widehat{k}_u),$$

on $H(\widehat{K}_{\boldsymbol{\gamma}^{\uparrow}})$ is anchored decomposition (or cut HDMR) of f.

It can be calculated directly as

$$f_u(\mathbf{x}) := \sum_{v \subseteq u} (-1)^{|u \setminus v|} f(\mathbf{x}_v, \mathbf{a}_{\mathbb{N} \setminus v}),$$

cf. [Kuo, Sloan, Wasilkowski, Woźniakowski'10b].

Anchored decomposition is, e.g., helpful if function decomposition should be explicitly calculated or if one wants to use Taylor expansion.

How to Find a Suitable Embedding Space $H(\widehat{K}_{oldsymbol{\gamma}^{\uparrow}})$?

Example 2. Let μ probability measure on D and k measurable. There exists always RK \hat{k} s.t.

$$\int_D \widehat{k}(x,y)\,d\mu(y) = 0 \quad \text{ for all } x \in D. \quad \text{ ("ANOVA condition")}$$

and $H(1+k)=H(1+\widehat{k})$ as vector spaces.

$$\gamma^{\uparrow}$$
 weights with $\sum_{u\in\mathcal{U}}\gamma_u^{\uparrow}\,\widehat{\kappa}^{2|u|}<\infty$, where $\widehat{\kappa}:=\sup_{x\in D}\sqrt{\widehat{k}(x,x)}$.

Then $H(\widehat{K}_{{\gamma}^{\uparrow}}) \subset L^2(D^{\mathbb{N}},\mu^{\mathbb{N}})$ and decomposition

$$f = \sum_{u \subset f^{\mathbb{N}}} f_u, \quad f_u \in H(\widehat{k}_u),$$

on $H(\widehat{K}_{{m{\gamma}}^{\uparrow}})$ is $(\infty\text{-variate})$ ANOVA decomposition of f.

In particular,

$$\|f\|_{L^2(D^{\mathbb{N}},\mu^{\mathbb{N}})}^2 = \sum_{u \in \mathcal{U}} \|f_u\|_{L^2(D^u,\mu^u)}^2 \quad \text{ and } \quad \operatorname{Var}(f) = \sum_{u \in \mathcal{U}} \operatorname{Var}(f_u).$$

ANOVA decomposition is, e.g., helpful for L^2 -approximation or for analysis of unbiased randomized algorithms (error = variance).

How to Find a Suitable Embedding Space $H(\widehat{K}_{\gamma^{\uparrow}})$?

Step II: Choose suitable weights γ^{\uparrow} .

Let C denote norm of embedding $H(k) \hookrightarrow H(1+\widehat{k})$. Assume γ satisfies

$$\sum_{v \in \mathcal{U}} \gamma_v C^{2|v|} < \infty.$$

Define

$$\gamma_u^{\uparrow} := \sum_{u \subseteq v \in \mathcal{U}} \gamma_v C^{2|v|}$$

Theorem 1. Let $\widehat{K}_{\gamma^{\uparrow}}$ weighted RK on $D^{\mathbb{N}}$ corresponding to \widehat{k} and γ^{\uparrow} . Then

$$H(K_{\gamma}) \hookrightarrow H(\widehat{K}_{\gamma^{\uparrow}})$$

with embedding norm at most 1.

Lemma 1. If γ are product weights, POD weights, or finite-order weights then

$$dec(\gamma) = dec(\gamma^{\uparrow}).$$

How to Attack the L^{∞} -Approximation Problem?

For given RK k and weights γ as above assume k anchored in default value $a \in D$. Resulting anchored space $H(K_{\gamma})$ well-suited for analysis of

Multivariate decomposition method (MDM):

For $f \in H(K_{\gamma})$ denote its anchored decomposition by

$$f(\mathbf{x}) = \sum_{u \in \mathcal{U}} f_{u,a}(\mathbf{x}_u).$$

- **1** For given error tolerance ε choose finite set $\mathcal{A}(\varepsilon) \subset \mathcal{U}$ of most important groups of variables.
- **Q** Choose for each $u \in \mathcal{A}(\varepsilon)$ linear algorithm A_{u,n_u} using n_u samples to approximate $S(f_{u,a}) = f_{u,a}$.

Final algorithm A^{MDM} is of form

$$A^{\mathrm{MDM}}(f) = \sum_{u \in \mathcal{A}(\varepsilon)} A_{u,n_u}(f_{u,a})$$

Multivariate Decomposition Method

MDM fka changing dimension algorithm for ∞-variate setting introduced in

- Kuo, Sloan, Wasilkowski &Woźniakowski'10a; Plaskota & Wasilkowski'11 (∞-variate integration)
- Wasilkowski & Woźniakowski'11a, '11b (∞-variate approximation).

Further papers on MDM include: Wasilkowski'12; G.'13; Dick & G.'14a, 14b; Plaskota & Wasilkowski'14; Wasilkowski'14; Gilbert & Wasilkowski'17; G., Hefter, Hinrichs & Ritter'17; G., Hefter, Hinrichs, Ritter & Wasilkowski'17; Kuo, Nuyens, Plaskota, Sloan, Wasilkowski'17; Gilbert, Kuo, Nuyens & Wasilkowski'18; G., Hefter, Hinrichs, Ritter & Wasilkowski'19; G. & Wnuk'20; G., Hinrichs, Ritter & Rüßmann'24...

Similar idea used for multivariate integration in Griebel & Holtz'10 (dimension-wise quadrature methods).

Result for Anchored Kernels and POD Weights

"Clean result" in the case of POD weights (we have also results for "general weights", but they are a bit more technical...):

Theorem 2. Assume γ are summable POD weights. Let k be bounded RK anchored in $a \in D$ and K_{γ} corresponding weighted RK. Then

$$dec(K_{\gamma}) = min\left(dec(1+k), \frac{dec(\gamma) - 1}{2}\right),$$

where $\mathrm{dec}(1+k)$ denotes convergence rate of nth minimal errors of univariate L^∞ -approximation on H(1+k).

Remark. (i) Upper bound on $\operatorname{dec}(K^a_\gamma)$ can be derived from corresponding bound for integration problem for product weights from Kuo, Sloan, Wasilkowski, Woźiakowski'10a.

(ii) In special case where $H(K_{\gamma})$ is Sobolev space of dominating mixed smoothness $r \in \mathbb{N}$ the lower bound on $\operatorname{dec}(K_{\gamma}^a)$ was proved in Wasilkowski'14; in that case $\operatorname{dec}(1+k)=r-1/2$. (He actually considered L^q -approximation for L^p -Sobolev spaces for $1 \leq p,q \leq \infty$.)

Result for Anchored Kernels and POD Weights

For given bounded RK k and summable POD weights γ choose corresponding RK k anchored in default value $a \in D$ and corresponding weights γ^{\uparrow} .

Resulting space $H(K_{\gamma^{\uparrow}})$ is anchored in ${\bf a}$, but weights γ^{\uparrow} are not necessarily POD weights anymore... but there exist POD weights η, ζ s.t.

$$\eta_u \leq \gamma_u^\uparrow \leq \zeta_u \quad \text{for all } u \in \mathcal{U} \quad \text{ and } \quad \operatorname{dec}(\eta) = \operatorname{dec}(\gamma^\uparrow) = \operatorname{dec}(\zeta).$$

Corollary 1. Assume γ are POD weights. Let k be bounded RK and K_{γ} corresponding weighted RK. Then

$$dec(K_{\gamma}) = min\left(dec(1+k), \frac{dec(\gamma) - 1}{2}\right),$$

where dec(1+k) denotes convergence rate of nth minimal errors of univariate L^{∞} -approximation on H(1+k).

Proof. Theorem 2, applied to $H(\widehat{K}_{\zeta})$, and $H(K_{\gamma}) \hookrightarrow H(\widehat{K}_{\gamma^{\uparrow}}) \hookrightarrow H(\widehat{K}_{\zeta})$ yield the lower bound on $\operatorname{dec}(K_{\gamma})$.

Upper bound on $\operatorname{dec}(K_{\gamma})$ can be derived from corresponding upper bound for integration for corresponding product weights in G., Hefter, Hinrichs, Ritter'17

Appendix: Some Properties of the Manipulated Weights γ^{\uparrow}

For $u \in \mathcal{U}$ define Difference Operator Δ_u via

$$\Delta_u \gamma := \gamma_v - \gamma_{u \cap v}$$
 for all weights γ , $v \in \mathcal{U}$.

Weights γ are completely monotone if

$$(\Delta_{u_n}\Delta_{u_{n-1}}\cdots\Delta_{u_1}\boldsymbol{\gamma})_v\geq 0$$

for every $n \in \mathbb{N}$, all $u_1, \ldots, u_n \in \mathcal{U}$, and all $v \in \mathcal{U}$.

Assumption: $(\gamma_u)_{u\in\mathcal{U}}$ weights satisfying $\sum_{u\in\mathcal{U}}\gamma_u\kappa^{2|u|}<\infty$

Then γ^{\uparrow} are completely monotone.

Define γ^{\downarrow} via

$$\gamma_u^{\downarrow} := C^{-2|u|} \cdot \lim_{s \to \infty} \sum_{u \subseteq v \in \mathcal{U}} (-1)^{|v| - |u|} \gamma_v , \quad u \in \mathcal{U}.$$

Then

$$((\gamma^{\uparrow})^{\downarrow})_u = \gamma_u \quad \text{ for all } u \in \mathcal{U}.$$