

Quasi-Monte Carlo methods for optimal feedback control problems under uncertainty

Philipp Guth

with P. Kritzer (RICAM) and K. Kunisch (Uni Graz & RICAM)

Johann Radon Institute for Computational and Applied Mathematics (RICAM)

Austrian Academy of Sciences (ÖAW)

Linz. Austria

MCQMC 2024, University of Waterloo, Aug 19, 2024

SS Optimization under uncertainty

The optimal control problem

Minimize $\mathcal{J}(y, u)$ subject to

$$\dot{y} = Ay + Bu + f, \qquad y(0) = y_{\circ},$$

where

$$\mathcal{J}(y,u) = \frac{1}{2} \int_0^T \left(\|Q(y(t) - g(t))\|_H^2 + \|u(t)\|_U^2 \right) dt + \frac{1}{2} \|P(y(T) - g_T)\|_H^2,$$

- \blacksquare V, H separable HS, Gelfand triplet $V \subset H = H' \subset V'$
- $y_o \in H$, $f \in L^2(0, T; V')$, $g_T \in H$, $g \in L^2(0, T; H)$ are given
- $B \in \mathcal{L}(U, H)$, with U finite-dimensional separable HS.
- $Q \in \mathcal{L}(H)$ and $P \in \mathcal{L}(H)$ observation operators
- $\blacksquare \mathcal{A} \in \mathcal{L}(V, V')$

OC problem

www.ricam.oeaw.ac.at

The optimal control problem under uncertainty

Minimize $\mathcal{J}(y_{\sigma}, u_{\sigma})$ subject to

$$\dot{y}_{\sigma} = A_{\sigma} y_{\sigma} + B u_{\sigma} + f, \qquad y_{\sigma}(0) = y_{\circ},$$

where

$$\mathcal{J}(y_{\sigma}, u_{\sigma}) = \frac{1}{2} \int_{0}^{T} \left(\|Q(y_{\sigma}(t) - g(t))\|_{H}^{2} + \|u_{\sigma}(t)\|_{U}^{2} \right) dt + \frac{1}{2} \|P(y_{\sigma}(T) - g_{T})\|_{H}^{2},$$

- \blacksquare V, H separable HS, Gelfand triplet $V \subset H = H' \subset V'$
- $y_o \in H$, $f \in L^2(0, T; V')$, $g_T \in H$, $g \in L^2(0, T; H)$ are given
- $B \in \mathcal{L}(U, H)$, with U finite-dimensional separable HS.
- $Q \in \mathcal{L}(H)$ and $P \in \mathcal{L}(H)$ observation operators
- lacksquare $\mathcal{A}_{m{\sigma}} \in \mathcal{L}(V,V')$ depending on uncertain parameters $m{\sigma} \in \mathfrak{S}$

OC problem

Robust open-loop problem

Find a deterministic control that is optimal under a risk measure R.

Minimize $\mathcal{J}_{\mathcal{R}}(y_{\sigma}, u)$ subject to

$$\dot{y}_{\sigma} = A_{\sigma} y_{\sigma} + Bu + f, \qquad y_{\sigma}(0) = y_{\circ},$$

where

$$\mathcal{J}_{\mathcal{R}}(y_{\sigma}, u) = \mathcal{R}\left(\frac{1}{2} \int_{0}^{T} \|Q(y_{\sigma}(t) - g(t))\|_{H}^{2} dt + \frac{1}{2} \|P(y_{\sigma}(T) - g_{T})\|_{H}^{2}\right) + \int_{0}^{T} \|u(t)\|_{U}^{2} dt,$$

e.g.,
$$\mathcal{R}(\cdot) = \int_{\mathfrak{S}}(\cdot)\,\mu(\mathrm{d}\boldsymbol{\sigma})$$
 or $\mathcal{R}(\cdot) = \theta^{-1}\ln\big(\int_{\mathfrak{S}}\mathrm{e}^{\theta\,(\cdot)}\,\mu(\mathrm{d}\boldsymbol{\sigma})\big)$, $\theta > 0$.

[GKKSS'24] Guth, P. A., Kaarnioja, V., Kuo, F. Y., Schillings, C., Sloan, I. H.: Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration. *Numer. Math.* **156**, 565–608 (2024). https://doi.org/10.1007/s00211-024-01397-9

OC problem

Regularity an

Dimension truncation

- \blacksquare Suppose that the robust OL-control u_{OL}^* has been computed
- Running the system with u_{OL}^*

$$\dot{y}_{\sigma} = A_{\sigma} y_{\sigma} + B u_{\mathrm{OL}}^* + f, \qquad y_{\sigma}(0) = y_{\circ},$$

leads after time T to $y_{\sigma}(T; y_{\circ}; u_{OL}^*), \sigma \in \mathfrak{S}$.

- lacksquare Suppose the "true" system state $y_{ au}$ is available at $au \in (0, T)$
- To update the robust OL-control, one has to solve the optimization problem (with y_{τ} as initial condition) again!

- Suppose that the robust OL-control u_{OL}^* has been computed
- \blacksquare Running the system with $u_{
 m OL}^*$

$$\dot{y}_{\sigma} = A_{\sigma} y_{\sigma} + B u_{\text{OL}}^* + f, \qquad y_{\sigma}(0) = y_{\circ},$$

leads after time T to $y_{\sigma}(T; y_{\circ}; u_{OL}^*), \sigma \in \mathfrak{S}$.

- lacksquare Suppose the "true" system state $y_{ au}$ is available at $au \in (0, T)$
- To update the robust OL-control, one has to solve the optimization problem (with y_{τ} as initial condition) again!

- Suppose that the robust OL-control u_{OL}^* has been computed
- \blacksquare Running the system with $u_{
 m OL}^*$

$$\dot{y}_{\sigma} = A_{\sigma} y_{\sigma} + B u_{\mathrm{OL}}^* + f, \qquad y_{\sigma}(0) = y_{\circ},$$

leads after time T to $y_{\sigma}(T; y_{\circ}; u_{OL}^*), \sigma \in \mathfrak{S}$.

- Suppose the "true" system state y_{τ} is available at $\tau \in (0, T)$
- To update the robust OL-control, one has to solve the optimization problem (with y_{τ} as initial condition) again!

- \blacksquare Suppose that the robust OL-control u_{OL}^* has been computed
- \blacksquare Running the system with u_{OL}^*

$$\dot{y}_{\sigma} = \mathcal{A}_{\sigma} y_{\sigma} + B u_{\mathrm{OL}}^* + f, \qquad y_{\sigma}(0) = y_{\circ},$$

leads after time T to $y_{\sigma}(T; y_{\circ}; u_{OL}^*), \sigma \in \mathfrak{S}$.

- Suppose the "true" system state y_{τ} is available at $\tau \in (0, T)$
- To update the robust OL-control, one has to solve the optimization problem (with y_{τ} as initial condition) again!

- Suppose that the robust OL-control u_{OL}^* has been computed
- \blacksquare Running the system with u_{OL}^*

$$\dot{y}_{\sigma} = A_{\sigma} y_{\sigma} + B u_{\text{OL}}^* + f, \qquad y_{\sigma}(0) = y_{\circ},$$

leads after time T to $y_{\sigma}(T; y_{\circ}; u_{OL}^*), \sigma \in \mathfrak{S}$.

- Suppose the "true" system state y_{τ} is available at $\tau \in (0, T)$
- To update the robust OL-control, one has to solve the optimization problem (with y_{τ} as initial condition) again!

Find a robust control in feedback form: $u_{\sigma} = K y_{\sigma}$

How to find a good feedback law $K: H \rightarrow U$

Given $\sigma \in \mathfrak{S}$, an optimal $u_{\sigma}(t) = K_{\sigma}(t, y_{\sigma}(t))$ can be obtained, leading to the optimal closed-loop system

$$\dot{y}_{\sigma}(t) = A_{\sigma}y_{\sigma}(t) + BK_{\sigma}(t, y_{\sigma}(t)) + f(t), \qquad y_{\sigma}(0) = y_{\circ}.$$

How to find a good feedback law K: H o U

Given $\sigma \in \mathfrak{S}$, an optimal $u_{\sigma}(t) = K_{\sigma}(t, y_{\sigma}(t))$ can be obtained, leading to the optimal closed-loop system

$$\dot{y}_{\sigma}(t) = A_{\sigma}y_{\sigma}(t) + BK_{\sigma}(t, y_{\sigma}(t)) + f(t), \qquad y_{\sigma}(0) = y_{\circ}.$$

...but $\sigma \in \mathfrak{S}$ is unknown.

How to find a good feedback law $K: H \rightarrow U$

Given $\sigma \in \mathfrak{S}$, an optimal $u_{\sigma}(t) = K_{\sigma}(t, y_{\sigma}(t))$ can be obtained, leading to the optimal closed-loop system

$$\dot{y}_{\sigma}(t) = A_{\sigma} y_{\sigma}(t) + BK_{\sigma}(t, y_{\sigma}(t)) + f(t), \qquad y_{\sigma}(0) = y_{\circ}.$$

...but $\sigma \in \mathfrak{S}$ is unknown.

Thus, we design $K = K_{\mathfrak{S}}$, based on the expectation w.r.t. $\sigma \in \mathfrak{S}$:

$$K_{\mathfrak{S}} = \int_{\mathfrak{S}} K(\boldsymbol{\sigma}) \, \mu(\mathrm{d}\boldsymbol{\sigma}) \approx \int_{\mathfrak{S}_s} K((\boldsymbol{\sigma}_s, \boldsymbol{0})) \, \mu_s(\mathrm{d}\boldsymbol{\sigma}_s) \approx \frac{1}{N} \sum_{k=0}^{N-1} K((\boldsymbol{\sigma}^{(k)}, \boldsymbol{0})),$$

and investigate QMC approximations of the integrals.

OC problem

Regularity ar

Dimension truncation

Optimality conditions

The optimal $(y(\sigma), q_1(\sigma)) \in W_T(V, V') \times W_T(V, V')$ solves

$$G(\sigma)\begin{pmatrix} y(\sigma) \\ q_1(\sigma) \end{pmatrix} = \begin{bmatrix} f \\ y_0 \\ Q^*Qg \\ P^*Pg_T \end{bmatrix} \in V_T' \times H \times H_T \times H,$$

Optimality conditions

The optimal $(y(\sigma), q_1(\sigma)) \in W_T(V, V') \times W_T(V, V')$ solves

$$G(\sigma)\begin{pmatrix} y(\sigma) \\ q_1(\sigma) \end{pmatrix} = \begin{bmatrix} f \\ y_0 \\ Q^*Qg \\ P^*Pg_T \end{bmatrix} \in V_T' \times H \times H_T \times H,$$

where $G(\sigma) \in \mathcal{L}(W_T(V,V') \times W_T(V,V'), V'_T \times H \times V'_T \times H)$ is

$$G(\sigma) := egin{bmatrix} rac{\mathrm{d}}{\mathrm{d} \mathrm{t}} - \mathcal{A}_{oldsymbol{\sigma}} & -BB^* \ E_0 & 0 \ Q^*Q & -rac{\mathrm{d}}{\mathrm{d} \mathrm{t}} - \mathcal{A}_{oldsymbol{\sigma}}^* \ P^*PE_T & E_T \end{bmatrix},$$

where $E_t: W_T(V, V') \to H$ for $t \in [0, T]$.

Optimality conditions

The optimal $(y(\sigma), q_1(\sigma)) \in W_T(V, V') \times W_T(V, V')$ solves

$$G(\sigma)\begin{pmatrix} y(\sigma) \\ q_1(\sigma) \end{pmatrix} = \begin{bmatrix} f \\ y_0 \\ Q^*Qg \\ P^*Pg_T \end{bmatrix} \in V_T' \times H \times H_T \times H,$$

where $G(\sigma) \in \mathcal{L}(W_T(V, V') \times W_T(V, V'), V'_T \times H \times V'_T \times H)$ is

$$G(\sigma) := egin{bmatrix} rac{\mathrm{d}}{\mathrm{dt}} - \mathcal{A}_{oldsymbol{\sigma}} & -BB^* \ E_0 & 0 \ Q^*Q & -rac{\mathrm{d}}{\mathrm{dt}} - \mathcal{A}_{oldsymbol{\sigma}}^* \ P^*PE_T & E_T \end{bmatrix},$$

where $E_t: W_T(V, V') \to H$ for $t \in [0, T]$. The optimal control is

$$u(\boldsymbol{\sigma}) = B^* q_1(\boldsymbol{\sigma}).$$

Parametric regularity of bounded linear operators

A fam. $\{\mathbb{G}(\sigma) \in \mathcal{L}(X, Y') : \sigma \in \mathfrak{S}\}\$ is p-analytic for some 0 , if

(i) The operator $\mathbb{G}(\sigma)$ is invertible for every $\sigma \in \mathfrak{S}$ with

$$\sup_{\sigma \in \mathfrak{S}} \|\mathbb{G}(\sigma)^{-1}\|_{\mathcal{L}(Y',X)} \leq C.$$

(ii) For each $\sigma \in \mathfrak{S}$, $\mathbb{G}(\sigma)$ is a real analytic function w.r.t. σ . I.e. \exists a nonnegative sequence $\tilde{\boldsymbol{b}} = (\tilde{b}_j)_{j \in \mathbb{N}} \in \ell^p(\mathbb{N})$ such that for all $\nu \in \mathcal{F} \setminus \{0\}$ there holds that

$$\sup_{\boldsymbol{\sigma}\in\mathfrak{S}}\|\mathbb{G}(\mathbf{0})^{-1}\partial_{\boldsymbol{\sigma}}^{\boldsymbol{\nu}}\mathbb{G}(\boldsymbol{\sigma})\|_{\mathcal{L}(X)}\leq C\tilde{\boldsymbol{b}}^{\boldsymbol{\nu}}$$

$$\mathcal{F} := \{ \boldsymbol{m} \in \mathbb{N}_0^{\mathbb{N}} \mid \sum_{i \geq 1} m_i < \infty \}$$

Example: Affine parameter dependence

$$\mathbb{G}(oldsymbol{\sigma}) = \mathbb{G}_0 + \sum_{j \geq 1} \sigma_j \mathbb{G}_j$$

- If $\sup_{\sigma \in \mathbb{G}} \|\mathbb{G}_0^{-1}\|_{\mathcal{L}(Y',X)} \leq C_0$ and $\sum_{j \geq 1} \|\mathbb{G}_0^{-1}\mathbb{G}_j\|_{\mathcal{L}(X)} \leq \kappa < 2$, then $\mathbb{G}(\sigma)$ satisfies (i) and (ii) with $C = ((1 \frac{\kappa}{2})C_0^{-1})^{-1}$ and $\tilde{b}_j = \|\mathbb{G}_0^{-1}\mathbb{G}_j\|_{\mathcal{L}(X,Y')}$
- For every $f \in Y'$, $\exists ! y(\sigma)$ such that $\mathbb{G}(\sigma)y(\sigma) = f$. The parametric family $y(\sigma)$ depends analytically on the $\sigma \in \mathfrak{S}$ with

$$\sup_{\sigma \in \mathfrak{S}} \|\partial_{\sigma}^{\nu} y(\sigma)\| \le C \|f\|_{Y'} |\nu|! \boldsymbol{b}^{\nu}$$

OC probl

Regularity analysis

Dimension trunca

Parametric regularity of bounded linear operators

A fam. $\{\mathbb{G}(\sigma) \in \mathcal{L}(X, Y') : \sigma \in \mathfrak{S}\}\$ is p-analytic for some 0 , if

(i) The operator $\mathbb{G}(\sigma)$ is invertible for every $\sigma \in \mathfrak{S}$ with

$$\sup_{\boldsymbol{\sigma}\in\mathfrak{S}}\|\mathbb{G}(\boldsymbol{\sigma})^{-1}\|_{\mathcal{L}(Y',X)}\leq C.$$

(ii) For each $\sigma \in \mathfrak{S}$, $\mathbb{G}(\sigma)$ is a real analytic function w.r.t. σ . I.e. \exists a nonnegative sequence $\tilde{\boldsymbol{b}} = (\tilde{b}_j)_{j \in \mathbb{N}} \in \ell^p(\mathbb{N})$ such that for all $\nu \in \mathcal{F} \setminus \{0\}$ there holds that

$$\sup_{\boldsymbol{\sigma}\in\mathfrak{S}}\|\mathbb{G}(\mathbf{0})^{-1}\partial_{\boldsymbol{\sigma}}^{\boldsymbol{\nu}}\mathbb{G}(\boldsymbol{\sigma})\|_{\mathcal{L}(X)}\leq C\tilde{\boldsymbol{b}}^{\boldsymbol{\nu}}$$

$$\mathcal{F} := \{ \boldsymbol{m} \in \mathbb{N}_0^{\mathbb{N}} \mid \sum_{i \geq 1} m_i < \infty \}$$

Example: Affine parameter dependence

$$\mathbb{G}(\boldsymbol{\sigma}) = \mathbb{G}_0 + \sum_{j \geq 1} \sigma_j \mathbb{G}_j$$

- If $\sup_{\sigma \in \mathfrak{S}} \|\mathbb{G}_0^{-1}\|_{\mathcal{L}(Y',X)} \leq C_0$ and $\sum_{j \geq 1} \|\mathbb{G}_0^{-1}\mathbb{G}_j\|_{\mathcal{L}(X)} \leq \kappa < 2$, then $\mathbb{G}(\sigma)$ satisfies (i) and (ii) with $C = ((1 \frac{\kappa}{2})C_0^{-1})^{-1}$ and $\tilde{b}_j = \|\mathbb{G}_0^{-1}\mathbb{G}_j\|_{\mathcal{L}(X,Y')}$
- For every $f \in Y'$, $\exists ! y(\sigma)$ such that $\mathbb{G}(\sigma)y(\sigma) = f$. The parametric family $y(\sigma)$ depends analytically on the $\sigma \in \mathfrak{S}$ with

$$\sup_{\boldsymbol{\sigma}\in\mathfrak{S}}\|\partial_{\boldsymbol{\sigma}}^{\boldsymbol{\nu}}y(\boldsymbol{\sigma})\|\leq C\|f\|_{Y'}|\boldsymbol{\nu}|!\boldsymbol{b}^{\boldsymbol{\nu}}$$

OC prob

Regularity analysis

Dimension truncation

Lemma (Uniform boundedness of G_{σ}^{-1})

Let \mathcal{A}_{σ} be associated with a uniformly V-H-coercive bilinear form and uniformly bounded. The family of operators $G_{\sigma} = G(\sigma) \in \mathcal{L}(W_T(V,V') \times W_T(V,V'), V'_T \times H \times V'_T \times H)$ has uniformly bounded inverses

$$\|G_{\sigma}^{-1}\|_{\mathcal{L}(V_{T}'\times H\times V_{T}'\times H,W_{T}(V,V')\times W_{T}(V,V'))}\leq c_{\mathcal{G}}(T),\quad\forall\sigma\in\mathfrak{S}.$$

with $T \mapsto \tilde{c}_{\mathcal{G}}(T)$ cont. and monot. incr. and independent of σ .

Similar results in [KS'13], using $\sup_{t\in[0,T]}\|v\|_H\leq \varrho(T)\|v\|_{W_T(V,V')}$. But, $\varrho(T)\to\infty$ as $T\to\infty$, since $\|v\|_{W_T(V,V')}^2=T\|v\|_V^2=T\frac{\|v\|_V^2}{\|v\|_H^2}\|v\|_H^2$ for constant functions $v\in W_T(V,V')$, thus $\varrho(T)\geq \frac{1}{\sqrt{T}}\frac{\|v\|_H^2}{\|v\|_H^2}$.

[KS'13] Kunoth, A., Schwab, Ch.: Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs. *SIAM J. Control. Optim.* **51** (2013), pp. 2442–2471. https://doi.org/10.1137/110847597

OC probl

www.ricam.oeaw.ac.at

Regularity analysis

Dimension truncation

OMC

Theorem (G_{σ} is p-analytic)

Let \mathcal{A}_{σ} be p-analytic with $c_{\mathcal{A}} > 0$ and $\tilde{\mathbf{b}} \in \ell^p(\mathbb{N})$, for some $0 . Then, for every <math>\sigma \in \mathfrak{S}$, the FOC of the tracking problem can be formulated as an operator equation, and the associated operator G_{σ} is p-analytic with the same p. Moreover, the optimal state-adjoint-pair depends analytically on $\sigma \in \mathfrak{S}$:

$$\left\| \partial_{\sigma}^{\nu} {y \choose q_{1}} (\sigma) \right\|_{W_{T}(V,V') \times W_{T}(V,V')} \leq \frac{\tilde{c}_{\mathcal{G}}(T)}{|\nu|!} b^{\nu} \left\| \begin{pmatrix} f \\ y_{\circ} \\ Q^{*}Qg \\ P^{*}Pg_{T} \end{pmatrix} \right\|_{V'_{T} \times H \times V'_{T} \times H}$$

for all $\nu \in \mathcal{F}$, with $b_j := \tilde{b}_j / \ln 2$, and a constant $\tilde{c}_{\mathcal{G}}(T) > 0$ depending cont. and monot. incr. on T and independent of $\sigma \in \mathfrak{S}$.

Lemma (Regularity of the optimal cost)

There holds

$$\begin{aligned} \left| \partial_{\sigma}^{\nu} \| Q(y(\sigma) - g) \|_{H_{T}}^{2} \right| &\leq C_{1}(T)(|\nu| + 1)! \, \boldsymbol{b}^{\nu} \\ \left| \partial_{\sigma}^{\nu} \| u(\sigma) \|_{U_{T}}^{2} \right| &\leq C_{2}(T)(|\nu| + 1)! \, \boldsymbol{b}^{\nu} \\ \left| \partial_{\sigma}^{\nu} \| P(y_{T}(\sigma) - g_{T}(\sigma)) \|_{H}^{2} \right| &\leq C_{3}(T)(|\nu| + 1)! \, \boldsymbol{b}^{\nu}, \end{aligned}$$

for all $\nu \in \mathcal{F}$. In particular, we have for the optimal cost

$$\left|\partial_{\sigma}^{\nu}\mathcal{J}(y_{\sigma},u_{\sigma})\right|\leq \frac{C_{4}(T)}{2}(|\nu|+1)!\boldsymbol{b}^{\nu},$$

for all $\nu \in \mathcal{F}$ with $C_4(T) = \sum_{i=1}^3 C_i(T)$ depending cont. and monot, incr. on T.

OC problem Regularity analysis

Theorem (Feeback regularity – homogeneous case)

The optimal feedback $K_{\sigma}(t) = -B^*\Pi_{\sigma}(T-t)$ depends analytically on $\sigma \in \mathfrak{S}$, and $\forall t \in [0, T]$, and $\forall \nu \in \mathcal{F}$ we have

$$\|\partial_{\sigma}^{\nu}(-B^*\Pi_{\sigma}(T-t))\|_{\mathcal{L}(H,U)} \leq \|B\|_{\mathcal{L}(U,H)}C_5(T)(|\nu|+1)!\boldsymbol{b}^{\nu}.$$

Proof.

- $\blacksquare \dot{\Pi}_{\sigma} = \Pi_{\sigma} \mathcal{A}_{\sigma} + \mathcal{A}_{\sigma}^* \Pi_{\sigma} \Pi_{\sigma} B B^* \Pi_{\sigma} + Q^* Q, \quad \Pi_{\sigma}(0) = P^* P.$
- \blacksquare $\frac{1}{2}\langle \Pi_{\sigma}(T)y_{\circ}, y_{\circ}\rangle_{H} = \mathcal{J}(y_{\sigma}, u_{\sigma})$ and the prev. Lemma
- $\partial_{\sigma}^{\nu}\Pi_{\sigma}(T)$ is bounded, linear and self-adjoint, thus $\|\partial_{\sigma}^{\nu}\Pi_{\sigma}(T)\|_{\mathcal{L}(H)} = \sup_{\|y_{\circ}\|_{H}=1} |\langle \partial_{\sigma}^{\nu}\Pi_{\sigma}(T)y_{\circ}, y_{\circ} \rangle_{H}.$
- Autonomy of A_{σ} , B, P, and Q gives $\Pi_{\sigma}(\tau)$ for $\tau \in [0, T]$ is restriction to $[0, \tau]$

OC probl

We assume $f \in H_T$ and $g \in W^{1,2}(0,T;H) \cap L^2(0,T;D(A_\sigma))$ and set $x_{\sigma} := v_{\sigma} - g$ and $r_{\sigma} := f + A_{\sigma}g(t) - \dot{g}(t)$.

Theorem (Affine feedback – nonhomogeneous case)

For every $\sigma \in \mathfrak{S}$ there exists a unique minimizer (x_{σ}, u_{σ}) satisfying, for $t \in (0, T)$,

$$u_{\sigma}(t) = -B^* \left(\Pi_{\sigma}(T - t) x_{\sigma}(t) + h_{\sigma}(t) \right)$$

$$\dot{x}_{\sigma}(t) = \left(\mathcal{A}_{\sigma} - BB^* \Pi_{\sigma}(T - t) \right) x_{\sigma}(t) - BB^* h_{\sigma}(t) + r_{\sigma}(t)$$

with $x(0) = x_0$, where

$$-\dot{h}_{\sigma}(t) = \left(\mathcal{A}_{\sigma}^* - \Pi_{\sigma}(T-t)BB^*\right)h_{\sigma}(t) + \Pi_{\sigma}(T-t)r_{\sigma}(t)$$

with $h_{\sigma}(T) = 0$.

Regularity analysis

Proposition (Regularity of h_{σ})

Let $D(A_{\sigma})$ be independent of $\sigma \in \mathfrak{S}$ and $D(A_{\sigma}) = D(A_{\sigma}^*)$ for all $\sigma \in \mathfrak{S}$. Further, let $\|A_{\sigma}\|_{\mathcal{L}(D(A),H)} \leq \widetilde{C}_{\mathcal{A}}$ for all $\sigma \in \mathfrak{S}$. Then

$$\|\partial_{\sigma}^{\nu}h_{\sigma}\|_{W_{\mathcal{T}}^{0}(V,V')} \leq \Theta_{|\nu|}(|\nu|+2)!\boldsymbol{b}^{\nu}, \quad \forall \nu \in \mathcal{F},$$

where $\Theta_{|\nu|} = \frac{1}{2}(1+C)^{\max\{|\nu|-1,0\}}C^{\delta_{\nu,0}}(C+C^2)^{1-\delta_{|\nu|,0}}$, with some constant C>0 independent of $\sigma\in\mathfrak{S}$.

Proof.

With $D_{\sigma}: W_T^0(V,V') \to V_T'$ as $D_{\sigma}:=-\frac{\mathrm{d}}{\mathrm{d}t}-(\mathcal{A}_{\sigma}^*-\Pi_{\sigma}(T-t)BB^*)$, we can write $D_{\sigma}h_{\sigma}=\Pi_{\sigma}r_{\sigma}$. Using all prev. regularity results, the result is shown by induction on $|\nu|$.

Regularity of the feedback K_{σ}

With $\max_{t \in [0,T]} \|\partial_{\sigma}^{\nu} h_{\sigma}(t)\|_{H} \leq C(T) \|\partial_{\sigma}^{\nu} h_{\sigma}\|_{W_{T}(V,V')}$ we can summarize our regaularity analysis:

Theorem (Combined regularity result)

In both, the homogeneous and the nonhomogeneous case, we have

$$\sup_{t \in [0,T]} \left(\|\partial_{\sigma}^{\nu}(-B^*\Pi_{\sigma}(T-t))\|_{\mathcal{L}(H,U)} + \|\partial_{\sigma}^{\nu}(-B^*h_{\sigma}(t))\|_{U} \right)$$

$$\leq \|B\|_{\mathcal{L}(H,U)} C(T)(|\nu|+2)! \boldsymbol{b}^{\nu},$$

for all $\nu \in \mathcal{F}$ and a constant C(T) > 0 independent of $\sigma \in \mathfrak{S}$.

We are ready for the error analyisis of the feedback operator!

Dimension truncation

For $t \in [0, T]$, we are interested in integrals of the form

$$\int_{[-\frac{1}{2},\frac{1}{2}]^{\mathbb{N}}} \mathscr{K}_{\boldsymbol{\sigma}}(t) \, \mathrm{d}\boldsymbol{\sigma}, \qquad \text{where } \mathrm{d}\boldsymbol{\sigma} = \bigotimes_{j=1}^{\infty} \mathrm{d}\sigma_{j} \text{ and }$$

$$\mathscr{K}_{\sigma}(t) = -B^*\Pi_{\sigma}(T-t) \in Z = \mathscr{L}(H,U), \quad \text{or} \quad \mathscr{K}_{\sigma}(t) = -B^*h_{\sigma}(t) \in Z = U.$$

Dimension truncation

For $t \in [0, T]$, we are interested in integrals of the form

$$\int_{[-\frac{1}{2},\frac{1}{2}]^{\mathbb{N}}}\mathscr{K}_{\pmb{\sigma}}(t)\,\mathrm{d}\pmb{\sigma},\qquad\text{where }\mathrm{d}\pmb{\sigma}=\bigotimes_{j=1}^{\infty}\mathrm{d}\sigma_{j}\text{ and }$$

$$\mathscr{K}_{\sigma}(t) = -B^*\Pi_{\sigma}(T-t) \in Z = \mathcal{L}(H,U), \quad \text{or} \quad \mathscr{K}_{\sigma}(t) = -B^*h_{\sigma}(t) \in Z = U.$$

Assuming $\|\mathscr{K}_{\sigma}(t) - \mathscr{K}_{\sigma,s}(t)\|_{Z} \stackrel{s \to 0}{\longrightarrow} 0$, [GK'24] yields

$$\left\| \int_{[-\frac{1}{2},\frac{1}{2}]^{\mathbb{N}}} (\mathscr{K}_{\sigma}(t) - \mathscr{K}_{\sigma,s}(t)) \,\mathrm{d}\sigma \right\|_{Z} \leq C \, s^{-\frac{2}{p}+1},$$

where C > 0 is independent of s.

[GK'24] Guth, P. A., Kaarnioja, V.: Generalized Dimension Truncation Error Analysis for High-Dimensional Numerical Integration: Lognormal Setting and Beyond. *SIAM J. Numer. Anal.* **62** (2014), pp. 872–892. https://doi.org/10.1137/23M1593188

OC probl

Regularity ana

Dimension truncation

Dimension truncation

For $t \in [0, T]$, we are interested in integrals of the form

$$\int_{[-\frac{1}{2},\frac{1}{2}]^{\mathbb{N}}}\mathscr{K}_{\pmb{\sigma}}(t)\,\mathrm{d}\pmb{\sigma},\qquad\text{where }\mathrm{d}\pmb{\sigma}=\bigotimes_{j=1}^{\infty}\mathrm{d}\sigma_{j}\text{ and }$$

$$\mathscr{K}_{\sigma}(t) = -B^*\Pi_{\sigma}(T-t) \in Z = \mathcal{L}(H,U), \quad \text{or} \quad \mathscr{K}_{\sigma}(t) = -B^*h_{\sigma}(t) \in Z = U.$$

In the following we develop QMC rules to approximate

$$\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^s} \mathscr{K}_{\boldsymbol{\sigma},s}(t) \,\mathrm{d}\boldsymbol{\sigma}_s,$$

where $\mathscr{K}_{\sigma,s}:=\mathscr{K}_{\sigma}((\sigma_1,\ldots,\sigma_s,0,0,\ldots))$, and $\mathrm{d}\sigma_s=\bigotimes_{j=1}^s\mathrm{d}\sigma_j$.

[GK'24] Guth, P. A., Kaarnioja, V.: Generalized Dimension Truncation Error Analysis for High-Dimensional Numerical Integration: Lognormal Setting and Beyond. *SIAM J. Numer. Anal.* **62** (2014), pp. 872–892. https://doi.org/10.1137/23M1593188

OC prob

www.ricam.oeaw.ac.at

Theorem ([GKKSS'24])

Let \mathcal{W}_s be a BS of functions $F: [-\frac{1}{2}, \frac{1}{2}]^s \to \mathbb{R}$. Consider an N-point QMC rule with integration nodes $\sigma^{(0)}, \ldots, \sigma^{(N-1)} \in [-\frac{1}{2}, \frac{1}{2}]^s$, given by

 $Q_{N,s}(F) := \frac{1}{N} \sum_{k=0}^{N-1} F(\sigma^{(k)})$. Furthermore, we define the worst case error of integration using $Q_{N,s}$ in W_s by

$$e^{\mathrm{wor}}(Q_{N,s},\mathcal{W}_s) := \sup_{\substack{F \in \mathcal{W}_s \\ \|F\|_{\mathcal{W}_s} \leq 1}} \left| \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^s} F(\sigma) \,\mathrm{d}\sigma - Q_{N,s}(F) \right|.$$

For a separable BS Z and a continuous mapping $k: [-\frac{1}{2}, \frac{1}{2}]^s \to Z$ we have

$$\left\| \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^s} k(\sigma) d\sigma - \frac{1}{N} \sum_{k=0}^{N-1} k(\sigma^{(k)}) \right\|_{Z} \leq e^{\operatorname{wor}}(Q_{N,s}, \mathcal{W}_s) \sup_{\substack{G \in Z' \\ \|G\|_{Z'} \leq 1}} \|G(k)\|_{\mathcal{W}_s}.$$

For the feedback choose $k = \mathcal{K}_{\sigma,s}(t)$, and $Z \in \{U, \mathcal{L}(H, U)\}$.

Randomly shifted rank-1 lattice rules

When choosing

$$\|F\|_{\mathcal{V}_{s,1,\boldsymbol{\gamma}}}^2 := \sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{1}{\gamma_{\mathfrak{u}}^2} \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{|\mathfrak{u}|}} \left| \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{s-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|}}{\partial \sigma_{\mathfrak{u}}} F(\sigma_{\mathfrak{u}};\sigma_{\{1:s\}\setminus\mathfrak{u}}) \mathrm{d}\sigma_{\{1:s\}\setminus\mathfrak{u}} \right|^2 \mathrm{d}\sigma_{\mathfrak{u}}.$$

a RSLR can be constructed using a CBC algorithm such that

$$\mathbb{E}_{\Delta}\left(\left\|\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{s}} \mathscr{K}_{\sigma,s}(t) \,\mathrm{d}\sigma - \frac{1}{N} \sum_{k=0}^{N-1} \mathscr{K}_{\sigma_{\Delta}^{(k)},s}(t)\right\|_{Z}^{2}\right) \leq C_{s,1,\gamma,\lambda} \, \frac{1}{(\phi_{\mathrm{tot}}(N))^{1/\lambda}},$$

for all $\lambda \in (\frac{1}{2}, 1]$, where $\sigma_{\Delta}^{(k)} = \sigma^{(k)} + \Delta$, with $\Delta \sim \mathcal{U}([0, 1]^s)$, and

$$C_{s,1,\gamma,\lambda} = \widetilde{C}^2 \left(\sum_{\emptyset \neq \mathfrak{u} \subseteq \{1:s\}} \gamma_\mathfrak{u}^{2\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^2)^{\lambda}} \right)^{|\mathfrak{u}|} \right)^{\frac{1}{\lambda}} \left(\sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{[(|\mathfrak{u}|+2)!]^2 \prod_{j \in \mathfrak{u}} b_j^2}{\gamma_\mathfrak{u}^2} \right),$$

with $\widetilde{C} := \|B\|_{\mathcal{L}(U,H)} C(T)$.

Randomly shifted rank-1 lattice rules

When choosing

$$\|F\|_{\mathcal{V}_{s,1,\boldsymbol{\gamma}}}^2 := \sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{1}{\gamma_{\mathfrak{u}}^2} \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{|\mathfrak{u}|}} \left| \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{s-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|}}{\partial \sigma_{\mathfrak{u}}} F(\sigma_{\mathfrak{u}};\sigma_{\{1:s\}\setminus\mathfrak{u}}) \mathrm{d}\sigma_{\{1:s\}\setminus\mathfrak{u}} \right|^2 \mathrm{d}\sigma_{\mathfrak{u}}.$$

a RSLR can be constructed using a CBC algorithm such that

$$\mathbb{E}_{\Delta}\left(\left\|\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{s}} \mathscr{K}_{\sigma,s}(t) \,\mathrm{d}\sigma - \frac{1}{N} \sum_{k=0}^{N-1} \mathscr{K}_{\sigma_{\Delta}^{(k)},s}(t)\right\|_{Z}^{2}\right) \leq C_{s,1,\gamma,\lambda} \, \frac{1}{(\phi_{\mathrm{tot}}(N))^{1/\lambda}},$$

for all $\lambda \in (\frac{1}{2},1]$, and where $C_{s,1,\gamma^*,\lambda}$ is bounded independently of s, for

$$\gamma^* = (\gamma_{\mathfrak{u}}^*)_{\mathfrak{u} \subseteq \{1, \dots, s\}} = \left((|\mathfrak{u}| + 2)! \prod_{j \in \mathfrak{u}} \frac{b_j (2\pi^2)^{\lambda/2}}{\sqrt{2\zeta(2\lambda)}} \right)^{1/(1+\lambda)},$$

and

$$\lambda = \begin{cases} \frac{1}{2-2\delta} & \text{for arbitrary } \delta \in (0,1) & \text{if } p \in (0,\frac{2}{3}], \\ \frac{p}{2-p} & \text{if } p \in (\frac{2}{3},1]. \end{cases}$$

OC proble

Regularity an

Dimension truncation

Randomly shifted rank-1 lattice rules

When choosing

$$\|F\|_{\mathcal{V}_{s,1,\boldsymbol{\gamma}}}^2 := \sum_{\mathfrak{u} \subseteq \{1:s\}} \frac{1}{\gamma_\mathfrak{u}^2} \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{|\mathfrak{u}|}} \left| \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{s-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|}}{\partial \sigma_\mathfrak{u}} F(\sigma_\mathfrak{u};\sigma_{\{1:s\}\setminus\mathfrak{u}}) \mathrm{d}\sigma_{\{1:s\}\setminus\mathfrak{u}} \right|^2 \mathrm{d}\sigma_\mathfrak{u}.$$

a RSLR can be constructed using a CBC algorithm such that

$$\mathbb{E}_{\Delta}\left(\left\|\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{s}}\mathcal{K}_{\sigma,s}(t)\,\mathrm{d}\sigma-\frac{1}{N}\sum_{k=0}^{N-1}\mathcal{K}_{\sigma_{\Delta}^{(k)},s}(t)\right\|_{Z}^{2}\right)\leq C_{s,1,\gamma,\lambda}\,\frac{1}{(\phi_{\mathrm{tot}}(N))^{1/\lambda}},$$

for all $\lambda \in (\frac{1}{2}, 1]$. Consequently, the MSE is of order

$$\kappa(\textit{N}) = \begin{cases} [\phi_{\text{tot}}(\textit{N})]^{-2-2\delta} & \text{for arbitrary } \delta \in (0,1) & \text{if } p \in (0,\frac{2}{3}], \\ [\phi_{\text{tot}}(\textit{N})]^{-\left(\frac{2}{p}-1\right)} & \text{if } p \in (\frac{2}{3},1]. \end{cases}$$

Interlaced polynomial lattice rules

When choosing b prime, $m \in \mathbb{N}$ and $N = b^m$, as well as

$$\|F\|_{\mathcal{W}_{\mathfrak{s},\alpha,\gamma,q,\infty}} \max_{\mathfrak{u}\subseteq \{1,...,s\}} \left(\frac{1}{\gamma_{\mathfrak{u}}^q} \sum_{\mathfrak{v}\subseteq \mathfrak{u}} \sum_{\tau_{\mathfrak{u}\backslash \mathfrak{v}}\in \{1,...,\alpha\}^{|\mathfrak{u}\backslash \mathfrak{v}|}}$$

$$\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{|\mathfrak{v}|}}\left|\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{s-|\mathfrak{v}|}}\frac{\partial^{(\alpha_{\mathfrak{v}},\tau_{\mathfrak{u}\setminus\mathfrak{v}},0)}}{\partial\sigma_{\mathfrak{u}}}\mathsf{F}(\sigma_{\mathfrak{u}};\sigma_{\{1:s\}\setminus\mathfrak{u}})\mathrm{d}\sigma_{\{1:s\}\setminus\mathfrak{v}}\right|^{q}\mathrm{d}\sigma_{\mathfrak{v}}\right)^{\frac{1}{q}}$$

an ILPR of order lpha can be constructed using a CBC algorithm such that

$$\left\| \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^s} \mathcal{K}_{\sigma,s}(t) \, \mathrm{d}\sigma - \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{K}_{\sigma^{(k)},s}(t) \right\|_{Z} \leq C_{s,\alpha,\gamma,\lambda} \frac{1}{(N-1)^{1/\lambda}}$$

$$\text{for all } \lambda \in \left(\frac{1}{\alpha},1\right] \text{, where } \rho_{\alpha,b}(\lambda) \coloneqq \left(\mathcal{C}_{\alpha,b} \ b^{\alpha(\alpha-1)/2}\right)^{\lambda} \left(\left(1+\frac{b-1}{b^{\alpha\lambda}-b}\right)^{\alpha}-1\right) \text{,}$$

$$\mathcal{C}_{s,\alpha,\gamma,\lambda} = \widetilde{\mathcal{C}} \bigg(2 \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1:s\}} \gamma_{\mathfrak{u}}^{\lambda} \big(\rho_{\alpha,b}(\lambda) \big)^{|\mathfrak{u}|} \bigg)^{\frac{1}{\lambda}} \frac{1}{\gamma_{\mathfrak{u}}} \sum_{\boldsymbol{\nu}_{\mathfrak{u}} \in \{1:\alpha\}^{|\mathfrak{u}|}} (|\boldsymbol{\nu}_{\mathfrak{u}}| + 2)! \prod_{j \in \mathfrak{u}} (2^{\delta(\nu_{j},\alpha)} b_{j}^{\nu_{j}}).$$

OC proble

Regularity an

Dimension truncation

Interlaced polynomial lattice rules

When choosing b prime, $m \in \mathbb{N}$ and $N = b^m$, as well as

$$\|F\|_{\mathcal{W}_{\mathsf{s},\alpha,\gamma,q,\infty}}\max_{\mathfrak{u}\subseteq\{1,\ldots,s\}}\left(\frac{1}{\gamma_{\mathfrak{u}}^{q}}\sum_{\mathfrak{v}\subseteq\mathfrak{u}}\sum_{\tau_{\mathfrak{u}\backslash\mathfrak{v}}\in\{1,\ldots,\alpha\}^{|\mathfrak{u}\backslash\mathfrak{v}|}}$$

$$\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{|\mathfrak{v}|}}\left|\int_{\left[-\frac{1}{2},\frac{1}{2}\right]^{s-|\mathfrak{v}|}}\frac{\partial^{(\alpha_{\mathfrak{v}},\tau_{\mathfrak{u}\setminus\mathfrak{v}},0)}}{\partial\sigma_{\mathfrak{u}}}\mathsf{F}(\sigma_{\mathfrak{u}};\sigma_{\{1:s\}\setminus\mathfrak{u}})\mathrm{d}\sigma_{\{1:s\}\setminus\mathfrak{v}}\right|^{q}\mathrm{d}\sigma_{\mathfrak{v}}\right)^{\frac{1}{q}}$$

an ILPR of order lpha can be constructed using a CBC algorithm such that

$$\left\| \int_{\left[-\frac{1}{2},\frac{1}{2}\right]^s} \mathscr{K}_{\sigma,s}(t) \, \mathrm{d}\sigma - \frac{1}{N} \sum_{k=0}^{N-1} \mathscr{K}_{\sigma^{(k)},s}(t) \right\|_{Z} \leq C_{s,\alpha,\gamma,\lambda} \frac{1}{(N-1)^{1/\lambda}}$$

for all $\lambda \in (\frac{1}{\alpha}, 1]$ and where $C_{s,\alpha,\gamma,\lambda}$ is bounded independently of s, for

$$\gamma_{\mathfrak{u}}^{*}\coloneqq\sum_{\boldsymbol{\nu}_{\mathfrak{u}}\in\{1:\alpha\}^{|\mathfrak{u}|}}(|\boldsymbol{\nu}_{\mathfrak{u}}|+2)!\prod_{j\in\mathfrak{u}}(2^{\delta(\nu_{j},\alpha)}b_{j}^{\nu_{j}}),$$

and $\lambda=p$ and $\alpha=\lfloor\frac{1}{p}\rfloor+1$. Thus the integration error is of order $\mathcal{O}(N^{-\alpha})$.

OC probl

Regularity and

Dimension truncation

Consider the parameterized convection-diffusion-reaction equation

$$\begin{split} \dot{y}_{\sigma} - \nabla \cdot (a_{\sigma} \nabla y_{\sigma}) + c y_{\sigma} + \nabla \cdot (b y_{\sigma}) &= \sum_{i=1}^{N_{a}} u_{i} \mathbf{1}_{O_{i}} \qquad (t, \xi) \in (0, T] \times D, \\ \frac{\partial y_{\sigma}}{\partial \mathbf{n}} &= 0 \qquad \qquad (t, \xi) \in [0, T] \times \partial D, \\ y_{\sigma} &= y_{o} \qquad (t, \xi) \in \{t = 0\} \times D, \end{split}$$

where $\sigma = (\sigma_1, \dots, \sigma_s) \in \left[-\frac{1}{2}, \frac{1}{2}\right]^s$ enters the diffusion as

$$a_{\sigma}(\xi) = \bar{a}(\xi) + \sum_{i=1}^{s} \sigma_{i} \psi_{j}(\xi),$$

with $\bar{a} \in L^{\infty}(D)$ and $\psi_j \in L^{\infty}(D) \ \forall 1 \leq j \leq s$ such that, there exist a_{\min} and a_{\max} satisfying

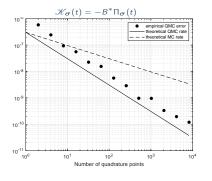
$$0 < a_{\min} \le a_{\sigma}(\xi) \le a_{\max} < \infty \quad \text{for all } \xi \in D \text{ and } \sigma \in \left[-\frac{1}{2}, \frac{1}{2}\right]^{s}.$$

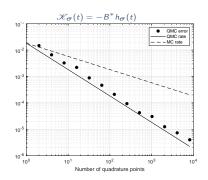
Numerical experiments setup

- D = (0,1) and T = 5
- $N_a = 3$ actuators as $O_1 = [0.1, 0.3]$, $O_2 = [0.4, 0.6]$, and $O_3 = [0.7, 0.9]$
- constant reaction coefficient c = -1, no convection b = 0
- \blacksquare initial condition $y_{\circ}(s) = \sin(2\pi s) 1$
- lacksquare the target g solves $\dot{g}=0.1\Delta g$ with the same data
- stochastic dimension s = 100
- $ar{\mathbf{a}}=1.15$, with basis functions $\psi_{2j}(s)=\eta(2j)^{-\vartheta}\sin(j\pi s)$ and $\psi_{2j-1}(s)=\eta(2j-1)^{-\vartheta}\cos(j\pi s)$ with $\vartheta\in\{2,3\}$ and $\eta\in\{0.1,1\}$.
- QMC points generated using
 https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/

OC proble

Randomly shifted rank 1 lattice rule

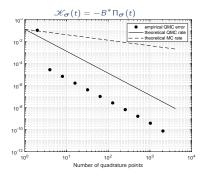


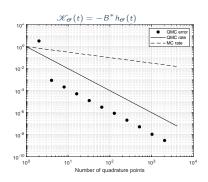


$$\begin{split} \textit{RMSE} &\approx \sqrt{\tfrac{1}{R(R-1)} \sum_{r=1}^{R} \left\| \left(\overline{Q} - Q^{(r)} \right) (\mathscr{K}) \right\|_{\mathcal{Z}}^{2}}, \\ \text{where } Q^{(r)}(\mathscr{K}) &:= \tfrac{1}{N} \sum_{k=1}^{N} \mathscr{K}(\sigma_{\Lambda^{(r)}}^{(k)}) \text{ and } \overline{Q}(\mathscr{K}) := \tfrac{1}{R} \sum_{r=1}^{R} Q^{(r)}(\mathscr{K}). \end{split}$$

oc problem

Interlaced polynomial lattice rule with $\alpha = 2$

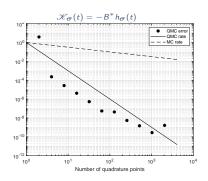




$$\left\|Q_{\mathrm{ref}}(\mathscr{K}_{\sigma,s}(t)) - rac{1}{N} \sum_{k=0}^{N-1} \mathscr{K}_{\sigma^{(k)},s}(t)
ight\|_{2}, \quad ext{where we used 2}^{12} ext{ points for } Q_{\mathrm{ref}}.$$

Interlaced polynomial lattice rule with $\alpha = 3$





$$\left\|Q_{\mathrm{ref}}(\mathscr{K}_{\sigma,s}(t)) - rac{1}{N} \sum_{k=0}^{N-1} \mathscr{K}_{\sigma^{(k)},s}(t)
ight\|_{2}, \quad ext{where we used 2}^{12} ext{ points for } Q_{\mathrm{ref}}.$$

Error propagation

Theorem (Feedback approximation error propagation)

Let $\hat{K} := \sum_{k=1}^{N} \alpha_k K_{\sigma_k,s}(t,\cdot)$ be an approximation of the feedback $K = \int_{\mathfrak{S}} K_{\sigma}(t,\cdot) d\sigma$. Then, there holds for all $t \in [0,T]$

$$||y_{\sigma}(t) - \hat{y}_{\sigma}(t)||_{H} \le C_{y} \max_{t \in [0,T]} (||B^{*}\delta\Pi(T-t)||_{\mathcal{L}(H,U)} + ||B^{*}\delta h(t)||_{U}),$$

$$||u_{\sigma}(t) - \hat{u}_{\sigma}(t)||_{U} \le C_{u} \max_{t \in [0,T]} (||B^{*}\delta\Pi(T-t)||_{\mathcal{L}(H,U)} + ||B^{*}\delta h(t)||_{U}),$$

where the constants C_u and C_v are independent of $\sigma \in \mathfrak{S}$.

We use the notation: $B^*\Pi := \int_{\mathfrak{S}} B^*\Pi_{\sigma} \,\mathrm{d}\sigma$, $B^*\hat{\Pi} := \sum_{k=1}^N \alpha_k B^*\Pi_{\sigma_k,s}$, $B^*\delta\Pi := B^*\Pi - B^*\hat{\Pi}$, $B^*h := \int_{\mathfrak{S}} B^*h_{\sigma} \,\mathrm{d}\sigma$, $B^*\hat{h} := \sum_{k=1}^N \alpha_k B^*h_{\sigma_k,s}$, and $B^*\delta h = B^*h - B^*\hat{h}$

Suboptimality of the feedback

Suppose there is a 'true' parameter $\bar{\sigma} \in \mathfrak{S}$ with optimal feedback $K_{\bar{\sigma}}(t,\cdot) = -B^*\Pi_{\bar{\sigma}}(T-t)(\cdot) - B^*h_{\bar{\sigma}}(t)$.

Theorem

The trajectories are close provided that K is close to $K_{\bar{\sigma}}$

$$\|y_{\bar{\sigma}}(t)-y_{\sigma}(t)\|_{H} \leq \bar{C}_{y} \max_{t \in [0,T]} \left(\|B^{*}\delta\Pi_{\bar{\sigma}}(T-t)\|_{\mathcal{L}(H,U)} + \|B^{*}\delta h_{\bar{\sigma}}(t)\|_{U}\right),$$

$$||u_{\bar{\sigma}}(t) - u_{\sigma}(t)||_{U} \leq \bar{C}_{u} \max_{t \in [0,T]} (||B^* \delta \Pi_{\bar{\sigma}}(T-t)||_{\mathcal{L}(H,U)} + ||B^* \delta h_{\bar{\sigma}}(t)||_{U}),$$

for all $t \in [0, T]$ where the constants \bar{C}_u and \bar{C}_y are independent of $\sigma \in \mathfrak{S}$.

We use the notation: $B^*\delta\Pi_{\bar{\sigma}}:=B^*\Pi_{\bar{\sigma}}-B^*\Pi$, and $B^*\delta h_{\bar{\sigma}}=B^*h_{\bar{\sigma}}-B^*h$

Conclusions

- Construction of feedback is independent of initial condition
- Feedback is independent of a particular realization of the parameter, thus it can be computed *a-priori*.
- Analytic regularity of feedback operator
- General QMC framework allows integration of operators

Thank you!