Markov chain quasi-Monte Carlo simulation using linear feedback shift register generators

Shin Harase

Ritsumeikan University

August 22, 2024

MCQMC 2024 (University of Waterloo)

Introduction: Markov chain QMC

Motivation:

• We consider the problem of estimating the expectation

$$E_{\pi}[f(\mathrm{X})] = \int_{\mathcal{X}} f(x) \pi(dx)$$

using Markov chain Monte Carlo (MCMC) for a probability distribution π on a state space $\mathcal X$ and some function $f: \mathcal X \to \mathbb R$.

- We want to improve the accuracy by replacing IID uniform random points with quasi-Monte Carlo (QMC) points.
- Traditional QMC points (e.g., Sobol', Faure, Niederreiter-Xing, ...)
 are not straightforwardly applicable.
- Owen-Tribble (2005) and Chen-Dick-Owen (2011) proved that MCMC remains consistent if the driving sequences are completely uniformly distributed (CUD).
- However, the definition of CUD sequences is not constructive.

Introduction: Markov chain QMC

Motivation (continued):

- To obtain point sets that approximate CUD sequences, Chen-Matsumoto-Nishimura-Owen (2012) designed short-period Tausworthe generators (i.e., linear feedback shift register generators) optimized in terms of the equidistribution property, which is a coarse measure used in pseudorandom number generation.
- Harase (2021, 2024) designed short-period Tausworthe generators in terms of the t-value, which is a central measure in the theory of (t, m, s)-nets and (t, s)-sequences.

In this talk, we outline new Tausworthe generators for Markov chain QMC and present numerical experiments using Gibbs sampling.

References:

- S. Harase, "A table of short-period Tausworthe generators for Markov chain quasi-Monte Carlo", J. Comput. Appl. Math. 384 (2021), 113136, 12 pp.
- ② S. Harase, "A search for short-period Tausworthe generators over \mathbb{F}_b with application to Markov chain quasi-Monte Carlo", J. Stat. Comput. Simul. 94 (2024), no. 9, 2040–2062.

CUD sequences

Definition (CUD sequences)

A one-dimensional sequence $u_0,u_1,u_2,u_3,u_4,\ldots\in[0,1)$ is said to be completely uniformly distributed (CUD) if the overlapping s-blocks

$$(u_i, u_{i+1}, \dots, u_{i+s-1}) \in [0, 1)^s, \quad i = 0, 1, 2, \dots,$$

are uniformly distributed for every dimension $s \geq 1$.

- Then, the non-overlapping s-blocks $(u_{is}, u_{si+1}, \ldots, u_{(i+1)s-1})$ are also uniform (Chentsov, 1967), so we can use $\{u_i\}_{i=0}^{\infty}$ in this order.
- It is desirable that the *s*-blocks are highly uniform (Dick–Rudolf, 2014).

Chen et al. (2012) and Harase (2021, 2024) designed "approximate" CUD sequences

$$u_0, u_1, \dots, u_{N-2}, u_{N-1} = u_0, \dots$$
 (N-1: period length),

based on short-period Tausworthe generators that run for the entire-period.

Tausworhe generators (Tausworthe, 1965)

Let \mathbb{F}_b be a finite field of prime power order b. We define Tausworthe generators over \mathbb{F}_b as polynomial LCGs:

$$egin{array}{lcl} X_i(x) &=& q(x)X_{i-1}(x) \mod p(x), \ X_i(x)/p(x) &=& a_{i\sigma}x^{-1}+a_{i\sigma+1}x^{-2}+a_{i\sigma+2}x^{-3}+\cdots \in \mathbb{F}_b((x^{-1})). \end{array}$$

Here, $p(x), q(x) \in \mathbb{F}_b[x]$ represent a modulus and multiplier. Assume

- p(x) is a primitive polynomial with degree m;
- q(x) satisfies $\gcd(\sigma, b^m 1) = 1$, where σ is a step size such that $q(x) = x^{\sigma} \mod p(x)$ and $0 < \sigma < b^m 1$.

Let $\eta: \mathbb{F}_b \to \mathbb{Z}_b = \{0, 1, \dots, b\}$ be a bijection with $\eta(0) = 0$. Then, we transform the formal power series into the w-digit output values

$$u_i = \sum_{j=0}^{w-1} \eta(a_{i\sigma+j}) \cdot b^{-j-1} \in [0,1)$$
 $(w$: a digit number).

In this setting, the output sequence $\{u_i\}_{i=0}^{\infty}$ attains the maximal period b^m-1 . We assume the maximal periodicity and $w\geq m$.

Tausworhe generators (Tausworthe, 1965)

Example:
$$b=3$$
 (base). $w=3$ (digit number). $\eta=\mathrm{id}$. $p(x)=x^3+2x^2+x+1\Leftrightarrow a_i=-2a_{i-1}-a_{i-2}-a_{i-3}$. $q(x)=x^2+2x(=x^5\mod p(x))$, so the step size $\sigma=5$. 001101021222100220201211120011010212221002 \cdots

 $001101021222100220201211120011010212221002\cdots \in \mathbb{F}_3$

$$X_0(x)/p(x) = 0x^{-1} + 0x^{-2} + 1x^{-3} + \cdots \mapsto u_0 = 0.001_{(3)}$$

 $X_1(x)/p(x) = 1x^{-1} + 0x^{-2} + 2x^{-3} + \cdots \mapsto u_1 = 0.102_{(3)}$
 $X_2(x)/p(x) = 2x^{-1} + 2x^{-2} + 1x^{-3} + \cdots \mapsto u_2 = 0.220_{(3)}$
:

Let $N := b^m$. We run Tausworthe generators for the entire period and construct the s-dimensional overlapping points

$$\mathbf{u}_0=(u_0,\ldots,u_{s-1}), \mathbf{u}_1=(u_1,\ldots,u_s),\ldots,\mathbf{u}_{N-2}=(u_{N-2},u_0,\ldots,u_{s-2}).$$
 Adding the origin $\{0\}$, we regard a point set

$$P_s = \{0\} \cup \{\mathbf{u}_i\}_{i=0}^{N-2} \qquad (|P_s| = b^m)$$

as a QMC point set, which corresponds to a polynomial Korobov lattice.

(t,m,s)-nets and t-values

In the study of QMC, the t-value is widely used as a measure of uniformity.

Definition ((t,m,s)-nets and t-values)

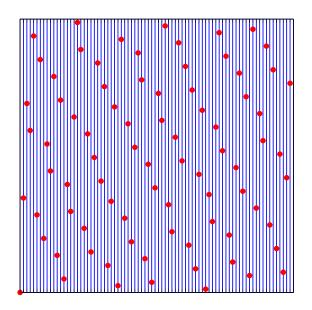
- ullet Let $s\geq 1$ be a dimension. Let t be an integer with $0\leq t\leq m$.
- ullet Let $m{E}$ be a $m{b}$ -adic box $E=\prod_{j=1}^s \left[rac{l_j}{b^{d_j}},rac{l_j+1}{b^{d_j}}
 ight) \subset [0,1)^s$.
- ullet Let $P_s\subset [0,1)^s$ be a point set consisting of $N=b^m$ points.

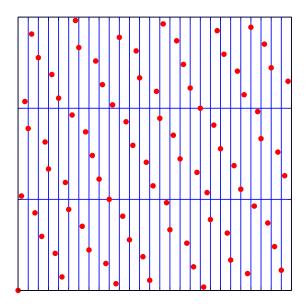
 P_s is a (t, m, s)-net in base $b \stackrel{\text{def}}{\iff}$ Every b-adic box E of volume b^{t-m} contains exactly b^t points of P_s .

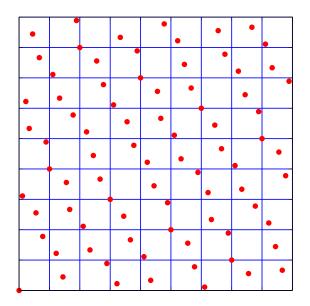
The smallest t for which P_s is a (t,m,s)-net is called the t-value.

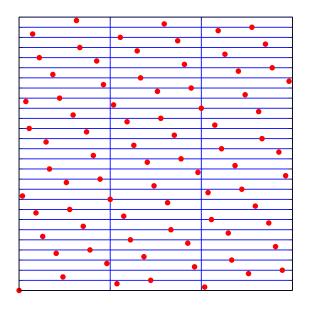
To construct a point set that approximates the CUD property, Harase (2021, 2024) searched a pair of polynomials (p(x), q(x)) whose t-values are small for each $s=1,2,3,\ldots$, that is, Tausworthe generators

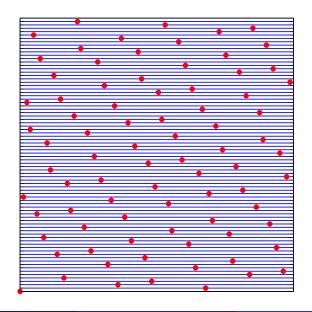
- lacksquare over \mathbb{F}_2 with t-values zero for s=2 and small for $s\geq 3$; and
- ② over \mathbb{F}_4 with t-values zero up to s=3 and small for $s\geq 4$.











Search algorithm

We briefly introduce the search algorithm (Harase, 2021 and 2024).

Theorem (Niederreiter, 1992) and (Tezuka-Fushimi, 1993)

Let p(x) and $q(x) \in \mathbb{F}_b[x]$ be a modulus and multiplier of Tausworthe generators. Then, the 2-dimensional point set P_2 attains the t-value zero (in base b) if and only if the partial quotients in the continued fraction of q(x)/p(x) are all of degree 1.

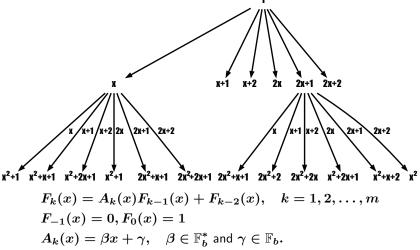
To obtain such pairs (p(x), q(x)), we consider a polynomial analogue of Fibonacci numbers over \mathbb{F}_b (cf., Tezuka and Fushimi (1993)):

$$egin{aligned} F_k(x) &= A_k(x) F_{k-1}(x) + F_{k-2}(x), & k = 1, 2, \ldots, m, \ F_{-1}(x) &= 0, F_0(x) = 1, \ A_k(x) &= eta x + \gamma, & eta \in \mathbb{F}_b^* ext{ and } \gamma \in \mathbb{F}_b. \end{aligned}$$

Then, the partial quotients in the continued fraction of $F_{m-1}(x)/F_m(x)$ are all of degree 1, i.e., $F_{m-1}(x)/F_m(x)=[0;A_m,A_{m-1},\cdots,A_1]$.

Fibonacci polynomials over \mathbb{F}_b and tree structures

Example: Fibonacci polynomials over \mathbb{F}_3 .



From all the pairs $(F_m(x), F_{m-1}(x))$, we choose a suitable pair (p(x), q(x)) with t-values zero for s=2 and small for $s\geq 3$.

Comparison of the t-values: our new vs existing results

A search for Tausworthe generators over \mathbb{F}_2 (Harase, 2021):

$$m = 16$$

dim. s	2	3	4	5	6	7	8	9	10	11	12	13	14	15
New	0	3	4	7	7	8	10	10	10	11	11	11	11	11
Existing	3	4	5	8	8	8	8	8	10	10	10	10	10	10

(Existing: Tausworthe generators developed by Chen et al. (2012).)

A search for Tausworthe generators over \mathbb{F}_4 (Harase, 2024):

$m \backslash s$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
5	0	0	0	1	1	2	2	2	2	2	2	2	2	2	2
6	0	0	0	1	2	2	2	2	3	3	3	3	3	3	3
7	0	0	0	1	2	2	2	3	3	3	3	3	3	4	4
8	0	0	0	1	2	4	4	4	4	4	4	4	4	4	4
9	0	0	0	1	3	3	3	3	3	4	4	4	4	4	4
10	0	0	0	2	2	3	3	3	4	4	4	5	5	6	6

Numerical example: 3-dimensional Gaussian Gibbs

We provide numerical examples to confirm the performance of Markov chain QMC.

We consider the three-dimensional Gaussian (normal) distribution $\mathcal{N}(\mu,\Sigma)$, where

$$\mu = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}, \Sigma = egin{pmatrix} 1 & 0.3 & -0.2 \ 0.3 & 1 & 0.5 \ -0.2 & 0.5 & 1 \end{pmatrix}.$$

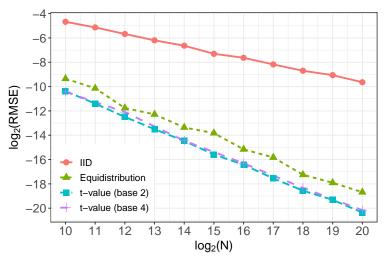
Then, a Gibbs sampling scheme can be implemented as the iteration of the calculation of one-dimensional normal distribution as follows:

$$X_k \mid X_{-k}$$

 $\sim \mathcal{N}(\mu_k + \Sigma_{k,-k} \Sigma_{-k,-k}^{-1} (X_{-k} - \mu_{-k}), \Sigma_{k,k} - \Sigma_{k,-k} \Sigma_{-k,-k}^{-1} \Sigma_{-k,k})$ for $k = 1, 2, 3$.

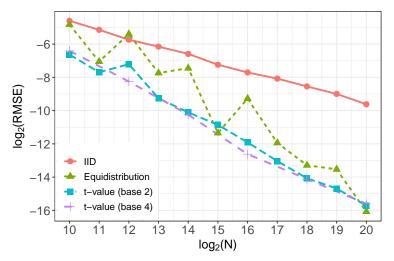
Numerical example: 3-dimensional Gaussian Gibbs

We estimate $E[X_1]$ with true value 0 by taking the sample mean. We calculate RMSEs using 300 digital shifts.



Numerical example: 3-dimensional Gaussian Gibbs

We estimate $E[X_1X_2X_3]$ with true value 0 by taking the sample mean. We calculate RMSEs using 300 digital shifts.



Numerical example: Bayesian linear regression

We use the Boston housing data.

Harrison and Rubinfeld (1978) built a linear regression model given by

$$\begin{split} \log(\text{MEDV}) &= \beta_0 + \beta_1 \text{CRIM} + \beta_2 \text{ZN} + \beta_3 \text{INDUS} + \beta_4 \text{CHAS} + \beta_5 \text{NOX}^2 \\ &+ \beta_6 \text{RM}^2 + \beta_7 \text{AGE} + \beta_8 \log(\text{DIS}) + \beta_9 \log(\text{RAD}) + \beta_{10} \text{TAX} \\ &+ \beta_{11} \text{PTRATIO} + \beta_{12} \text{B} + \beta_{13} \log(\text{LSTAT}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \tau^2), \end{split}$$

where

- The housing price MEDV is a response variable;
- The constant term, CRIM, ..., LSTAT are 14 explanatory variables.

We now consider Bayesian inference (e.g., see Hoff (2009)).

- Assume that $\beta=(\beta_0\ldots,\beta_{13})$ and τ^2 are independent and follow the normal and inverse-gamma prior distributions.
- We calculate the posterior mean estimates $E[\beta]$ and $E[\tau^2]$ by running the Gibbs sampler for $N=2^{16}$ iterations after a burn-in period.

Numerical example: Bayesian linear regression

The following table shows a summary of sample variances of posterior mean estimates $E[\beta_i]$ and $E[\tau^2]$ using 300 digital shifts.

$N=2^{16}$						
Parameter	eta_0	eta_1	eta_2	eta_3	eta_4	
IID	3.07e-07	2.74e-11	4.13e-12	8.43e-11	1.64e-08	
Equidistribution	9.28e-12	6.59e-16	1.07e-16	2.37e-15	4.71e-13	
t-value (base 2)	1.40e-12	9.12e-17	1.82e-17	3.55e-16	1.71e-13	
t-value (base 4)	1.73e-12	9.86e-17	1.71e-17	4.20e-16	7.31e-14	
Parameter	eta_5	eta_6	eta_7	eta_8	$oldsymbol{eta_9}$	
IID	1.72e-07	2.22e-11	4.26e-12	1.54e-08	5.87e-09	
Equidistribution	4.73e-12	6.69e-16	1.14e-16	4.70e-13	1.67e-13	
t-value (base 2)	7.11e-13	7.65e-17	8.86e-18	4.47e-14	1.42e-14	
t-value (base 4)	9.01e-13	1.24e-16	1.63e-17	7.71e-14	3.20e-14	
Parameter	eta_{10}	$oldsymbol{eta_{11}}$	eta_{12}	eta_{13}	$ au^2$	
IID	2.25e-13	3.48e-10	1.89e-13	1.09e-08	7.35e-11	
Equidistribution	6.91e-18	1.08e-14	4.52e-18	2.34e-13	2.36e-15	
t-value (base 2)	1.18e-18	1.36e-15	6.42e-19	3.02e-14	9.24e-16	
t-value (base 4)	1.36e-18	2.28e-15	1.20e-18	4.68e-14	1.00e-15	

Conclusion

Summary:

- For Markov chain QMC, we conducted a search of short-period Tausworthe generators in terms of the t-value, that is, Tausworthe generators
 - ① over \mathbb{F}_2 with t-values zero for s=2 and small for $s\geq 3$; and
 - ② over \mathbb{F}_4 with t-values zero up to s=3 and small for $s\geq 4$.
- In the parameter search, we used Fibonacci polynomials over \mathbb{F}_b .
- We reported numerical examples using Gibbs sampling in which our new Tausworthe generators perform comparable to or even better than the existing Tausworthe generators (Chen et al., 2012).

References:

- (1) S. Harase, "A table of short-period Tausworthe generators for Markov chain quasi-Monte Carlo", J. Comput. Appl. Math. 384 (2021), 113136, 12 pp.
- ② S. Harase, "A search for short-period Tausworthe generators over \mathbb{F}_b with application to Markov chain quasi-Monte Carlo", J. Stat. Comput. Simul. 94 (2024), no. 9, 2040–2062.

The code in C is available at https://github.com/sharase.