Conditional Quasi-Monte Carlo with Active Subspaces

Sifan Liu

Center for Computational Mathematics, Flatiron Institute

MCQMC 2024

Introduction

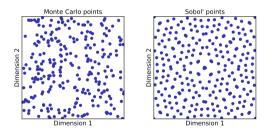
- Accurate estimation of expectations is a fundamental task across many fields.
- To evaluate $\mu=\mathbb{E}\left[f(x)\right]$, Monte Carlo methods sample $\mathbf{x}^{(i)}\sim\mathbb{P}$ and compute the sample average

$$\hat{\mu}_n := \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i).$$

• The standard error of the Monte Carlo estimator is of order $O_p(n^{-1/2})$ for square-integrable functions.

Quasi-Monte Carlo

• QMC points are constructed deterministically to fill the unit hypercube $[0,1]^d$ more evenly than plain Monte Carlo samples.



$$D_n^* = \sup_{\mathbf{a} \in [0,1)^d} \left| \frac{\text{\#points in } [0, \mathbf{a})}{n} - \prod_{j=1}^d a_j \right|$$

Low-discrepancy sequence:

$$D_n^* = O(n^{-1}(\log n)^d)$$

Figure: 256 Monte Carlo points (left) and Sobol' points (right, [Sob67]) in two dimensions.

Quasi-Monte Carlo

• QMC points are constructed deterministically to fill the unit hypercube $[0,1]^d$ more evenly than plain Monte Carlo samples.

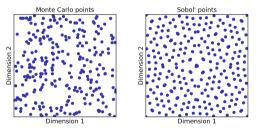


Figure: 256 Monte Carlo points (left) and Sobol' points (right, [Sob67]) in two dimensions.

$$D_n^* = \sup_{\mathbf{a} \in [0,1)^d} \left| \frac{\text{\#points in } [0,\mathbf{a})}{n} - \prod_{j=1}^d a_j \right|$$

Low-discrepancy sequence:

$$D_n^* = O(n^{-1}(\log n)^d)$$

Koksma-Hlawka inequality:

$$|\hat{\mu}_n - \mu| \le V(f) \cdot D_n^*$$

Quasi-Monte Carlo

- QMC points are constructed deterministically to fill the unit hypercube $[0,1]^d$ more evenly than plain Monte Carlo samples.
- QMC points can be randomized to get RQMC points.

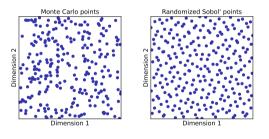


Figure: 256 Monte Carlo points (left) and Sobol' points (right, [Sob67]) in two dimensions.

$$D_n^* = \sup_{\mathbf{a} \in [0,1)^d} \left| \frac{\text{\#points in } [0,\mathbf{a})}{n} - \prod_{j=1}^d a_j \right|$$

Low-discrepancy sequence:

$$D_n^* = O(n^{-1}(\log n)^d)$$

Koksma-Hlawka inequality:

$$|\hat{\mu}_n - \mu| \le V(f) \cdot D_n^*$$

Challenges

- Faster convergence rate requires higher-order smoothness.
- ullet Error grows with dimension d.

We propose a generic method for reducing RQMC variance by

- improving the smoothness
- and reducing the "effective" dimension

Conditional Monte Carlo

- CMC is a variance reduction method for Monte Carlo estimators.
- Pre-integrating x_j : $\tilde{f}(\mathbf{x}_{-j}) = \mathbb{E}\left[f(\mathbf{x}) \mid \mathbf{x}_{-j}\right]$
 - ullet $\mathbb{E}\left[ilde{f}
 ight]=\mathbb{E}\left[f
 ight]$
 - $Var(\tilde{f}) \leq Var(f)$
- For RQMC, pre-integration can also improve smoothness.

E.g.
$$f(x) = \mathbf{1} \{x_j \le \phi(x_{-j})\}$$
 [GKLS18].

Pre-integrate x_1

$$\int f(\mathbf{x_1}, x_2, \dots, x_d) \mathrm{d}\mathbf{x_1}$$

Pre-integrate x_2

$$\int f(x_1, \mathbf{x_2}, \dots, x_d) \mathrm{d}\mathbf{x_2}$$

For integrals w.r.t. Gaussian density $\varphi(\mathbf{x})$, pre-integrate any linear combination of the variables:

$$\int f(\mathbf{U}\mathbf{x})\varphi(\mathbf{x})\mathrm{d}x_1, \quad U \in \mathbb{R}^{d \times d} \text{ orthogonal}$$

The goal is to find a rotation U such that $\int f(U\mathbf{x})\varphi(\mathbf{x})\mathrm{d}x_1$

- has a tractable form
- achieves a large variance reduction
- improves smoothness
- reduces the effective dimension

Option pricing

• Suppose the asset price S_t follows the SDE

$$\frac{\mathrm{d}S(t)}{S(t)} = r\mathrm{d}t + \sqrt{V(t)}\mathrm{d}W^{(1)}(t),$$

where V(t) is the stochastic volatility satisfying

$$dV(t) = a(V(t))dt + b(V(t))dW^{(2)}(t).$$

where $W^{(1)}, W^{(2)}$ are two Brownian motions with correlation ρ .

- Asian call option: $\mathbb{E}\left(\frac{1}{T}\int_0^T S(t) K\right)_+$
- Apply Euler-Maruyama discretization and Monte Carlo methods to simulate the path

$$\log S_{j+1} = \log S_j + (r - V_j/2)\Delta t + \sqrt{V_j\Delta t}(\sqrt{1 - \rho^2}z_{1,j+1} + \rho z_{2,j+1}),$$

$$V_{j+1} = V_j + a(V_j)\Delta t + b(V_j)\sqrt{\Delta t}z_{2,j+1}, \text{ for } j = 0, \dots, d-1.$$
(1)

ullet The problem reduces to evaluate a Gaussian integral in 2d dimensions.

Pre-integration step

For a rotation matrix U, consider the integrand $f_U(\mathbf{x}) = f(U\mathbf{x})$.

Simplification of the integrand

If $U_{1:d,1} \geq 0$ and $U_{d+1:2d,1} = 0$, then the integrand takes the form

$$f_U(\mathbf{x}) = \left(\sum_{j=1}^d e^{a_j(\mathbf{x}_{-1}) + b_j \mathbf{x}_1} - K\right)_+,$$

where $b_j > 0$ are constants, and $a_j(x_{-1})$ do not depend on x_1 for $1 \le j \le d$. In this case, the pre-integration step has a closed form

$$\int f_U(\mathbf{x})\varphi(x_1)\mathrm{d}x_1 = \sum_{j=1}^d e^{a_j(\mathbf{x}_{-1}) + b_j^2/2} \bar{\Phi}(\gamma - b_j) - K\bar{\Phi}(\gamma),$$

where γ is such that $\sum_{j=1}^{d} e^{a_j(\mathbf{x}_{-1}) + b_j \gamma} = K$.

Pre-integration step

- ullet The threshold γ can be found by a root-finding algorithm.
- Similar pre-integration steps for constant-volatility option pricing were used in [XW18, He19].
- ullet We will choose U such that

$$U_{1:d,1} \ge 0, \ U_{d+1:2d,1} = 0.$$

- ANOVA decomposition: $f(\mathbf{x}) = \sum_{w \subseteq 1:d} f_w(\mathbf{x}_w)$, where $f_\emptyset \equiv \mu$; $\int f_w dx = 0$ for $w \neq \emptyset$; and $\int f_w f_{w'} dx = 0$ for $w \neq w'$.
- Monte Carlo variance:

$$\frac{1}{n} \operatorname{Var}(f) = \frac{1}{n} \sum_{w \in 1: d} \sigma_w^2(f), \quad \text{where } \sigma_w^2(f) = \operatorname{Var}(f_w).$$

- ANOVA decomposition: $f(\mathbf{x}) = \sum_{w \subseteq 1:d} f_w(\mathbf{x}_w)$, where $f_\emptyset \equiv \mu$; $\int f_w dx = 0$ for $w \neq \emptyset$; and $\int f_w f_{w'} dx = 0$ for $w \neq w'$.
- Monte Carlo variance:

$$\frac{1}{n} \operatorname{Var}(f) = \frac{1}{n} \sum_{w \subseteq 1: d} \sigma_w^2(f), \quad \text{where } \sigma_w^2(f) = \operatorname{Var}(f_w).$$

• Pre-integrating x_1

$$\frac{1}{n} \sum_{w:1 \in w} \underbrace{0 \cdot \sigma_w^2}_{\bullet} + \frac{1}{n} \sum_{w:1 \notin w} \qquad \sigma_w^2$$
pre-integrate x_1

- ANOVA decomposition: $f(\mathbf{x}) = \sum_{w \subseteq 1:d} f_w(\mathbf{x}_w)$, where $f_\emptyset \equiv \mu$; $\int f_w dx = 0$ for $w \neq \emptyset$; and $\int f_w f_{w'} dx = 0$ for $w \neq w'$.
- Monte Carlo variance:

$$\frac{1}{n} \operatorname{Var}(f) = \frac{1}{n} \sum_{w \subseteq 1: d} \sigma_w^2(f), \quad \text{where } \sigma_w^2(f) = \operatorname{Var}(f_w).$$

• Pre-integrating x_1 and apply RQMC to the remaining variables:

$$\frac{1}{n} \sum_{w:1 \in w} \underbrace{0 \cdot \sigma_w^2} + \frac{1}{n} \sum_{w:1 \notin w} \underbrace{\Gamma_w \cdot \sigma_w^2}$$

$$\text{pre-integrate } x_1 \qquad \text{RQMC gain}$$

- ANOVA decomposition: $f(\mathbf{x}) = \sum_{w \subseteq 1:d} f_w(\mathbf{x}_w)$, where $f_\emptyset \equiv \mu$; $\int f_w dx = 0$ for $w \neq \emptyset$; and $\int f_w f_{w'} dx = 0$ for $w \neq w'$.
- Monte Carlo variance:

$$\frac{1}{n} \operatorname{Var}(f) = \frac{1}{n} \sum_{w \subseteq 1:d} \sigma_w^2(f), \quad \text{where } \sigma_w^2(f) = \operatorname{Var}(f_w).$$

ullet Pre-integrating x_1 and apply RQMC to the remaining variables:

$$\frac{1}{n} \sum_{w:1 \in w} \underbrace{0 \cdot \sigma_w^2} + \frac{1}{n} \sum_{w:1 \notin w} \underbrace{\Gamma_w \cdot \sigma_w^2}$$
pre-integrate x_1 RQMC gain

• We want to choose U such that large σ_w^2 values are multiplied by small factors.

Choosing the rotation: U_1

Reduced variance:

$$\sum_{w:1 \in w} \sigma_w^2 = \frac{1}{2} \mathbb{E} \left[(f_U(\mathbf{x}) - f_U(\tilde{x}_1, \mathbf{x}_{-1}))^2 \right] \quad (x_1, \tilde{x}_1, \mathbf{x}_{-1}) \sim \mathcal{N}(0, I_{2d+1})$$
$$\approx U_1^{\mathsf{T}} \mathbb{E} \left[\nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{\mathsf{T}} \right] U_1.$$

ullet To maximize the reduced variance, we could take U_1 to be the first eigenvector of

$$C := \mathbb{E}\left[\nabla f(\mathbf{x})\nabla f(\mathbf{x})\right].$$

Choosing the rotation: U_1

Reduced variance:

$$\sum_{w:1 \in w} \sigma_w^2 = \frac{1}{2} \mathbb{E} \left[(f_U(\mathbf{x}) - f_U(\tilde{x}_1, \mathbf{x}_{-1}))^2 \right] \quad (x_1, \tilde{x}_1, \mathbf{x}_{-1}) \sim \mathcal{N}(0, I_{2d+1})$$
$$\approx U_1^{\mathsf{T}} \mathbb{E} \left[\nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{\mathsf{T}} \right] U_1.$$

ullet To maximize the reduced variance, we could take U_1 to be the first eigenvector of

$$C := \mathbb{E}\left[\nabla f(\mathbf{x})\nabla f(\mathbf{x})\right].$$

- But we require $U_{1:d,1} \ge 0$ and $U_{d+1:2d,1} = 0$ for the pre-integration step to be tractable.
- So we select U_1 by solving the following problem:

$$\begin{aligned} \max_{\mathbf{v} \in \mathbb{R}^{2d}} \quad \mathbf{v}^{\mathsf{T}} C \mathbf{v} \\ \text{s.t.} \quad \mathbf{v}^{\mathsf{T}} \mathbf{v} &= 1, \\ \mathbf{v}_{1:d} &\geq 0, \quad \mathbf{v}_{d+1:2d} = 0. \end{aligned}$$

- To minimize the remaining variance $\sum_{w:1\notin w}\Gamma_w\sigma_w^2(f_U)$, we seek U such that large σ_w^2 values are multiplied by small Γ_w values.
- ullet RQMC gain coefficients Γ_w are typically small for the first few projections.

- To minimize the remaining variance $\sum_{w:1\notin w}\Gamma_w\sigma_w^2(f_U)$, we seek U such that large σ_w^2 values are multiplied by small Γ_w values.
- ullet RQMC gain coefficients Γ_w are typically small for the first few projections.
- ullet So we aim for the first few variables of f_U to explain most of the variance.
- For k = 2, ..., 2d,

$$\begin{aligned} \max_{\mathbf{v}} \quad \mathbf{v}^{\mathsf{T}} C \mathbf{v} \\ \text{s.t.} \quad \mathbf{v}^{\mathsf{T}} \mathbf{v} &= 1, \quad \mathbf{v}^{\mathsf{T}} U_j = 0, \ \forall \, 1 \leq j \leq k-1. \end{aligned}$$

- To minimize the remaining variance $\sum_{w:1\notin w}\Gamma_w\sigma_w^2(f_U)$, we seek U such that large σ_w^2 values are multiplied by small Γ_w values.
- ullet RQMC gain coefficients Γ_w are typically small for the first few projections.
- ullet So we aim for the first few variables of f_U to explain most of the variance.
- For k = 2, ..., 2d,

$$\begin{aligned} \max_{\mathbf{v}} \quad \mathbf{v}^{\mathsf{T}} C \mathbf{v} \\ \text{s.t.} \quad \mathbf{v}^{\mathsf{T}} \mathbf{v} &= 1, \quad \mathbf{v}^{\mathsf{T}} U_j = 0, \ \forall \, 1 \leq j \leq k-1. \end{aligned}$$

• Given the first column U_1 , $U_{2:2d}$ can be found by one eigendecomposition of $U_{1,\perp}^{\mathsf{T}}CU_{1,\perp}$.

- To minimize the remaining variance $\sum_{w:1\notin w}\Gamma_w\sigma_w^2(f_U)$, we seek U such that large σ_w^2 values are multiplied by small Γ_w values.
- ullet RQMC gain coefficients Γ_w are typically small for the first few projections.
- ullet So we aim for the first few variables of f_U to explain most of the variance.
- For $k = 2, \dots, 2d$,

$$\begin{aligned} \max_{\mathbf{v}} \quad \mathbf{v}^{\mathsf{T}} C \mathbf{v} \\ \text{s.t.} \quad \mathbf{v}^{\mathsf{T}} \mathbf{v} &= 1, \quad \mathbf{v}^{\mathsf{T}} U_j = 0, \ \forall \, 1 \leq j \leq k-1. \end{aligned}$$

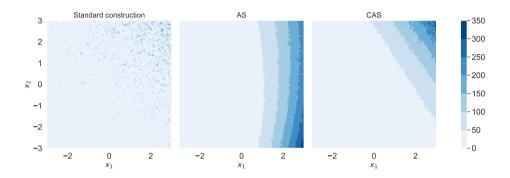
- Given the first column U_1 , $U_{2:2d}$ can be found by one eigendecomposition of $U_{1}^{\mathsf{T}} \cap CU_{1,\perp}$.
- Without the constraints on U_1 , this procedure coincides with the active subspace method [Con15] and gradient PCA (GPCA) [XW19].

Heston model

- $dS(t) = rS(t)dt + \sqrt{V(t)}S(t)dW^{(1)}t$.
- $dV(t) = \kappa(\theta V(t))dt + \sigma\sqrt{V(t)}dW^{(2)}(t)$.
- Number of time steps is d=32.
- $Corr(W^{(1)}, W^{(2)}) = 0.5.$
- ullet Error reduction factors relative to plain Monte Carlo at sample size 2^{14} .

	RQMC			${\sf RQMC+preint} \ {\sf STD-PCA-CAS}$		
K	STD	PCA	AS	STD	PCA	CAS
90	9.1	63.2	79.4	12.2	143.2 117.2 95.8	352.1
100	5.5	44.5	74.4	8.0	117.2	347.1
110	4.6	46.0	62.2	5.4	95.8	254.0

Visualization of the rotation



- Left: standard construction of Brownian motions
- Middle: Active subspace rotation
- Right: Constrained active subspace such that $U_{1:d,1} \ge 0$, $U_{d+1:2d,1} = 0$.

Spread option

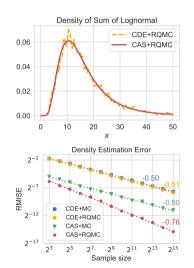
•
$$dS^{(k)}(t) = rS^{(k)}(t)dt + \sigma^{(k)}S^{(k)}(t)dW^{(k)}(t)$$

- $Corr(W^{(1)}, W^{(2)}) = 0.5$
- $\mathbb{E}\left[(\bar{S}^{(1)} \bar{S}^{(2)} K)_{+}\right]$

		RQMC		RQMC + preint $STD PCA CAS$		
K	STD	PCA	AS	STD	PCA	CAS
-10	9.9	125.6	327.7	12.2	680.9	4564.6 4400.2 4511.5
0	5.1	70.0	223.0	6.4	352.4	4400.2
10	3.5	35.5	112.2	5.0	243.7	4511.5

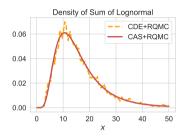
Further applications

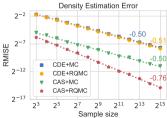
Conditional density estimation



Further applications

Conditional density estimation





Simulating chemical reaction network

•
$$dX_t = (\sum_{j=1}^{J} \nu_j a_j(X_t)) dt + \sum_{j=1}^{J} \nu_j \sqrt{a_j(X_t)} dW_t^{(j)}$$

• Error reduction factor for estimating $\mathbb{P}\left[X_d \leq K\right]$:

Threshold ${\cal K}$	RQMC	Proposed
90	1.6	1227.2
100	2.2	2103.6
110	1.4	1482.7

Conclusions

- Conditional Monte Carlo is powerful if we pre-integrate an important variable.
- A generic approach is proposed for selecting the pre-integration variable while simutaneously reducing the effective dimension for RQMC.
- This method has broad applications, including option pricing under various models and beyond.

- Thank Prof. Art Owen for many helpful discussions.
- Based on:
 - Liu, S., & Owen, A. B. (2023). Preintegration via Active Subspaces. *SIAM Journal on Numerical Analysis*.
 - Liu, S. (2024+). Conditional Quasi-Monte Carlo with Constrained Active Subspaces. To appear *SIAM Journal on Scientific Computing*.

Thank you!

References I

- P. G. Constantine.
 - Active subspaces: Emerging ideas for dimension reduction in parameter studies. SIAM, Philadelphia, 2015.
- Andreas Griewank, Frances Y Kuo, Hernan Leövey, and Ian H Sloan. High dimensional integration of kinks and jumps—smoothing by preintegration. *Journal of Computational and Applied Mathematics*, 344:259–274, 2018.
- Zhijian He.
 On the error rate of conditional quasi–Monte Carlo for discontinuous functions.

 SIAM Journal on Numerical Analysis, 57(2):854–874, 2019.
- I. M. Sobol'.

 The distribution of points in a cube and the accurate evaluation of integrals.

 USSR Computational Mathematics and Mathematical Physics, 7(4):86–112, 1967.

References II

Ye Xiao and Xiaoqun Wang.

Conditional quasi-monte carlo methods and dimension reduction for option pricing and hedging with discontinuous functions.

Journal of Computational and Applied Mathematics, 343:289–308, 2018.

Y. Xiao and X. Wang.

Enhancing quasi-Monte Carlo simulation by minimizing effective dimension for derivative pricing.

Computational Economics, 54(1):343–366, 2019.