Brock Laschowski

PhD Student

Brock LaschowskiPhD Student in the Department of Systems Design Engineering at the University of Waterloo

Student Profile 

Brock Laschowski is a PhD student in Biomedical Engineering at the University of Waterloo and a Graduate Research Assistant for the Motion Research Group. He recently completed several semesters working at the Holland Bloorview Kids Rehabilitation Hospital. Brock specializes in design optimization and control of assistive devices for human locomotion (i.e., robotic lower-limb prostheses and exoskeletons for rehabilitation patients, and sport wheelchairs for Paralympic athletes). Brock also researches the dynamic modelling and experimental measurement of human movement biomechanics and motor control. His Paralympic sports engineering research has been conducted in collaboration with the Canadian Sport Institute Ontario. Brock serves as Section Editor for the University of Toronto Medical Journal and Reviewer for the IEEE/ASME Transactions on Mechatronics, Journal of Applied Biomechanics, Sports Engineering, IEEE Reviews in Biomedical Engineering, Journal of Sports Engineering and Technology, and IEEE Transactions on Neural Systems and Rehabilitation Engineering. He was recently elected to the Executive Committee of the Canadian Society for Biomechanics. To date, Brock has accumulated over $238,000 in scholarships and awards, including the Postgraduate Doctoral Scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC). He has presented at numerous national and international conferences and was awarded Best Presentation of the 2013 Canadian Association of Physicists Congress. His award-winning research has been featured on many media networks, including CBC’s Paralympic and ParaPan American Games Coverages, Maclean’s Magazine, the Ontario Society of Professional Engineers Newsletter, and 94.9 CHRW Radio.

Research Interests

• Human Biomechanics and Motor Control
• Biomedical Engineering
• Assistive Devices (Prostheses, Exoskeletons, Wheelchairs) 
• Rehabilitation Robotics and Biomechatronics

Education

• PhD in Biomedical Engineering, University of Waterloo
Thesis Research: Modelling and Control of Energy-Efficient Lower-Limb Biomechatronic Systems 
• PhD in Biomedical Engineering, University of Toronto (Transferred) 
Thesis Research: Mechatronic Design and Optimization of Lower-Limb Prostheses and Exoskeletons 
• MASc in Mechanical Engineering, University of Waterloo
Thesis Research: Biomechanical Modelling and Optimal Control of Paralympic Sport Movements: Implications for Wheelchair Design Optimization
• MSc in Kinesiology (Biomechanics), University of Western Ontario
Thesis Research: Experimental Sports Biomechanics and Equipment Modelling and Evaluation 
• BSc in Kinesiology (Biomechanics), University of Toronto
Thesis Research: Measurement and Evaluation of Human Movement Biomechanics

Selected Publications

• Laschowski B, Razavian RS, and McPhee J. (2019). Biomechanical Power Modelling of Sitting Movements for Designing Lower-Limb Prostheses and Exoskeletons with Energy Regeneration. ASME Journal of Biomechanical Engineering. In Preparation.
• Laschowski B, Razavian RS, and McPhee J. (2019). Modelling and Biomechanical Evaluation of Sitting Movements: Implications for Energy-Efficient Lower-Limb Prostheses and Exoskeletons. International Society of Biomechanics Congress. Under Review.
• Laschowski B, McNally W, McPhee J, and Wong A. (2019). Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons. IEEE International Conference on Rehabilitation Robotics. Under Review.  
• Laschowski B, McPhee J, and Andrysek J. (2019). Lower-Limb Prostheses and Exoskeletons with Energy Regeneration: Mechatronic Design and Optimization Review. ASME Journal of Mechanisms and Robotics. Accepted.
• Laschowski B and Andrysek J. (2018). Electromechanical Design of Robotic Transfemoral Prostheses. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. DOI. 10.1115/DETC2018-85234. 
• Maryniak A, Laschowski B, and Andrysek J. (2018). Technical Overview of Osseointegrated Transfemoral Prostheses: Orthopaedic Surgery and Implant Design Centered. ASME Journal of Engineering and Science in Medical Diagnostics and Therapy. 1: 020801. DOI. 10.1115/1.4039105.
• Laschowski B, Mehrabi N, and McPhee J. (2018). Optimization-Based Motor Control of a Paralympic Wheelchair Athlete. Sports Engineering. 22: 207-215. DOI. 10.1007/s12283-018-0265-2.
• Laschowski B, Mehrabi N, and McPhee J. (2017). Inverse Dynamics Modelling of Paralympic Wheelchair Curling. Journal of Applied Biomechanics. 33: 294-299. DOI. 10.1123/jab.2016-0143.
• Laschowski B and McPhee J. (2016). Quantifying Body Segment Parameters Using Dual-Energy X-Ray Absorptiometry: A Paralympic Wheelchair Curler Case Report. Procedia Engineering. 147: 163-167. DOI. 10.1016/j.proeng.2016.06.207. 
• Laschowski B and McPhee J. (2016). Body Segment Parameters of Paralympic Athletes from Dual-Energy X-Ray Absorptiometry. Sports Engineering. 19: 155-162. DOI. 10.1007/s12283-016-0200-3.

Affiliation: 
University of Waterloo
Contact information: