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Abstract

The use of numerical optimization methods to partially automate the design process is demonstrated. Genetic algorithm (GA)
optimization, a global search technique, is used to determine both the active control and passive mechanical parameters of a vehicle
suspension system. The objective is to minimize the extreme acceleration of the passenger’s seat, subject to constraints representing the
required road-holding ability and suspension working space. GA optimization is also used for passive suspension design to compare results
from the literature based on a local optimization search technique: a gradient projection method. © 1998 Elsevier Science S.A. All rights
reserved.

1. Introduction

Multibody dynamics is used extensively by industry to model and design vehicle systems and sub-systems,
including automobiles, trains and the suspensions for both. From a design perspective, the drawback of most
commercial codes is that they only provide analyses of systems whose parameters have been specified. Design
optimization, parametric studies and sensitivity analyses are difficult, if not impossible to perform [1]. Instead,
design engineers must decide on how to change parameter values and re-perform the analysis until a set of
performance measures becomes acceptable. This ‘manual’ process, often accompanied by prototype testing, can
be difficult and time-consuming for complex systems with nonlinear performance measures. In addition, active
elements can introduce behaviour in suspension systems that is not intuitive [2]. Numerical optimization helps
automate the design process by altering parameter values in a search to minimize an objective function subject
to constraints, which may reflect performance characteristics. Fig. 1 illustrates this semi-automated design
process that requires the system and optimization statement models as inputs. In practice, an engineer interprets
the resulting design and, depending upon its suitability, either constructs a prototype or re-formulates the
optimization problem. In order to determine the potential contribution of optimization methods to the design
process, a global optimization technique was used to design an active vehicle suspension.

Optimal control theory has predominantly been used in the past to determine feedback gains for active
suspension systems [3,4]. Numerical optimization methods have also been applied to passive suspension design
where the mechanical parameters (spring and damping values) are the design variables [5]. In this paper, we
consider the active control and passive mechanical parameters concurrently as design variables, as recently
suggested by Bestle [2] and Schiehlen [6]. The specific problem considered is the passive half-car model and
road profile of Haug and Arora [5], with the addition of active components for comparison. Others use this same
system for passive design to test various optimization techniques with differing specified suspension parameters,
performance criteria and road surfaces [7-10]. We used a genetic algorithm, a stochastic global optimization
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Fig. 1. The semi-automated design process.

technique that is based on a mathematical model of the natural process: survival of the fittest design [11].
Previous methods for the passive system are of the local search type, some using zeroeth-order techniques, while
others are first-order nonlinear programming methods requiring gradients of the objective function and
constraints with respect to the design variables. Five aspects of the semi-automated design process are
emphasized by first defining the suspension model, then stating the optimization problem and genetic algorithm
procedure, highlighting the issues regarding the analysis, and finally presenting design results and their possible
interpretations.

2. Mathematical model

The following is a description of the model used by Haug and Arora [5], but with active components included
and all parameter values converted to SI units. Fig. 2 illustrates the road vehicle suspension system considered
for optimal design. The system’s 5 degrees of freedom are represented by the independent generalized
co-ordinates
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Fig. 2. Five degrees of freedom half-car model.
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Fig. 3. The road surface profile.

which are measured from the static equilibrium position. A mathematical description of the model is expressed
by the equations of motion

[MK4}+ [CHq} + [K){q} = {f(O)} (2)

where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively.

The mass properties of the system are defined by: the seat mass m, =132 kg, the car-body mass m, =
2040 kg and its moment of inertia 7, = 4630 kg - m’, and the wheel mass m, =44 kg. It is assumed that all
dampers and springs behave linearly and that the rotation g, is small enough so that the linear form of (2) is
valid. Two active elements provide forces proportional to the absolute vertical velocity of the points on the car
body directly above the rear and front wheels. These devices, characterized by proportionality constants ¢, and
¢, are known as skyhook dampers and are more effective in reducing car-body motions than passive dampers
[6]. The forcing function {f(r)} depends on the spring-damper model of the tire, with k, = 262700 N/m and
¢, =876 N-s/m, and the road disturbance, g, and g,. Fig. 3 shows the sinusoidal shape of the road profile
consisting of two successive depressions of depth 4 =0.102 m and length A. Two separate profiles, of lengths
A, =24.4m and A, =3.05m, are considered.

As functions of time, the road conditions are given by

u D, if0sr=a
2, =1 2 (cos(wt) ), if0=sr< v 3)
0, otherwise
and
: 0. iree(re )
2.0 = 2(cos(a)(t 7)) ), ifr=sr=\r v (4)
0, otherwise
where 7 and o, the time lag between wheels and the forcing frequency, respectively, are given by
at+b+d
r=Ltbrd (5)
2wV
w=" (6)

with dimensions 2 =2.03m, »=0.25m and 4 =0.76 m, and vehicle velocity V=24.4 m/s. The remaining
eight unknown parameters comprise the set of design variables:

=1k, .c,, ks, s, k4,c4,cf}'r, s

3. Optimization and analysis

Analysis of the suspension generally implies solving (2) for the time response of the system. To help identify
issues regarding the analysis, such as the time interval for numerical integration, the optimization problem and
procedure is stated first.
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3.1. Optimization design statement

There are three characteristics commonly used to assess the performance of vehicle suspension systems [3-6]:
(i) ride comfort, which improves as the magnitude of the seat acceleration, |§,|, is reduced.
(ii) road-holding ability or safety, which is acceptable for restricted or low tire-road contact forces and is
quantified by tire deflection (e.g. the rear tire deflection g, — g,).
(iii) the suspension working space, which must be restricted (e.g. the rear wheel-chassis space g, + ags — g5).
Ride comfort is chosen to be the most important characteristic so it is expressed in an objective function as

min f({x}) = max|§,()|,, r€[0.T], i=12 (8)

where the index i refers to the two different road profiles; thus, the system response to both profiles must be
calculated. Note that an upper bound is placed on the maximum seat acceleration:

g, =f—103m/s’<0 (9)

in agreement with Haug and Arora [S]. The other two performance characteristics are included as further
constraints so that the tire deflections and relative spaces between bodies are restricted by

8> = lg,(t) — g5()| — 0.0508 m <0 (10)
8 = lg;(t) — g,(H)] = 0.0508 m =<0 an
4 = |g,(®) = ,(t) + bgy()] — 0.0508 m < 0 12
85 = lg,(t) + ag5(t) — g, (] = 0.127m <0 1)
8s = q,(1) = (b + d)g5(t) — q,(1)| ~ 0.127 m < 0. (14)

The constraints (10) through (14) must hold for all times s € [0, T'] and for both road conditions. The design
variables are also limited to ranges defined by the bounds shown in Table 1. While the bounds for all these
constraints have been converted to SI from [5], the active skyhook dampers have been chosen to take on values
ten times that of the passive dampers to further inhibit absolute motion of the car body. In practice, these ranges
should reflect component availability and the financial and technical abilities to manufacture them.

3.2. Genetic algorithm optimization procedure

Goldberg [12] and Haftka and Giirdal [13] describe genetic algorithms and their applications to engineering
design. The genetic algorithm (GA) for optimization starts from an initial set, or first generation, of randomly
chosen designs with uniform probability distribution. The population of each generation will have feasible
design variables in terms of their allowable ranges (i.e. Table 1) but may be infeasible otherwise. Each design is
represented by a finite-length binary string that consists of smaller strings that decode to a value for each design
variable. The eight design variables’ strings are taken to have 6 binary sites so that there are 2° = 64 possibilities
for each variable and (2°)° = 2.8 X 10'* possible designs. That is, the design variables only take on values from
a discrete set. Given a current generation of designs, or strings, there are three steps used to implement the
algorithm:

(i) Reproduction, which is performed by copying a current generation string into a new population, the

Table 1

Design variable ranges

Design variables Lower bound Upper bound
k, [N/m] 8756 87563

¢, [N-s/m] 350 8756

ks, k, [N/m] 35025 175127

¢y, €4 [N-s/m] 875 14010

¢, ¢ [N-s/m] 8756 140101
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‘parent pool’, according to the design’s fitness. The fitness must be evaluated for each design in this
generation and it depends on the objective function value, f, and constraint violations. The GA searches
for designs with high or maximum fitness, while f is to be minimized. The fitness, Y, that represents a
minimizing objective is

Y=fr—af =G, (1)

where G, is a penalty when constraints are violated

6
G,=n2 max(0, g,). (16)

i=1

It is important to ensure a wide range of fitness values so that small changes in the design string result in
significantly different Y values. To achieve this, it was found by trial and error that the values 1000, 100
and 10000 for f, ,,, o and 7, respectively, scale the fitness well. In practice, one often chooses f, ,,, with
a =1, to be the largest value of f obtainable from a design that is feasible for all constraints; however,
the design variables for this situation are too difficult to find for the given design statement. To create the
parent pool, designs are copied with a bias toward strings with higher Y. A way to select such designs is
to ‘spin’ a weighted roulette wheel where each string occupies an area that is proportional to its fitness
value relative to the total fitness sum of the entire generation. Since designs are copied and not removed
from the roulette wheel, the parent pool may contain multiple copies of designs with high fitness.

(ii) Crossover, which is the exchange of design characteristics among randomly selected pairs from the
parent pool. This is done by randomly choosing a portion along the design string length that identifies
the pattern of 0’s and 1’s that gets exchanged. Here, one-point crossover is used such that only one
position along the string identifies this portion. For example, two strings of length 5

parent 1: O 1 1 1
parent2: 1 10 1 0

mate at the crossover point 2 to create

offspring 1: 0 1[0 1 0
offspring 2: 1 1J]1 1 1.

(iii) Mutation, which is achieved by switching a 0 with a 1, or vice-versa, at a binary site. The reproduction
step can copy many of the same designs, which, if chosen in pairs for crossover, causes no change to the
population. This third step diversifies the population so that different areas of the design space can be
explored. The mutation probability per site was taken to be 0.2%.

The population passed from one step to the other remains the same size. It was found by trial and error, as
with the other GA parameters such as mutation probability, that a population size of 100 gives fairly consistent
results. A complete iteration or new generation of designs is formed after completing all three steps. The
algorithm stops when the maximum fitness design comprises at least 30% of a newly created generation. The
GA uses stochastic ideas based on analogies with the natural process. For example, the design string with binary
sites is analogous to the chromosome with genes. The reproduction stage itself is a simulation of the survival of
the fittest designs.

The simple GA as given by Goldberg [12] was implemented in a program written in C using pseudo-random
number generators linked from the Numerical Algorithms Group (NAG) Fortran library [14]. However, instead
of using a weighted roulette wheel based on the fitness sum of the population for the reproduction stage, one
based on the ranking of individuals in the population according to fitness is used, as described by Whitley [15].
In addition, in order to improve the efficiency of the GA, the binary strings and fitness values for each unique
design of the current generation are stored in a linear search look-up table [16]. If a design string in the next
generation matches one in the table, then the fitness does not have to be re-calculated. This can save computing
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time, especially for expensive fitness evaluations, as is the case here, since a complete dynamic analysis of the
suspension system must be performed for each set of design variables for both road profiles.

3.3. Dynamic analysis

No gradient information for GA optimization is required; only evaluations of the objective function, f, and the
constraints, g;, are necessary to determine fitness. In order to evaluate these, the equations of motion, (2), need
to be numerically integrated for ¢t € [0, T]. All initial conditions are zero. The final time T must be chosen
carefully so that extreme accelerations caused by many possible designs are included. However, if it is chosen
too large, the integration time increases and slows down the GA which requires many analyses. Here, T was
selected to be 5's as suggested by Paeng and Arora [9]. In addition, the type of numerical integration affects the
analysis time. It was found that using the single-step 4th-order Runge—Kutta technique [17] every 0.0025 s (for
a total of 2000 time steps) gives very accurate results. The GA optimization, dynamic analysis and fitness
evaluation were linked and automated on a Silicon Graphics Indigo 2 XZ workstation.

4. Design results and interpretations

Table 2 shows values of the design variables for five independent runs of the GA (i.e. the pseudo-random
number generator was seeded by the computer clock so that different results may be obtained for each run). Also
shown are the peak absolute acceleration values of the seat for the vehicle subjected to both road profiles where
the higher of the two for each design is the value of the objective function, f, and is highlighted in the table. The
number of generations and analyses (or fitness evaluations) and CPU time required to converge are also given.
The seat suspension values, k, and c,, are consistently at or near their lower bounds, providing a ‘soft
suspension’, possibly keeping the forces applied to the seat, and hence its acceleration, low. Both wheel passive
dampers, c, and c,, are also always at their lower bounds, perhaps in an effort to let the active skyhook dampers
more effectively reduce car-body motions. The best design, as measured by the lowest objective function value,
was obtained from run 5, which required 2558 analyses—only 9.1 X 10™'°% of the total number of possible
designs. Fig. 4 illustrates the convergence of run 5 by plotting the objective function value, f, that corresponds
to the design with highest fitness, Y, in each generation versus the generation number.

The GA was also used for passive suspension design to compare results from those obtained by Haug and
Arora [5] who used a gradient projection method, a local search optimization technique. Table 3 displays the
results and Fig. 5 compares the seat acceleration responses (for the road profile causing the maximum peak
value) of the GA passive and best GA active designs. The active system’s response shows that the road

Table 2
GA results for active suspension design

Run 1 Run 2 Run 3 Run 4 Run 5
k, [N/m] 8756 8756 8756 12510 12510
¢, [N-s/m] 484 484 484 350 350
k, [N/m]} 123979 117307 88397 68383 108412
¢, [N-s/m) 875 875 1293 875 875
¢, [N-s/m] 140101 133847 98405 79641 123423
k, [N/m] 57264 55040 57264 72831 63935
¢, [N+s/m] 875 875 875 875 875
¢, [N-s/m] 106744 106744 112999 140101 123423
max lql(t)!, [m/sz] 0.3850 0.3738 0.3748 0.3650 0.3662
max |§,(1)|,, [m/s’] 0.3786 0.3714 0.3829 0.3706 [03705 ]
# of generations 53 47 38 59 57
# of analyses 3185 2605 2223 2660 2558

CPU time [s] 860 700 595 715 687
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Fig. 4. Convergence of GA run 5.
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Comparison of passive designs
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Fig. 5. Acceleration response for the passive and active designs.

Gradient projection

GA (search table)

GA (no table)

k, [N/m] 8756 63796 63796
¢, [N-s/m] 1564 751 751
k, [N/m] 35025 72831 72831
¢, [N-s/m] 6622 3169 3169
k, [N/m] 35025 35025 35025
¢, [N*s/m] 8042 1918 1918
max |§, ()], [m/s] 3.19 3.17 3.17
max |g, ()], [m/s?] 3.12 3.12

iterations 40 25 25

# of analyses 40 1436 2500
CPU time [s) NA 321 630

disturbance has little effect on the seat acceleration. The GA passive design, while not significantly better than
the one found by the gradient projection method, does demonstrate that there exists other feasible designs with
lower objective function values. Although the GA requires many more analyses than local nonlinear
optimization methods, it does not require sensitivity analyses to determine the gradients of the objective function
and constraints with respect to the set of design variables. In particular, determining the gradient of point-wise
constraints (constraints that must hold over an entire time interval) may cause instability in executing nonlinear
programming methods and can be an involved computation requiring the solution of additional ordinary
differential equations [18].

Tables 2 and 3 also demonstrate the benefit of using a linear search look-up table to avoid re-computing the
fitness for previously analyzed designs. Conventional implementations of the GA, without a search table,
perform a number of analyses equal to the number of generations multiplied by the population size, as
demonstrated in the last column of Table 3. With the search table implementation however, Table 3 shows that
the same results can be obtained (the random number generator was seeded with the same value) in almost half
the number of analyses and CPU time. The benefit gained in using a look-up table depends on the CPU time
required to perform a fitness evaluation as well as GA processing determined by such parameters as population
size, design string length, probability of mutation, the stopping criteria and the pseudo-random number generator
seed. As an example, run 5 of Table 2, while requiring more generations to converge than runs 1 and 2, required
fewer analyses and hence less CPU time.
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5. Conclusions

Genetic algorithm (GA) optimization, a global technique, searches for a design that minimizes an objective
function subject to constraints. As an example of using numerical optimization to help automate the design
process, GA optimization was used to determine parameter values for an active vehicle suspension that
minimized a performance criteria while satisfying a number of other design requirements. The response of the
active design that best minimizes the objective function shows that the road disturbance has little effect on the
seat acceleration when compared to passive designs. In practice, however, realistic implementation of the active
skyhook dampers must be addressed by obtaining actuators that can deliver the required power, if possible.

To compare results with a local optimization search technique, the gradient projection method [5], the GA
was also used for the design of the passive suspension system. The GA results illustrate that other feasible
designs exist with lower objective function values than those found with local optimization search methods.
Although the GA requires more computing effort than a gradient projection method, it does not require gradients
of the objective function and constraints with respect to the set of design variables.

It was also shown that the efficiency of the GA can be improved by monitoring previously analyzed designs
so as to avoid re-computing the fitness for a same design. To further improve efficiency and consistency in
results, the GA parameter values, such as population size and mutation probability, may be tuned more
effectively [13]. Most importantly, the genetic algorithm results show that there is potential to incorporate global
optimization methods for suspension system design. Other global techniques [11], which may utilize local
nonlinear programming (such as a gradient projection method) to help refine the results, should be examined.
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