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General Muscle Torque Generator Model for
a Two Degree-of-Freedom Shoulder Joint

Muscle Torque Generators (MTGs) have been developed as an alternative to muscle-
force models, reducing the muscle-force model complexity to a single torque at the joint.
Current MTGs can only be applied to single Degree-of-Freedom (DoF) joints, leading
to complications in modeling joints with multiple-DoFs such as the shoulder. This study
aimed to develop an MTG model that accounts for the coupling between 2-DoF at the
shoulder joint: shoulder plane of elevation (horizontal abduction/adduction) and shoulder
elevation (flexion/extension). Three different 2-DoF MTG equations were developed to
model the coupling between these two movements. Net joint torques at the shoulder were
determined for 20 participants (10 females and 10 males) in isometric, isokinetic, and
passive tests. Curve and surface polynomial fitting was used to find the best general fit
for the experimental data in terms of the different degrees of coupling. The models were
validated against experimental isokinetic torque data. It was determined that implicit
coupling that used interpolation between single-DoF MTGs resulted in the lowest root
mean square percent error of 8.5%. The work demonstrated that general MTG models
can predict torque results that are dependent on multiple-DoFs of the shoulder.

Keywords: muscle torque generator, shoulder joint, torque-angle relationship, torque-
velocity relationship, muscle mechanics

1 Introduction
Musculoskeletal models are integral to biomechanics simula-

tions across diverse domains, as evidenced by their application in
predictive biomechanics simulation [1], the formulation and evalu-
ation of effective rehabilitation strategies [2], the design and control
of wearable robots [3,4], and the optimization of motions or tools
for sports applications [5–7]. To create a human musculoskele-
tal model for simulations, a reasonable representation of muscles
is required, and Hill-type muscle-force models are often applied
[1,8]. However, these muscle-force models have some drawbacks,
including the need to define muscle geometry such as the insertion
point, wrapping, and the muscle moment arm [9–12]. There is
also the muscle redundancy issue, in which there are more mus-
cles crossing a joint than Degrees of Freedom (DoFs), requiring
optimization to solve for unique muscle forces [11–13]. Finally,
these muscle-force models require parameters that can be difficult
to identify [11,12,14]. One solution to the mentioned drawbacks
is to use a Muscle Torque Generator (MTG) as it reduces the com-
plexity of muscle-force models to a single torque at the joint, all
while maintaining the position and velocity dependencies of mus-
cles [11,14,15].

The standard form of an MTG model is a functional equation
containing a torque-angle scaling function, 𝜏𝜃 , which represents the
length-dependent properties of muscles, a torque-velocity scaling
function, 𝜏𝜔 , which represents the muscle lengthening-dependent
properties, a passive function, 𝜏𝑝 , which considers forces from vis-
coelastic elements of the muscle, and finally the activation func-
tion, 𝜏𝑎𝑐𝑡 , which gives active torque [11,12,14,15]. The functional
equation in Equation (1) is the standard form of a single-DoF MTG
for joint angle 𝜃 and angular velocity 𝜔.

𝜏(𝜏𝑎𝑐𝑡 , 𝜃, 𝜔) = 𝜏𝑎𝑐𝑡 · 𝜏𝜔 (𝜔) · 𝜏𝜃 (𝜃) + 𝜏𝑝 (𝜃, 𝜔) (1)

The four crucial sub-functions, the torque-angle scaling, the torque-
velocity scaling, the passive, and the activation models are thor-
oughly introduced in the subsequent paragraphs.

The torque-angle scaling function 𝜏𝜃 scales the maximum iso-
metric torque such that the length-dependent properties of muscles
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are incorporated. Kulig et al [16] conducted work to determine
human strength curves, which are curves that outline the torque-
angle relationship of a joint. The authors found that a similar trend
could be seen between the torque-angle curve of a joint and the
force-length curve of muscles. In a typical force-length strength
curve, a peak in muscle strength is achieved when the sarcom-
ere length is optimal, and zero force is seen at the smallest and
longest lengths [17]. Previous mathematical models of the force-
length curves of muscles can therefore be used as inspiration for the
torque-angle scaling function. The torque-angle scaling function
has previously been modeled using a normal function [18], cosine
[5,18,19], quadratic [18,20], cubic [18], and sine-exponential [18].

The torque-velocity scaling function 𝜏𝜔 scales the maximum
isometric torque production such that the lengthening properties of
muscles are considered. During concentric motion, an increase in
the speed of muscle shortening causes the muscle force to decrease
in a hyperbolic nature [8]. However, in the eccentric phase, it has
been found that maximum muscle force will increase to a value
of 1.5 times the isometric force, with a plateau at higher speeds
[21]. The function commonly employs a double hyperbolic model
of the torque-velocity relationship [7,18,19,22,23], often utilizing a
piecewise function to capture concentric and eccentric relationships
[7,19,23].

The passive function allows for torques contributed by compo-
nents in parallel with the contractile elements of muscle to be con-
sidered. These include structures such as tendons, ligaments and
muscle tissues such as the epimysium and perimysium [14,19]. For
passive function 𝜏𝑝 , two main forms exist: a double-exponential
[12,19,24–26] and a linear spring-damper form [27,28].

Finally, the activation function 𝜏𝑎𝑐𝑡 captures the activation of
muscles and provides a torque between the minimum isometric
torque and the maximum isometric torque. The function is mod-
eled using two main strategies: a function to capture the muscle
activation dynamics [6,7,12,23], and a time-varying activation, 𝑎,
that is bounded between 0 and 1 [5,12,15,20].

Previous studies have been conducted to determine how to best
represent joint scaling relationships, with dynamometry often used
to determine parameters for the evaluated joint [18–20,22,23,29].

Currently MTGs are used for single-DoF joints and additional
MTGs are often added to represent joints with multiple-DoFs [6].
A biarticular approach has been implemented that incorporates the
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Arm projection
in transverse plane

(a) Transverse plane view
θ1 = 30◦ and θ2 = 90◦

𝜃2
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(b) Sagittal plane view
θ1 = 90◦ and θ2 = 45◦
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𝛼

(c) Three-dimensional view
θ1 = 30◦ and θ2 = 60◦

Fig. 1 Illustration of angle directions and torque examples for shoulder plane of elevation (horizontal abduction/adduction)
and shoulder elevation (flexion/extension) for (a) Transverse plane view, (b) Sagittal plane view, and (c) Three-dimensional
view

. The coordinate system is defined for the right arm with the person facing towards positive X (red arrow).

coupling between two different joint angles, but is currently only
applied to 1-dimensional models [30]. An additional approach
involved the application of machine learning to investigate biar-
ticular muscle models, as demonstrated in the work by Nasr and
McPhee [31]. However, this learning-based method necessitated a
substantial volume of data. A previous approach applied two per-
pendicular single-DoF MTGs that were scaled using a torque ratio
term [7]. Another approach implemented a 2-DoFs MTG by inter-
polating between experimental shoulder torques using a piecewise
cubic Hermite polynomial by Nasr et al [11]. However, the impact
of coupling between the 2-DoFs of the joint was not fully evalu-
ated. Therefore, the goal of this research was to develop, for the
first time, an MTG that accounts for the coupling between 2-DoFs
of the shoulder joint. The shoulder joint was selected as it has
multiple-DoFs and torques generated from multiple muscles with
different lines of action [32–34]. The model aims to simplify the
complexity of the shoulder joint for dynamic simulation purposes.

Three different forms of the 2-DoFs MTG model were designed
with different degrees of coupling between DoFs, and biomechani-
cal torque data was gathered to identify the scaling function param-
eters in the models. General models were fit to the experimental
data for the three different coupling methods. The ability to predict
joint torque was evaluated against experimental torques, leading to
a comparison of degrees of coupling and model accuracy.

2 Material and Methods
2.1 Model Angle and Torque Definitions. The multi-DoFs

MTG model aims to capture the coupling between two motions
of the shoulder: shoulder plane of elevation (horizontal abduc-
tion/adduction), and shoulder elevation (flexion/extension) as de-
fined according to the International Society of Biomechanics (ISB)
[35]. Clinically, the shoulder plane of elevation is defined as hori-
zontal adduction when the humerus moves horizontally across and
towards the chest and is defined as horizontal abduction when it
moves horizontally away from the chest [36]. Shoulder elevation
is clinically defined as abduction when the plane of elevation is 0 ◦

and forward flexion when the plane of elevation is 90 ◦ [35].
Two angles were defined to describe these two motions:
• 𝜃1 = the angle of the plane of elevation of the humerus relative

to the thorax (horizontal abduction/adduction);
• 𝜃2 = the angle of elevation of the humerus relative to the

thorax (flexion/extension).
Figure 1 depicts the coordinate system and angle definitions. The
coordinate system is defined using the ISB standards and is for the
right arm with the person facing towards X.

Two torques were defined. The first torque, 𝜏1, is responsible for

shoulder plane of elevation and is about Y in the direction of 𝜃1.
The second torque, 𝜏2, is responsible for elevation and is about 𝑥′
in the direction of 𝜃2. This second rotation results in elevation in
the plane of elevation. Each torque is individually determined by
considering the coupling between the DoFs. The resultant torque,
𝜏, is at an angle 𝛼 from the vertical (see Figure 1(c)).

The shoulder joint has a large Range of Motion (RoM) [33],
ranging from 0 to 140 ◦ in horizontal adduction (𝜃1 when 𝜃2 is
90 ◦) and 0 to 167 ◦ in forward flexion (𝜃2 when 𝜃1 is 90 ◦) on
average [37]. In this work, the model was defined to be for lifting
and reaching motions such that 𝜃1 was defined to be between 0
and 120 ◦ and 𝜃2 between 60 and 160 ◦.

2.2 Coupling and MTG Equations. To develop the MTG
functional forms for the torque magnitudes 𝜏1 and 𝜏2, the
single-DoF MTG equation in Equation (1) was used. Models
were developed to consider implicit coupling between the DoFs
(Model 1), position coupling (Model 2), and position and velocity
coupling (Model 3). In all models, the dependence of 𝜏𝑝 on 𝜔

was ignored because the slow speeds of reaching motions have a
negligible impact [26].

Model 1 : Implicit Coupling

For implicit coupling, multiple single-DoF models were
developed across the range of the secondary DoF. For
𝜏1, the torque-angle scaling and passive functions were
determined with respect to 𝜃1 when 𝜃2 was 60, 85, 110,
135, and 160 ◦, and the torque-velocity scaling was de-
termined with respect to ̇𝜃1 when ̇𝜃2 was 0 °/s. For
𝜏1, the torque-angle scaling and passive functions were
determined with respect to 𝜃2 when 𝜃1 was 0, 30, 60,
90, and 120 ◦, and the torque-velocity scaling was de-
termined with respect to ̇𝜃2 when ̇𝜃1 was 0 °/s. Linear
interpolation between the curve fits was used to deter-
mine the torque scaling at points between the discrete
values of 𝜃1 and 𝜃2. The implicit coupling equations for
𝜏1 and 𝜏2 are Equations (2) and (3), respectively. The
subscript after the MTG function type indicates whether
the function is for 𝜏1 or 𝜏2.

𝜏1 = 𝜏𝑎𝑐𝑡1 · 𝜏𝜔1 ( ̇𝜃1) · 𝜏𝜃1 (𝜃1) + 𝜏𝑝1 (𝜃1)

for 𝜃2 = 60, 85, 110, 135, 160 ◦ (2)

𝜏2 = 𝜏𝑎𝑐𝑡2 · 𝜏𝜔2 ( ̇𝜃2) · 𝜏𝜃2 (𝜃2) + 𝜏𝑝2 (𝜃2)
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(a) Isometric testing in elevation (b) Isometric testing in the plane of elevation (c) Isokinetic testing

Fig. 2 (a) Example of a participant setup when θ1 is 0 ◦ and θ2 is 85 ◦ for isometric testing in elevation. (b) Example of a
participant setup when θ1 is 0 ◦ and θ2 is 85 ◦ for isometric testing in the plane of elevation. (c) Example of a participant
setup for isokinetic testing where θ̇1 was limited to 2.5 °/s and θ̇2 4.3 °/s for the trial.

for 𝜃1 = 0, 30, 60, 90, 120 ◦ (3)

Model 2 : Position Coupling

Next, the position coupling cases were developed such
that the torque-angle scaling and passive functions were
dependent on two angles, while the torque-velocity scal-
ing function was dependent on one angular velocity as
in the implicit coupling method. Equations (4) and (5)
describe the position coupling MTG for both torques.

𝜏1 = 𝜏𝑎𝑐𝑡1 · 𝜏𝜔1 ( ̇𝜃1) · 𝜏𝜃1 (𝜃1, 𝜃2) + 𝜏𝑝1 (𝜃1, 𝜃2) (4)

𝜏2 = 𝜏𝑎𝑐𝑡2 · 𝜏𝜔2 ( ̇𝜃2) · 𝜏𝜃2 (𝜃1, 𝜃2) + 𝜏𝑝2 (𝜃1, 𝜃2) (5)

Model 3 : Position and Velocity Coupling

Finally, an additional degree of coupling was added to
the torque-velocity scaling function such that it is de-
pendent on two angular velocities instead of one. The
coupled torque-angle scaling and the passive functions
remain the same as Model 2. Equations (6) and (7) de-
scribe the position and velocity coupling MTG for 𝜏1
and 𝜏2, respectively.

𝜏1 = 𝜏𝑎𝑐𝑡1 · 𝜏𝜔1 ( ̇𝜃1, ̇𝜃2) · 𝜏𝜃1 (𝜃1, 𝜃2) + 𝜏𝑝1 (𝜃1, 𝜃2) (6)

𝜏2 = 𝜏𝑎𝑐𝑡2 · 𝜏𝜔2 ( ̇𝜃1, ̇𝜃2) · 𝜏𝜃2 (𝜃1, 𝜃2) + 𝜏𝑝2 (𝜃1, 𝜃2) (7)

For the three models, torque-angle scaling, torque-velocity scal-
ing, and passive functions were developed. Polynomial torque-
angle, and piecewise torque-velocity scaling functions have previ-
ously been found to be simple and effective functions for MTGs
[18,20]. As the RoM evaluated was within the RoM of the shoul-
der, passive torques were expected to vary gradually as opposed to
increasing exponentially outside the RoM [26]. Therefore, poly-
nomial curves and surfaces were applied for all the scaling and
passive relationships. To avoid over-fitting the data, curve and sur-
face fits were evaluated to at most the third degree. For notation,
curves are denoted as m-Curve, where m is the order of the poly-
nomial curve and surfaces are denoted as m, n-Surface where m
and n are the degree of the first and second independent variables.

Finally, an activation term approach similar to previous works
was applied [5,15,20], where the activation torque, 𝜏𝑎𝑐𝑡 , is the
product of an activation term (𝑎1 and 𝑎2 for the plane of elevation
and elevation, respectively) and the isometric torque, 𝜏𝑚𝑎𝑥 . The
activation function for 𝜏1 or 𝜏2 is shown by Equation (8).

𝜏𝑎𝑐𝑡1,2 = 𝜏𝑚𝑎𝑥1,2𝑎1,2 (8)

where the activations are assumed to be:

𝑎1 = cos(𝛼) (9)

𝑎2 = sin(𝛼) (10)

The activations were assumed to be related to the resultant
torque direction, 𝛼, where the activations are defined by Equa-
tions (9) and (10). This approach was inspired by vector addition
as the magnitude of the two activations will always equate to 1 for
maximal effort.

2.3 Shoulder Experiments. Isometric, isokinetic, and pas-
sive tests were conducted using the Biodex System 4 Pro (Biodex
Medical Systems, Inc, Shirley, NY) which has a sampling rate of
100 Hz. All participants were instructed to keep their back against
the seat and were secured using two straps. Participants were also
instructed to keep their elbow and wrist joints locked in a neutral
and straight position. The Biodex crank angle measurement was
utilized as the shoulder angle, consistent with the approach taken
by Brown and McPhee [20] in previous Biodex testing. To assess
potential discrepancies between the Biodex crank angle measure-
ment and the actual angle of the elbow joint, an electrogoniometer
was employed in this study. The investigation revealed that the
Biodex crank angle served as a close representation of the elbow
joint angle, likely attributed to the rigid handle connecting the in-
dividual and the Biodex. These findings support the assumption
that the crank angle aligns with the joint angle, ensuring the va-
lidity of our approach. The eligibility criteria of the study ensured
that participants had not experienced any pain during activities of
daily living within the past 6 months, and that the participant did
not have any shoulder pain or an existing heart condition. Ethics
approval was obtained from the University of Waterloo Research
Ethics Board.

Isometric torque was measured in elevation for 25 different com-
binations of 𝜃1 (0 ≤ 𝜃1 ≤ 120 ◦) and 𝜃2 (60 ≤ 𝜃2 ≤ 160 ◦) evenly
spread across the listed ranges. 10 males (24 ± 4 years, 1.79 ±
0.08 m, 78.2 ± 7.6 kg) and 10 females (22 ± 7 years, 1.63 ±
0.06 m, 59.6 ± 8.2 kg) participated in the study. Participants were
instructed to use their Maximum Voluntary Contraction (MVC)
for 5 seconds. Five passive tests were also done in elevation at
5 °/s, measuring the RoM of 𝜃2 for 𝜃1 at 0, 30, 60, 90, and
120 ◦. 20 concentric and 20 eccentric isokinetic combinations of
̇𝜃1 and ̇𝜃2 were measured using the MVC of the 20 participants

(−45 ≤ ̇𝜃1 ≤ 45 °/s, −45 ≤ ̇𝜃2 ≤ 45 °/s).
Isometric torque was measured in the plane of elevation for 25

different combinations of 𝜃1 (0 ≤ 𝜃1 ≤ 120 ◦) and 𝜃2 (60 ≤ 𝜃2 ≤
160 ◦). 7 male (26 ± 3 years, 1.80 ± 0.07 m, 79.0 ± 7.7 kg) and 6
female (24 ± 6 years, 1.63 ± 0.07 m, 59.5 ± 6.3 kg) subjects who

Journal of Biomechanical Engineering PREPRINT FOR REVIEW / 3



Pre
pri

nt
participated in the first study returned to participate. Five passive
tests were done for plane of elevation torques at 5 °/s, measuring
the RoM of 𝜃1 for 𝜃2 at 60, 85, 110, 135, and 160 ◦. Figure 2
shows an example of the Biodex setup for the two isometric and
the isokinetic tests.

2.4 Data Processing. A 6 Hz low-pass 2nd-order Butterworth
filter (6 Hz corner and 36 Hz cut-off frequency) was applied to
all torque data to remove noise [38] according to our slow move-
ments and inherent noise level of the device. The isometric torques
were determined by selecting the highest average torque over 0.5
second intervals, as done in [39] and were normalized by an indi-
vidual’s maximum isometric torque. The isokinetic torques were
found by regressing the maximum torque values against the aver-
age torque values to create a maximal dataset as described in [23].
For Model 1 and Model 2 without velocity coupling, the isokinetic
torques were normalized by the maximum isometric torque. For
Model 3 with velocity coupling, the components of the maximum
total torque cannot be divided by the maximum isometric torque
as the muscle activation may not be maximum for the combination
of ̇𝜃1 and ̇𝜃2, resulting in an unfair comparison between torques
gathered purely in ̇𝜃1 or ̇𝜃2.The torque for an isokinetic test can be
described as Equation (11).

𝜏(𝜔) = 𝜏𝑎𝑐𝑡 · 𝜏𝜔 (𝜔) (11)

The measured torque, 𝜏(𝜔), can be divided by the activation
torque, 𝜏𝑎𝑐𝑡 , to give the torque-velocity scaling function, 𝜏𝜔 (𝜔),
essentially normalizing the component isokinetic torques by the
activation and the maximum isometric torque, allowing for a fair
comparison.

The passive torques were then analysed by removing the contri-
bution of gravitational torques. No normalization was required as
the passive torques are not dependent on strength but instead on
the passive structures in the shoulder.

2.5 Model Parameter Identification. In total, 32 best curves
and surface fits were found for the torque-angle scaling, torque-
velocity scaling, and passive functions for the three coupling mod-
els. A linear least squares method was used to find the polynomial
curve or surface that best fit the experimental data for a given
function. For the torque-velocity scaling functions, an additional
constraint was added to ensure that the curves and surfaces had
an intercept at one when the angular velocity was equal to zero,
as done in previous torque-velocity scaling models [18,19,23]. An
example of the constraint can be seen in Figure 3, where the con-
centric and eccentric curves meet at the intercept of 1. To deter-
mine the best fitting curve or surface, k-fold cross-validation with
a k-value of 10 was used. The Root Mean Square Percent Error
(RMSPE) of the 10-folds was determined with the best fit being
the curve or surface with the lowest error. An example of a surface
fit for the torque-angle scaling function can be seen in Figure 4.

2.6 Model Validation. The models were validated using
isokinetic testing data where the angle and velocity dependencies
were maintained. The isokinetic test was conducted at 5 °/s at an
angle corresponding to an 𝛼 of 60 ◦. The best curve and surface fits
were found for the 2-DoFs MTG models; the shoulder joint angles
(𝜃1, 𝜃2) and the shoulder joint angular velocities ( ̇𝜃1, ̇𝜃2) from the
resulting experimental motion were the inputs of the models. Par-
ticipant data was averaged for the isokinetic motion and the average
experimental torque was compared against the model results.

3 Results
3.1 Model Parameter Identification. The curve and surface

fit results for the three models are displayed in Table 1. The passive
torques were normalized by the absolute maximum passive torque
for comparison. The absolute maximum passive torques for 𝜏1 and
𝜏2 were 8.2 Nm and 4.3 Nm, respectively.

-50 -40 -30 -20 -10 0 10 20 30 40 50

0.75

0.8

0.85

0.9

0.95

1

1.05

Concentric Data

2-Curve Concentric

Eccentric Data

1-Curve Eccentric

Fig. 3 Example of a piecewise torque-velocity scaling func-
tion curve fit with an intercept constraint at 1 when θ̇2 = 0.
The solid line in red represents a second-degree curve fit to
the concentric data. The dashed red line represents the lin-
ear fit for the eccentric data.

Fig. 4 Example of a surface fit used for the torque-angle
scaling function. A 3, 2-Surface was found to be the best fit
for the experimental data.

For the torque-angle scaling function, a 3-Curve is the best fit
for 𝜏𝜃1 (𝜃1) and a 2-Curve for 𝜏𝜃2 (𝜃2). The cubic and quadratic
relationship is also reflected in 𝜏𝜃1 (𝜃1, 𝜃2) and 𝜏𝜃2 (𝜃1, 𝜃2). The
curve fits result in lower RMSPEs compared to the surface fits for
the respective torque-angle scaling functions.

For the torque-velocity scaling functions, there is more variabil-
ity in fit types. For 𝜏𝜔1 ( ̇𝜃1), a cubic relationship was determined
for both concentric and eccentric motions. For 𝜏𝜔1 ( ̇𝜃1, ̇𝜃2), less of
a trend is displayed, with a 1, 2-Surface being the best fit for con-
centric motions and a 2, 1-Surface for eccentric. For 𝜏𝜔2 ( ̇𝜃1, ̇𝜃2),
a 3, 2-Surface and a 3, 1-Surface were the best for concentric
and eccentric motions, respectively. A higher RMSPE curves and
surfaces fit to eccentric elevation data was observed compared to
concentric elevation data. A higher RMSPE is also observed for
the coupled surfaces compared to the respective curve fits.

For the passive torque functions, large RMSPEs are observed
compared to the torque-angle and torque-velocity scaling func-
tions. As the passive torques are low in the RoM studied, small
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Fig. 5 Torque results for (a) Model 1, (b) Model 2, and (c) Model 3 compared against experimental torque data averaged
across all participants. The standard deviation of the experimental data is also depicted.

Table 1 MTG functions fitting results and accuracy.

Function Fit Type RMSPE (%)

𝜏𝜃1 (𝜃1) 3-Curve 14.0
𝜏𝜃2 (𝜃2) 2-Curve 9.3
𝜏𝑝1 (𝜃1) 3-Curve 36.4
𝜏𝑝2 (𝜃2) 3-Curve 47.9
𝜏𝜔1 ( ̇𝜃1) Concentric 3-Curve 23.3
𝜏𝜔1 ( ̇𝜃1) Eccentric 3-Curve 20.9
𝜏𝜔2 ( ̇𝜃2) Concentric 2-Curve 10.5
𝜏𝜔2 ( ̇𝜃2) Eccentric 1-Curve 17.5
𝜏𝜃1 (𝜃1, 𝜃2) 3, 2-Surface 14.7
𝜏𝜃2 (𝜃1, 𝜃2) 3, 2-Surface 10.3
𝜏𝑝1 (𝜃1, 𝜃2) 3, 2-Surface 38.7
𝜏𝑝2 (𝜃1, 𝜃2) 2, 3-Surface 50.6
𝜏𝜔1 ( ̇𝜃1, ̇𝜃2) Concentric 1, 2-Surface 28.9
𝜏𝜔1 ( ̇𝜃1, ̇𝜃2) Eccentric 2, 1-Surface 26.0
𝜏𝜔2 ( ̇𝜃1, ̇𝜃2) Concentric 3, 2-Surface 19.7
𝜏𝜔2 ( ̇𝜃1, ̇𝜃2) Eccentric 3, 1-Surface 26.1

Table 2 Model validation results for total torque.

Model RMSE (Nm) RMSPE (%)

Model 1 3.5 8.5
Model 2 3.8 9.0
Model 3 4.7 11.3

errors have a greater effect on the RMSPE compared to isometric
and isokinetic measurements. For 𝜏𝑝1 (𝜃1) and 𝜏𝑝2 (𝜃2), 3-Curves
were the best fit. For 𝜏𝑝1 (𝜃1, 𝜃2) a 3, 2-Surface was the best fit.
The cubic relationship results in an increase in passive torque to-
wards the extreme RoMs, similar to that of the double exponential
function commonly used for the passive scaling function.

3.2 Model validation. Table 2 presents the validation results
for total torque using the three different coupling methods. The
Root Mean Square Error (RMSE) and the RMSPE increased with
an increase in the coupling, with Model 3 resulting in the highest
error. The increased validation error with an increase in coupling is
consistent with the higher fitting errors observed in MTG functions
with coupling (Table 1). The average and standard deviation of the
experimental data for the torque predicted by the models have been
plotted to compare the errors in Figure 5.

In Figure 5 the first half of the motion is concentric, and the
second half is eccentric (resulting in negative torques). Model 1

shows the best estimation for concentric motion, with a slight over-
estimation of eccentric torques. Model 2 resulted in a slight un-
derestimation of the torque in concentric motion. Model 3 intro-
duces the coupled torque-velocity scaling functions (𝜏𝜔1 ( ̇𝜃1, ̇𝜃2)
and 𝜏𝜔2 ( ̇𝜃1, ̇𝜃2)). In concentric motions, the impact of the cou-
pled torque-velocity scaling function results in an underestimation
of the torque. However, in eccentric motions the coupled torque-
velocity scaling performs better than the uncoupled torque-velocity
scaling, reducing the overestimation of the eccentric torques.

4 Discussion
The study presented a new 2-DoFs MTG that models torque data

as a function of two angles and two angular velocities. Model 1,
which used single-DoF curves at discrete intervals with linear inter-
polation between, resulted in the lowest RMSE of 3.5 Nm (8.5%)
and is the recommended approach. The accuracy of Model 1
could be attributed to the single-DoF torque-angle and torque-
velocity scaling functions of Model 1 (𝜏𝜃1 (𝜃1), 𝜏𝜃2 (𝜃2), 𝜏𝜔1 ( ̇𝜃1),
and 𝜏𝜔1 ( ̇𝜃2)) resulting in the lower fitting errors compared to their
coupled counterparts (𝜏𝜃1 (𝜃1, 𝜃2), 𝜏𝜃2 (𝜃1, 𝜃2), 𝜏𝜔1 ( ̇𝜃1, ̇𝜃2), and
𝜏𝜔1 ( ̇𝜃1, ̇𝜃2)). As the test population has differences in shoulder
anatomy, it is difficult to accurately represent a group [40]. There-
fore, it is simpler to fit a population trend for the five experimental
measurements in a single-DoF compared to the 25 measurements
of the coupled 2-DoFs.

Comparing the curve and surface fitting results, eccentric curve
and surface fits had higher fitting errors compared to concentric fits
for elevation torques (𝜏2). Participants indicated that the eccentric
motions were more tiring, and it is likely that not all participants
used their MVC as discussed in the work of Yeadon et al [23].
This led to wide-spread eccentric torque data that did not increase
above the concentric torque, resulting in a lower torque compared
to previous model predictions [6,18,19]. The variation in eccen-
tric torques can also be observed in Fig 5, where the eccentric
torques have a larger standard deviation compared to the concen-
tric. Higher fitting errors were also more commonly observed in
the torque-velocity scaling fits compared to the torque-angle scal-
ing fits. The higher errors could be due to the intercept constraint
that was used to avoid discontinuity between concentric and eccen-
tric curves, along with the fact that participants found the isokinetic
testing more tiring compared to isometric testing. The passive
torque fitting errors were also significantly larger than the other
MTG functions. However, the passive torques are significantly
smaller than the active torques and therefore the model errors are
minimally affected by the passive torques.

A limitation of the study is the constraint imposed on the model’s
motions and speed, which have been limited to lifting and reaching
activities. Consequently, the model is not intended for high-speed
sporting applications. Another limitation is the sine and cosine
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activation relationship assumed in Equations (9) and (10). It is
possible that the activations calculated for the models do not ac-
curately represent the muscle activations of the population. It has
also previously been shown that there are differences in how women
and men activate their shoulder muscles under isometric loading,
with women typically showing a lower muscle activation in mus-
cles that act in the primary force direction and more activation in
other muscles [41]. Therefore, it would be beneficial to consider
different activation approaches, as well as sex-specific models in
the future.

Future work could enhance model validation by incorporating
additional experimental testing, and considering the impact of biar-
ticular muscles on the model. In future directions, consideration
may be given to incorporate statistical parametric mapping analy-
sis [42] as an alternative method for assessing differences between
experimental and simulated curves. The application of statistical
parametric mapping could offer insights into the nuanced variations
across multiple participants, providing a more comprehensive un-
derstanding of the model’s performance.

As demonstrated in the machine learning study [31], one poten-
tial and effective approach involves the use of surface electromyog-
raphy signals to create associations with the activation of biarticular
muscles. These correlations should be bidirectional, encompassing
both electromyography signals and muscle activation, as empha-
sized in related studies [4,43], with a specific focus on biarticular
muscles.

An alternative approach to mitigate over-fitting involves explor-
ing a weighting method during the fitting process, ensuring that
all data points are positioned beneath the curve. This method
enhances the model’s generalization by assigning appropriate sig-
nificance to each data point, thereby contributing to a more robust
and representative fit.

5 Conclusions
Work in the field of muscle modeling has led to the innovation

of MTGs, a model that reduces the complexity of muscle-force
models to a single torque at the joint, allowing for faster dynamic
simulations. However, there is a lack of MTG models that account
for coupling between 2-DoFs at a joint, leading to complexity in
modeling three-dimensional motion for complicated joints such as
the shoulder. This motivated the development of a multi-DoFs
MTG as a function of two angles and angular velocities at the
shoulder joint. The research was completed with the development
of a general 2-DoFs MTG model for the different degrees of cou-
pling for the first time, comparing the effect that coupling has on
the model accuracy.
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Abbreviations
DoF Degree of Freedom.
ISB International Society of Biomechanics.
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Nomenclature
𝑎 = time-varying muscle activation term for an arbitrary MTG
𝑎1 = muscle activation term for the plane of elevation
𝑎2 = muscle activation term for elevation

Greek Letters
𝛼 = the direction of the resultant torque (◦)
𝜃 = joint angle for an arbitrary single-DoF MTG (◦)
𝜃1 = angle describing the plane of elevation of the humerus relative to

the thorax (◦)
𝜃2 = angle describing elevation of the humerus relative to the thorax

(◦)
𝜃̇1 = angular velocity describing the rate of change of the plane of

elevation of the humerus relative to the thorax (°/s)
𝜃̇2 = angular velocity describing the rate of change of elevation of the

humerus relative to the thorax (°/s)
𝜏 = resultant torque in the direction of 𝛼 (Nm)
𝜏1 = torque responsible for shoulder plane of elevation in the direction

of 𝜃1 (Nm)
𝜏2 = torque responsible for shoulder elevation in the direction of 𝜃2

(Nm)
𝜏𝑎𝑐𝑡 = scalar activation torque of an MTG (Nm)
𝜏𝑚𝑎𝑥 = maximum allowed isometric torque for an MTG (Nm)

𝜏𝑝 = passive torque function of an MTG (Nm)
𝜏𝜃 = torque-angle scaling function of an MTG
𝜏𝜔 = torque-velocity scaling function of an MTG
𝜔 = joint angular velocity for an arbitrary single-DoF MTG (°/s)
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