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Volumetric Modeling
and Experimental Validation
of Normal Contact Dynamic
Forces
A volumetric contact dynamics model has been proposed for the purpose of generating
reliable and rapid simulations of contact dynamics. Forces and moments between bodies
in contact can be expressed in terms of the volume of interference between the unde-
formed geometries. This allows for the modeling of contact between complex geometries
and relatively large contact surfaces, while being computationally less expensive than fi-
nite element methods. However, the volumetric model requires experimental validation.
Models for simple geometries in contact have been developed for stationary and dynamic
contact, and an apparatus has been developed to experimentally validate these models.
This paper focuses on validation of the normal contact models. Measurements of forces
and displacements will be used to identify the parameters related to the normal force,
i.e., the volumetric stiffness and hysteretic damping factor for metallic surfaces. The ex-
perimental measurements are compared with simulated results to assess the validity of
the volumetric model. [DOI: 10.1115/1.4006836]

1 Introduction

The Mobile Servicing System (MSS), Canada’s main contribu-
tion to the International Space Station (ISS), consists of two
manipulators, the Space Station Remote Manipulator System
(SSRMS) and the Special Purpose Dextrous Manipulator
(SPDM). The MSS is used for assembly and maintenance of the
ISS [1]. Tele-operated space-based robotic operations require
careful task planning, verification, and training on the ground. The
complexity and risk of these operations means that accurate real-
time contact dynamics models are required for on-earth simulation
and astronaut training.

Many point contact models are unsuitable for situations involv-
ing complex or conforming contacts. More complex models, such
as finite element models, are far too computationally intensive for
real-time simulation. The Canadian Space Agency has applied
hardware-in-the-loop simulations (HLS) to determine contact dy-
namics; however, HLS can be expensive [2].

A volumetric contact model has been proposed for use in gener-
ating reliable simulations of space-based manipulator operations.
This model has been shown to be applicable to complex and con-
forming geometries and accounts for angular dynamics ignored by
many point contact models such as rolling resistance and spinning
friction torque. However, experimental validation of this model is
required.

This paper presents a series of experiments used to validate a
volumetric normal force model for hard metal-on-metal contact.
Common point-contact models and a volumetric contact dynamics
model are presented for comparison in Sec. 1. Section 2 describes
the quasi-static and dynamic experiments designed to validate the
volumetric model, along with the apparatus used to conduct them.
Results of these experiments are discussed in Sec. 3, followed by
conclusions in Sec. 4.

1.1 Point Contact Models. Contact is often modeled using
point-contact models—that is, the region of contact is assumed to
be very small relative to the geometries of the bodies, such that
contact may be assumed to be occurring at a single point. Gilardi
and Sharf [3] describe three common continuous (or compliant)
point contact dynamics models: spring-dashpot, the perfectly elas-
tic Hertz model [4], and the damped model of Hunt and Crossley
[5].

A common model used in relatively stiff contact for robot mod-
eling is the Kelvin-Voigt model, in which the contacting materials
are represented by a spring and dashpot in parallel [6]. The con-
tact model proposed by Hunt and Crossley is a normal force
model similar to spring-damper models, where the spring force is
based on Hertz theory for linear elastic solids, and the damping is
adjusted to avoid the limitations incurred by other models. The
Hertz model for contact force is the best known model for contact
between two spheres of isotropic material [7]. In order to use this
model, a number of assumptions must be made [8]. First, it must
be assumed that the contact patch is small relative to the geome-
tries of the bodies. This allows contact to be considered from a
single point, where the depth of penetration d can be measured.
Consequently, the surfaces must be nonconforming (i.e., not con-
cave relative to each other where they come into contact). Other-
wise, contact might occur at more than one location or be spread
out over a wide area. Finally, it is assumed that the bodies are ho-
mogenous isotropic, linearly elastic solids.

According to Hertz theory, the contact normal force is given by

fn ¼ kdn (1)

The generalized stiffness k is dependent on the shapes and mate-
rial properties of the surfaces in contact. For two spheres in con-
tact, n ¼ 3=2.

The Hertz theory formulation is applicable for spheres in con-
tact under static conditions. However, if pure Hertz theory were to
be applied for dynamic contact situations (ignoring friction), no
energy would be dissipated in the process of contact. Thus, some
damping is necessary [7].

Hunt and Crossley [5] proposed the following model for the
contact normal force:
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fn ¼ KðdÞ þ Bð _d; dÞ (2a)

¼ kdn þ ðkdnÞ _d (2b)

which is consistent with Hertzian theory for contacting spheres
under static conditions for n ¼ 3=2.

For low impact velocities and most linear elastic materials [9],
the coefficient of restitution e can be approximated for a limited
range of values by

e ¼ 1� a _di (3)

where a is an empirically determined value, and _di is the initial
impact speed. For hard contact materials, it can then be shown
[10] that

fn � kdn 1þ 3

2
a _d

� �
(4)

More recently, by considering the energy stored and dissipated
during contact, Flores et al. [11] showed that

fn ¼ kdn 1þ 8ð1� eÞ
5e

_d

_d
i

" #
(5)

Unlike Eq. (4), Eq. (5) is applicable to both hard and soft
materials.

The previous models are fast and efficient. Little effort is
required to compute the penetration depth and rate for simple geo-
metries, as well as the contact forces. In addition, the model is
continuous in velocities and accelerations, which aids numerical
integration and should not introduce discontinuous disturbances
for control. The static contact force in the models is based on
physical theory, yielding high fidelity for low-speed impact as
long as assumptions about the size and shape of the contact region
hold. Experimentally, the model has been shown to be more accu-
rate than the Kelvin-Voigt spring-damper model [12]. The normal
contact force can be combined with Coulomb or other models to
determine sliding friction forces [3].

For certain geometries, stiffness k can be determined from ma-
terial properties [8]. Gilardi and Sharf [3] note that the determina-
tion of contact parameters such as damping or coefficient of
restitution is highly dependent on the particular configuration and
geometry of contact. For some contact scenarios, parameters are
determined through tuning to match simulation and experimental
results, as with Stoianovici and Hurmuzlu [13].

The efficiency of point contact models make them useful for
modeling granular flows using the discrete element method, which
involve contact between many bodies. Vu-Quoc et al. developed
an elastoplastic normal force-displacement model by correcting a
Hertzian model to account for plastic deformation [14,15]. This
normal force model was successfully validated using drop tests
and compression tests on soybeans [16] and for columns of poly-
styrene particles [17].

However, not all contact scenarios involve relatively small con-
tact patches or simple, nonconforming geometries. In these cases,
other models are required to accurately simulate contact. In addi-
tion, point contact models ignore the rotational effects of contact.
A complete contact model would need to account for torques
derived from rolling resistance and spinning friction.

1.2 Volumetric Model. A flexible volumetric contact dy-
namics model has been proposed by Gonthier et al. [18]. This
model allows for more complex and conforming geometries
where point contact models may be inadequate because contact
surfaces are relatively large or where closed-form solutions from
elastic theory are not available. It can be shown that the model

also accounts for angular dynamics such as rolling resistance and
spinning friction torque.

For larger or conforming contact surfaces, a Winkler elastic
foundation model [8] has been used. The Winkler model assumes
a pressure distribution from one surface deforming as a “bed of
springs” to comply with the contacting surface. This model has
been adapted to contact dynamics. The forces and moments
between two bodies in contact can be expressed directly in terms
of the volume of interference V between the undeformed geome-
tries of the bodies.

This paper considers only the case for the volumetric model
where one of the two bodies is assumed to be flexible, while the
other is rigid, as depicted in Fig. 1. Gonthier [19] also demon-
strates a contact model where both bodies are assumed deforma-
ble, for which the equations governing contact forces are identical
to the one-body case.

Volumetric Properties. In the one deformable body contact
model depicted in Fig. 1, one of the bodies Bi is flexible, while
the other Bj is perfectly rigid. The contact surface S is assumed to
be a flat surface on Bj.

The volume of interference, that is, the volume Bi is com-
pressed by, is given by

V ¼
ð

S

dðsÞdS ¼
ð

V

dV (6)

where S is the contact surface, and dðsÞ is the depth of penetration
at point s on the contact surface, as depicted in Fig. 1. The vector
n is defined as unit vector normal to S.

The centroid of this volume is

pc ¼
1

V

ð
V

pdV (7)

where p is the position vector to a point in the volume.
The weighed surface centroid sc is given by

sc ¼
1

V

ð
S

sdðsÞdS (8)

Gonthier et al. demonstrate that the volumetric and surface cent-
roids are collinear along the unit vector n [18].

Another relevant property is the contact surface second moment
of area Js weighted by penetration depth,

Js ¼
ð

S

ððqs � qsÞI� qsqsÞdðsÞdS (9)

where qs is a vector from the centroid pc to the point s on the sur-
face. This can be approximated by the volume inertia tensor

Fig. 1 Volume of interference between two bodies in contact
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Js � Jv ¼
ð

V

ððqv � qvÞI� qvqvÞdV (10)

where qV is a vector from the centroid pc to the point p in the
volume.

Normal Force. In this model, the contact normal force is
related directly to the size of the volume of interference through a
volumetric stiffness kv, given in units of force per unit volume.
The normal force is given by [18]

fn ¼ kvVð1þ avcnÞn (11)

where a is a velocity-dependent hysteretic damping parameter and
vcn is the speed of the centroid in the normal direction n. (Speed
vcn is analogous to speed _d used in point contact models.) This
force acts normal to the contact surface, through the centroid of
the volume.

Note that Eq. (11) is very similar in form to Eq. (4) for the
point-based Hunt-Crossley model. Hysteretic behavior is depend-
ent on the speed of contact. For free collision, the parameter a can
be shown to depend on only the coefficient of restitution e and the
initial impact velocity vi

cn [2],

a ¼ d

evi
cn

(12)

where d is related to e by

1þ d=e

1� d
¼ edð1þ1=eÞ (13)

which can be approximated as

d � 1� e2 (14)

Roy and Carretero build on this volumetric normal force model
[20] by having the damping depend on the rate of change for the
volume dV=dt rather than the product of the normal speed of the
contact centroid Vvcn. However, this may cause discontinuities in
normal forces at impact if the geometries are conforming. In
Gonthier’s model, forces should always be continuous.

Rolling Resistance Torque. As motion in the normal direction
is damped through the normal contact force, there will also be re-
sistance to tangential rolling, as this rolling causes parts of the
contact surface to move in the normal direction. Gonthier et al.
[18] found that by integrating the contact pressure distribution
over the contact surface, the rolling resistance torque is

sr ¼ kvaJs � xt (15)

where xt is the component of the relative angular velocity
between the bodies tangent to the contact surface.

2 Experiments

The purpose of the experiments is to determine parameters for
the volumetric contact model and validate that model. Parameters
to be determined include a volumetric stiffness constant, a hyste-
retic damping factor, and friction parameters. Of interest for vali-
dation are the volume-normal force relationship, bristle-friction
model, spinning friction torque model, and the Contensou effect
[18]. The experiments have been divided into those pertaining to
the normal contact forces and those for the friction forces. In this
paper, only the normal force experiments are described.

For the contact normal force model, measurements of the dis-
placement and forces in the normal direction are required. Two
experiments are used to determine and validate both the volumet-
ric stiffness and damping parameters separately.

Two different contact payloads were designed. The first is
spherical on a flat plane, and the results from volumetric contact
simulation can be compared directly with those from Hertz theory
(where the plane is taken as a sphere of infinite radius). The sec-
ond is cylindrical, with a flat end forming one of the contact surfa-
ces with the opposing plane. This payload does not satisfy the
assumptions in Hertz theory of a small contact patch and noncon-
forming geometries, which allows testing of the volumetric model
in cases where Hertz theory does not apply.

In contrast to the complex geometries of space manipulator
payloads, the geometric pairs used in these experiments were rela-
tively simple. These primitive geometries facilitated straightfor-
ward control, measurement, and modeling of experiments, while
providing a contact scenario that could be compared directly to
classical point-based models. The choice of a flat cylindrical pay-
load provided a more distributed contact surface, which could not
be modeled with point-based models as easily, as would be the
case for many space manipulator contact scenarios.

2.1 Volumetric Stiffness. Starting from rest, with the pay-
load touching the contact surface and no forces between them, the
force driving the payload is gradually increased so that the force
sensors are loaded quasi-statically. The rate in displacement was
limited to 12 lm=s, pausing for one second at each programmed
position, such that the effect of damping was negligible. Without
the effects of damping for the quasi-static case of the volumetric
model, the magnitude of force in Eq. (11) becomes

FQS ¼ kvV (16)

The measured displacement was used to find the volume of inter-
ference so that a volumetric stiffness constant kv could be esti-
mated through a linear fit of force to volume measurements. In
order to estimate the value of the stiffness parameter, the follow-
ing cost function must be minimized for kv:

cvol ¼
X

k

Fk
meas � kvVðdkÞ

� �2
(17)

where Fk
meas are the sampled force measurements and VðdkÞ are

estimates of the volume of interference derived from position
measurements dk and dependent on the payload volume chosen.
However, the exact point of contact (d ¼ 0) is also unknown since
the experiment will begin with the payload and contact surface
separated. Thus, the point of contact p0 must also be estimated
from the raw position measurements pk,

dk ¼ pk � p0 (18)

giving a nonlinear optimization problem for minimizing cvol in
two parameters, kv and p0,

cvol ¼
X

k

Fk
meas � kvVðpk � p0Þ

� �2
(19)

For spherical payloads, results can also be compared with Hertz
theory. From Eq. (1) and n ¼ 3=2, a different cost function can be
determined,

cHertz ¼
X

k

Fk
meas � kðdkÞ3=2Þ

� �2

(20a)

¼
X

k

Fk
meas � kðpk � p0Þ

3=2Þ
� �2

(20b)

giving a least-squares minimization problem for k and p0.

2.2 Damping. Equation (12) shows that the hysteretic damp-
ing factor a in free collision depends on the initial normal velocity

Journal of Computational and Nonlinear Dynamics APRIL 2013, Vol. 8 / 021006-3

Downloaded 04 Feb 2013 to 129.97.172.106. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



at impact vi
cn and a coefficient of restitution e. With a known volu-

metric stiffness and measured displacements, velocities, and
forces, the damping factor and coefficient of restitution can be
estimated.

Many experiments for determining the coefficient of restitution
in free collision rely on drop testing. For the purposes of our
experiments, very low contact velocities of no more than a few
millimeters per second, as might be expected in complex robotic
space operations, are desired. In order for collisions to be limited
to such velocities, drop heights of less than a micron above the
contact surface would be required. It would be extremely difficult
to accurately position and measure such an experiment with any
reasonable precision.

In the case of these experiments, the payload is connected to an
actuator to regulate the speed of collision. Thus, the experiments
do not involve free collision, and the notion of a coefficient of res-
titution, either kinetic or kinematic, does not apply.

The payload is brought into contact with the force plate at dif-
ferent motor-driven velocities, and the subsequent forces and dis-
placements are measured. For each case, the damping factor a is
estimated. A relationship between a and vi

cn will be established,
but this relationship cannot be compared back with a coefficient
of restitution as with Gonthier [19].

To estimate the hysteretic damping parameter from measured
results, the forces measured during quasi-static experiments can
be compared with those measured when the payload is in motion.
The force under damping should be given by

Fdamped ¼ FQSð1þ avcnÞ (21)

where FQS is the estimated force with no damping from Eq. (16).
To estimate the value of the damping parameter, the following
cost function must be minimized:

cdamp ¼
X

k

Fk
meas � Fk

QSð1þ avk
cnÞ

� �2

(22)

where Fk
meas are the sampled force measurements, and Fk

QS are the
quasi-static force estimates from the position data, calculated
using Eq. (16). The speeds vk

cn are estimated using a first-order
central finite difference approximation of the position data,

vk
cn ¼

ddk

dt
� dkþ1 � dk�1

tkþ1 � tk�1
(23)

2.3 Apparatus. An apparatus has been developed to experi-
mentally validate the proposed volumetric models, as shown in
Fig. 2. The apparatus has two configurations, one for validating
the normal contact models and the other for the friction models.
The normal configuration uses a ball-screw linear actuator to drive
a rigidly mounted payload into a normal contact surface, which is
mounted to a force transducer with a configured resolution of 0.1
N. Payload position relative to the contact surface is measured
through a linear encoder, with a resolution of up to 1.22 nm.

The normal configuration with a cylindrical payload is depicted
in Fig. 3. A 316 stainless steel payload is rigidly clamped to the
linear actuator. Also rigidly attached to the actuator is a linear
encoder, which measures the position of the payload relative to a
glass reference grating. This reference is rigidly mounted to the
force sensor.

Contact Surfaces. Different deformable contact surfaces can be
mounted in front of the piezoelectric force sensor. Metal contact
surfaces were employed, an aluminum plate and a thicker AZ31
magnesium alloy. The aluminum (6061) plate was 25.4 mm thick
and polished to 1200 grit. The AZ31 magnesium alloy was 22 mm
thick and loaded perpendicular to the extruded direction. The

magnesium surface was polished to 1500 grit but quickly dulled
due to oxidation.

The magnesium alloy was determined to have a higher modulus
of elasticity in the extruded direction than the transverse direc-
tions, meaning the material is anisotropic. Experimental results
for point contact with this material may not follow Hertz law, as
the theory assumes isotropy [8].

These materials are more compliant than the payload, so it is
assumed that the majority of the deformation will take place in the
contact surface rather than the payload. Using Young’s Modulus
(listed in Table 1) for each material as a rough measure of relative
stiffness, it is estimated that the payload will account for approxi-
mately one-fourth of the compliance when applied to aluminum
and one-sixth with magnesium AZ31. However, we can still use
Eq. (11) for the normal force, since it retains the same form if
both bodies are deformable [19].

Payload Geometries. Both a spherical and a flat cylindrical
payload were employed.

The spherical payload has the advantage of being indifferent to
alignment due to its shape. Results from the validation can also be
compared with those of Hertz theory for sphere-on-plane contact.

Fig. 2 Mechanical apparatus for contact experiments, shown
in the normal configuration

Fig. 3 Normal force configuration of the apparatus

Table 1 Material Properties for Contact Surfaces and Payload

Material Modulus of Elasticity Poisson’s Ratio
E (GPa) �

AZ31 Magnesium 35–40 0.35
6061 Aluminum 69 0.33
316 stainless steel 200 0.27
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The Hertzian contact force is given by Eq. (1). A theoretical value
for Hertzian stiffness k can be determined by [8]

k ¼ 4

3
E�r1=2 (24)

where r is the radius of the sphere, which in this case was 9.52
mm. E� is defined by the elastic properties of the materials,

1

E�
¼ 1� �2

i

Ei

þ
1� �2

j

Ej

(25)

where Ei and Ej are the elastic moduli, and �i and �j are the Pois-
son’s ratios of the bodies, found in Table 1.

For the volumetric model, the volume of interference can also
be expressed in terms of depth of penetration d [21],

V ¼ p
3

d2ð3r � dÞ (26)

where r is the radius of the sphere.
For the second payload, a cylinder was selected because it pro-

vided a relatively large conforming contact surface that would
demonstrate the usefulness of the model in cases where point con-
tact could not be used. Also, because contact pressure is spread
over a larger surface area than with sphere-on-sphere or sphere-
on-plane, there is less risk of plastic deformation from a highly
concentrated point load. Finally, assuming the payload and the
contact surface are perfectly aligned, the volume of interference
between the cylinder and the plane can easily be expressed in
terms of the depth of penetration d,

V ¼ pr2d (27)

where r is the radius of the cylinder, which is 5 mm in this case.
Thus, the volume of interference and, consequently, the normal
force in the model have a linear relationship with the displace-
ment. In the quasi-static case,

fn ¼ kvpr2d (28)

While Hertz point contact models cannot be used for a flat cylin-
der in contact with a plane, other classical solutions exist. Sned-
don [22] determined the relation between force and displacement
for a rigid cylindrical punch on an elastic half-space,

fn ¼ 2rE�d (29)

where r is the radius of the cylindrical punch and E� is defined by
the elastic properties of the half space. In the case where the punch
is also compliant (as it is in the case of these experiments), we can
use Eq. (25) to find E� in terms of the properties of both bodies.

When Eq. (28) and Eq. (29) are compared, we note that both
models are linear in terms of d. From these equations, a theoretical
value for the volumetric stiffness can be determined,

kv ¼
2E�

pr
(30)

Experimental results can be compared with this theoretical value.
In this case, kv is dependent on the radius of the payload. This
suggests that volumetric stiffness may not be invariant with
respect to geometry but may have an inverse relationship with the
size of the contact patch.

3 Results and Discussion

Results for quasi-static experiments to measure volumetric
stiffness with spherical and cylindrical specimens, and dynamic

experiments to measure hysteretic damping with a spherical speci-
men are presented and discussed below.

3.1 Volumetric Stiffness

Spherical Payload. The spherical payload was applied to each
of the contact surfaces with up to 20 N of force. Using nonlinear
optimization of Eqs. (19) and (20), contact points and stiffness pa-
rameters were determined for both the volumetric and Hertzian
models, respectively. Stiffness values are presented in Table 2 and
measured values and model fits are shown in Figs. 4 and 5. Meas-
ured Hertzian contact stiffnesses were about 2=3 of theoretical
values determined using Eq. (24) for both contact surfaces. Note

Table 2 Hertzian and Volumetric Stiffnesses for Spherical
Payload

Material

Experimental
Hertzian

stiffness N
m1:5

� � Theoretical
Hertzian

stiffness N
m1:5

� � Volumetric
stiffness

N
m3

� �
Magnesium 3:02� 109 4:66� 109 3:82� 1013

Aluminum 4:79� 109 7:34� 109 7:59� 1013

Fig. 4 Quasi-static force versus displacement for spherical
contact on aluminum

Fig. 5 Quasi-static force versus displacement for spherical
contact on magnesium alloy
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that in the figures, the zero point along the horizontal axis does
not correspond to the point of contact but to the relative position
with respect to the initial position of the experiment. Contact
points are found by fitting the model to the data.

Both models provide good fits of the measured forces and dis-
placements. For the aluminum, the Hertzian model provides a
closer fit of the data compared with the volumetric model, while
for the magnesium, the volumetric model provides a closer fit.
However, it should be recalled that the magnesium alloy is aniso-
tropic, so the surface cannot be expected to behave according to
Hertz law as predicted earlier.

Figures 4 and 5 show that the estimated contact point is differ-
ent for the volumetric and Hertzian models. For the metals, this
difference is less than half a micron, which should not signifi-
cantly impact the simulation of larger robotic tasks. The expres-
sions for force have different orders with respect to displacement
around the point of contact for the models. Using “Big O” nota-
tion for the Hertzian model and volumetric models,

FHertz ¼ Oðd1:5Þ as d! 0 (31a)

Fvol ¼ Oðd2Þ as d! 0 (31b)

Thus, near the contact point, the estimated force will rise more
rapidly for the Hertzian model than for the volumetric model.
Since the force-displacement slope for the volumetric profile is
numerically shallower, the nonlinear optimization will tend to
estimate the contact point occurring for the volumetric model
slightly ahead of the Hertzian model.

The “actual” measured point of contact (based on where contact
forces are first detected) differs from points of contact estimated
from nonlinear optimization with the magnesium sample (Fig. 5).
There is an initial region of lower slope for the first few microns
in the force-displacement curve that is not accounted for in either
model.

The initial contact region for magnesium may be accounted for
by the asperities of the contact surface. The surface of the magne-
sium sample was smoothed to a reflective 1500 grit, or 3 lm, but
rapidly became dull. These surface asperities reduce the surface
area of the contact patch, leading to a much lower force-
displacement slope until these asperities have been flattened. In
addition, the elastic properties of the oxidized magnesium surface
is unknown and may account for this initial difference.

A small amount of hysteresis is observed in the measurements
for both materials, such that there is slightly less contact force
when the payload is being reversed as compared to when it is
applied. Since the payload is allowed to rest after reaching each
servo encoder count, this hysteresis cannot be attributed to
velocity-dependent damping forces in the model. The amount of
hysteresis will increase with higher maximum loads, suggesting
some small amount of permanent deformation is taking place. The
volumetric model does not account for velocity dependent plastic
deformation. For contact scenarios where deformation is more
pronounced, other approaches, such as the deformation model by
Vu Quoc et al. [14,15], may be required. In this case, the hystere-
sis is not significant.

Cylindrical Payload. Measurements using a cylindrical pay-
load are shown in Figs. 6 and 7. Attempts at a linear fit of the data
are shown as a solid line, labeled “Perpendicular fit.” The results do
not conform well to a linear fit, which the volumetric model would
call for. Classical elastic theory would also suggest a linear fit
between displacement and force for a perpendicular cylinder on a
plane. This suggests that there are non-negligible surface asperities
on the cylindrical payload or that the surfaces are misaligned. Addi-
tionally, estimated stiffness values (Table 3) are two orders of mag-
nitude less than theoretically predicted in Eq. (30).

Sources of misalignment in the experiment may include the
mounting of the payload to the ball screw (along the horizontal

axis in the plane of the contact surface) and the relative align-
ments of the ball screw and the force sensor (along the vertical
axis).

For the purpose of modeling the contact in the misaligned case,
it is assumed that angle from the normal c does not change signifi-
cantly over the loading and unloading sequence. Unfortunately,
no analytical solution exists in classical contact theory for the
relationship between force and displacement for an inclined cylin-
der on a plane with incomplete contact [23]. For the volumetric
model, the volume of a cylindrical wedge [21] can be used to esti-
mate volume of interference,

V ¼ dr3

3b
2 sin /� cos / 3/� 1

2
sin 2/

� �� 	
(32)

Fig. 6 Quasi-static force versus displacement for cylindrical
contact on aluminum

Fig. 7 Quasi-static force versus displacement for cylindrical
contact on magnesium alloy

Table 3 Volumetric Stiffnesses for the Cylindrical Payload

Material Experimental N
m3

� �
Theoretical N

m3

� �
Magnesium 7:88� 1010 5:17� 1012

Aluminum 1:24� 1011 8:82� 1012
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where b and / are

b ¼ d
tan c

and / ¼ cos�1 r � b

r

� �
(33)

In terms of parameter identification from the experimental results,
this volume model yields an additional angle misalignment term c
in addition to the volumetric stiffness and contact boundary
unknowns for the perpendicular case.

The stiffness parameter can be treated as known by substituting
those determined from Eq. (30) and shown in Table 3. Nonlinear
optimization was used to find the unknowns, and the resulting
displacement-force curves for the aluminum and magnesium
surfaces are shown as dashed lines in Figs. 6 and 7. The estimated
off-normal angles were determined to be 0.46 deg and 0.32 deg
for the magnesium and aluminum, respectively. In both cases, the
misalignment is less than half a degree.

Misalignments of this small a magnitude would be very difficult to
perceive visually. However, it is also possible that the payload has
non-negligible surface asperities. Concentrated loads from either mis-
alignment or non-negligible surface asperities, leading to plastic de-
formation, could also explain the small amount of hysteresis observed
in Figs. 6 and 7. As with the spherical specimen, this hysteresis is not
significant enough to require inclusion in the contact model.

3.2 Damping. As spherical payloads offered results in quasi-
static testing that agreed well with the model, spherical payloads
were employed for the dynamic tests. The hard metallic contact
surfaces were impacted at speeds ranging from 0.1 to 1 mm=s.
The motor controller was programmed to track the desired veloc-
ity using the signal from the internal encoder of the servo. The
servo encoder, when connected to the ball screw system, had a re-
solution of 1.25 lm per encoder count. With a frequency of 16
kHz, the LabVIEW controller was observed to maintain the
desired velocity to within about 0.1 mm=s due to the small num-
ber of servo encoder counts between time intervals.

Measurements of force and position commenced prior to con-
tact with a sampling frequency of 1 kHz. Accurate measurements
of the position of the payload came from the high resolution linear
encoder. Once contact had occurred, the motor would continue to
attempt to track the desired velocity. Due to the compliance in the
ball screw system and the apparatus, the actual velocity of the
payload itself relative to the contact surface slowed down even
though the speed of the motor was maintained.

At least one second of force and displacement measurements
were collected during a collision. A subset of the sampled data
was then selected for comparison with the model with the follow-
ing methodology. For each collision, the position contact where
contact first occurred was estimated from the force data. The pre-
processor then selects 0.1 s of data, beginning at a point two servo
encoder counts (2.5 lm) prior to contact. An example of such a
sample is shown in Fig. 8.

With the position data, the volume of interference can be deter-
mined allowing the contact force without damping effects to be
estimated for each sampled position. Experimental volumetric
stiffness values determined with the spherical payload are used.
These estimated force values in the case of Fig. 8 are shown as a
dashed line in the lower force graph. It is observed that these esti-
mates are lower than the sampled force values, indicating that
damping has occurred.

The final force modeled using position data, with an estimated
damping factor of 1:6� 104s=m, is shown in Fig. 8 as a solid line.
The line appears noisy due to the speed estimates. At very low
speeds, there is only a small number of encoder counts between
sample intervals. The effect of the error in speed estimates on the
magnitude of the estimated force is increased as the penetration
depth increases.

Measured Damping Factors. Measured values of the hysteretic
damping factor for the magnesium alloy and aluminum are shown

in Fig. 9. It is observed that the damping factor can be inversely
related to the initial impact velocity. A least-squares fit of an
inverse relation is shown in the figures as solid and dashed lines
for aluminum and magnesium, respectively.

As the payload is driven by the motor into the contact surface
and is not in “free collision,” the concept of a coefficient of resti-
tution does not apply. However, the inverse relationship between
the hysteretic damping factor a and the impact velocity observed
is similar to Eq. (12), as long as the coefficient of restitution e is
assumed to be constant with respect to vi

cn. This coefficient e was
found to be 0.134 for aluminum and 0.114 for magnesium.

3.3 Sources of Error. As discussed in the cylindrical pay-
load results, it is possible that the apparatus is not well aligned. In
the spherical payload case, this minor misalignment should have
negligible impact on results. However, in the case of the cylindri-
cal payload, even small misalignments may result in incomplete
contact over the course of the experiment.

Surface asperities are also a plausible cause for the nonlinearity
of the cylindrical measurements, since the surfaces have not been
smoothed to a mirror finish. Surface roughness has been found to
be a significant factor in the reduction of contact stiffness, both
theoretically and experimentally [24]. Polished, the payloads and
contact surfaces should have surface asperities no greater than a
few microns. Note that the magnesium dulled quickly after polish-
ing (as expected). It is not known what impact this oxidation had
on the properties of the magnesium.

Fig. 8 Force and displacement measurements for impact at
0.58 mm=s on magnesium alloy

Fig. 9 Estimated hysteretic damping factors plotted by impact
velocity
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The range of contact loads presented was limited by the experi-
mental apparatus. At higher loads, there is compliance in the plate
holding the encoder reference to the force sensor. Forces in the
quasi-static experiments were limited to 20 N so that deflection of
the position equipment was negligible. This limitation is a conse-
quence of the design of the apparatus and should be addressed for
future experiments.

The motor driving the linear actuator was a source of vibration
to the payload. Since damping is the result of vibrations dissipat-
ing away energy, the vibration of the motor may have had some
impact on the accuracy of the dynamic experiments. Further
investigation, including performing dynamic experiments with the
payload decoupled from the motor, is required.

4 Conclusions

A volumetric contact dynamics model based on the Winkler
elastic foundation model is presented for validation. Forces are
expressed in terms of the properties of the volume of interference
between the solid geometries of the bodies in contact.

A series of experiments and an apparatus have been presented
to validate the model of the normal contact force in static and
dynamic conditions and to identify volumetric stiffness and hyste-
retic damping factors. Experiments were performed using a spher-
ical payload on a planar surface in order to compare with more
commonly used Hertzian models and a cylindrical payload on a
planar surface in order to provide a relatively large contact surface
area and so that the relationship between volume of interference
and measured displacement should be linear according to the
model. Contact surfaces of magnesium alloy and aluminum were
used against stainless steel payloads.

Quasi-static experiments were used to determine and validate
Hertzian and volumetric stiffness. For spherical payload experi-
ments, Hertzian stiffnesses were about 2=3 of theoretical values,
suggesting the measurements performed with the apparatus were
reasonable. Volumetric stiffnesses were determined to be
3:82� 1013N=m3 and 7:59� 1013N=m3 for magnesium and alu-
minum, respectively. For the cylindrical payload, assuming per-
pendicular contact resulted in volumetric stiffness estimates
several orders of magnitude lower. Using stiffnesses determined
from spherical experiments, small misalignments in the apparatus
were estimated that corresponded well with measured results.

Damping experiments were also performed with the spherical
payload to measure velocity-dependent hysteretic damping. As
anticipated, contact forces increased with greater impact speed.
The hysteretic damping for the volumetric model was determined
to be inversely related to impact speed. For this constrained
motion where the payload is driven by the linear motor, the coeffi-
cient of restitution then remains constant.

Future efforts include improving the acceptable force range of
the experimental apparatus, better alignment of the payload, and
extending the apparatus for friction experiments.
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