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Abstract Forward dynamics golf swing simulations are im-
portant to gain insight into how a golfer should swing a
particular club and which design improvements should be
considered by golf club manufacturers. A new method of
optimizing a four degree-of-freedom (DoF) biomechanical
golfer model swinging a flexible shaft with a rigid club-
head was developed using a direct orthogonal collocation
approach. The kinematic and kinetic results of the simula-
tion confirm previous findings on optimal joint angle trajec-
tories, shaft deflection patterns, and joint torque profiles in
a golf swing. This optimization approach is a promising de-
velopment in biomechanics research, and future work will
implement this method in three-dimensional swing models
that have been shown to have higher robustness and fidelity.

Keywords Golf swing · Forward dynamics · Optimal
control · Direct collocation

1 Introduction

The human body can be described as a multibody system,
and multibody biomechanics is an evolved area of research
in sports engineering and rehabilitation, particularly in golf.
Golf was recently cited by National Allied Golf Associa-
tions to have an economic impact of over $19 billion per
year in Canada alone [1]. Research in improving golf club
design is of great interest to the industry, as well as improv-
ing biomechanical models of golf swings. By modeling the
golf swing, insights can be made into how the golfer should
swing a particular club and which improvements should be
considered in golf club design.
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Over the last 40 years, models of the golf swing have
been developed for use in inverse dynamic simulations, which
require input experimental data, and forward dynamic simu-
lations, which require the input of unoptimized or optimized
torques [2]. One of the first golf swing models produced to
gain insight into the biomechanics of the swing was the dou-
ble pendulum by Cochran and Stobbs [3], in which two links
represented the arms and the club. This study found that a
well-coordinated swing could be produced with a passive
wrist joint, as the club could be accelerated naturally by the
centrifugal force acting on its centre of gravity. The validity
of the double pendulum model was verified in a comprehen-
sive forward dynamic analysis by Jorgensen [4], in which
the Lagrangian method was used to generate the differen-
tial equations of motion. Jorgensen generated solutions to
these differential equations by inputing a constant torque at
the shoulder and wrist and also found that a passive or low
active torque produced a natural downswing with high club-
head velocity. This effect was also confirmed in a forward
dynamic study of the double pendulum model by Lampsa,
in which joint torque inputs were determined using Pontrya-
gin’s Maximum Principle [5]. This was one of the first golf
swing analysis studies to produce a realistic golf swing sim-
ulation using optimized joint torques.

More recently, golf swing models have evolved to in-
clude biomechanical elements and multiple degrees of free-
dom for use in forward dynamic simulations. Sprigings and
Neal developed a planar three segment model that included
a rotating torso [6], which was later expanded by Mackenzie
and Sprigings [7] into a three-dimensional four DOF model
that included forearm rotation. This model, along with other
recent forward dynamic golf simulations, used a parameter
identification method to optimize the active torque produced
by each joint in the golfer [7,8,9]. This was similar to recent
forward dynamic simulations in other sport movement ap-
plications, including tumbling, jumping, and tennis [10,11,
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12]. A continuous function represented by Eqn. 1 was used
to mimic the maximum isometric activation joint torque, in-
dependent of joint angle, throughout the swing [6]

Tpre(t) = Tm
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)
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where an optimal activation torque, Tpre(t), is produced by
selecting optimal activation time, ton, and deactivation time,
to f f , and is limited by the maximum torque producing ca-
pability, Tm, activation constant, tact, and deactivation con-
stant, tdeact, of muscles. This method of determining optimal
joint torques has shown to be effective in producing simi-
lar results to actual golf swings. However, it is an approx-
imation limited by the shape of Eqn. 1 and a single, maxi-
mized activation and deactivation of the joint. It is of inter-
est to compare this with the optimal control generated with-
out a restriction on the threshold and frequency of activation
that drives the joints in the model. As with any advanced
sport movement, the golf swing is susceptible to large per-
formance differences given small variation in activation tim-
ings. This proves to be one of the key factors in the diffi-
culty of this particular optimization problem, so it is neces-
sary to improve the optimization methods used in forward
dynamics golf swing simulations. An alternative optimiza-
tion approach that doesn’t require of optimization of single
activation parameters is a direct-collocation optimal control
method, in this case implemented by GPOPS-II [13].

Direct-collocation can be taken advantage of to generate
activation profiles for each torque generator that are not rep-
resented by a pre-defined function (ie. Eqn. 1). A previous
forward dynamic model for Paralympic curling utilized di-
rect collocation (in GPOPS-II) to obtain an efficient method
of optimizing a dynamic biomechanical joint torque model
[14]. In other biomechanical applications, direct collocation
was found to be a promising improvement over other opti-
mal control methods by increasing the computational effi-
ciency of dynamic optimization [15]. However, direct collo-
cation has yet to be used in a forward dynamic golf swing
simulation.

2 Methods

2.1 Golfer Biomechanical Model

In recent studies by Mackenzie and Sprigings [7] and Balz-
erson et al. [8], a four degree-of-freedom (DoF) golfer model
incorporating a two DoF flexible club was shown to provide
close comparison to experimental kinematics and kinetics of
a low handicap golfer. The same model template was used
in this study. A global inertial frame was defined as a basis
for the model’s motion, with representation for the down-
range target direction (X), the vertical (Y), and the perpen-
dicular to the golfers stance (Z, following the right-hand-
rule convention). The four DoF of the golfer were provided

by four revolute joints to allow torso rotation, transverse
flexion and adduction of the arm, supination and pronation
of the forearm (alternatively, could represent the internal-
external rotation of the shoulder), and ulnar and radial devi-
ation of the wrist. This model is represented in Figure 1. The
human biomechanical model included four rigid body seg-
ments representative of the golfer’s single upper arm, fore-
arm, hand, and torso. To provide a realistic golfer stance, the
torso segment was constrained to rotate about an axis 35◦ to
the vertical, in which a zero degree rotation was defined as
the approximate address position of the golfer. The swing
plane of the arm was rotated 70◦ from the horizontal [7],
which allowed the arm to sweep downwards towards the ball
during impact. A zero degree angle of the shoulder approx-
imated the address position of the golfer. The distance from
the proximal torso to the shoulder joint was set to 20 cm,
which provided a representation of the half shoulder width
of the golfer. The golfer’s elbow was fixed at 180◦, allow-
ing the golfer to swing with a straight arm, in which a 90◦

angle of the forearm represented the approximate address
position of the golfer. Furthermore, a zero degree angle ap-
proximated the neutral position of the wrist, which was the
assumed position at the top of the backswing.

Fig. 1 Four DOF golfer model relative to the inertial coordinate system
at the initial condition

De Leva obtained body segment inertial parameters and
joint centre end point locations for college-aged Caucasian
males and females using cadaver data [5]. De Leva’s body
segment data can be extrapolated based on subject height
and mass. In this study, an average subject height and mass
of 1.74 m and 73.0 kg were used for scaling of the body seg-
ment parameters. The resulting parameters for each segment
used in this model are displayed in Tab. 1, and are similar to
those used by Balzerson et al. and Mackenzie and Sprigings.
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Table 1 Biomechanical parameters for the golfer taken from De Leva’s body segment data [16]

Segment Length (m) Mass (kg) Center of mass (m) Inertiaxx (kgm2) Inertiayy (kgm2) Inertiazz (kgm2)

Upper Trunk 0.171 11.7 0.0510 0.0700 0.147 0.174
Mid Trunk 0.215 11.9 0.0970 0.0810 0.121 0.129
Lower Trunk 0.146 8.15 0.0890 0.0530 0.0600 0.0650
Upper Arm 0.282 1.98 0.163 0.00400 0.0110 0.0130
Forearm 0.269 1.18 0.123 0.00100 0.00600 0.00700
Hand 0.0860 0.450 0.0680 0.00100 0.00100 0.00100

2.2 Flexible Golf Club Model

The golf club consists of a flexible shaft rigidly fixed to
a clubhead at one end, and rigidly fixed to the center of
mass of the hand segment at the other. The flexible shaft
is modeled as complete second-order elastic rotation ma-
trix for a Rayleigh beam and is available as a component in
MapleSim. The dynamic equations are validated in the work
of Sandhu et al. and a detailed description can be found
in [17]. This flexible shaft model provides two DOF to the
clubhead, deflection in both transverse directions. The flex-
ible beam component is able to model the dynamics of the
shaft by allowing for the moment of inertias, cross-sectional
area, and Young’s modulus to be described as sixth-order
polynomial functions of shaft distance from the bottom of
the grip. These polynomials were obtained by fitting to man-
ufacturer provided data [18]. The clubhead is modeled as a
rigid body fixed to the end of the flexible beam. The inertial
properties for the clubhead are taken from those determined
by [18]. As suggested by [18], the Young’s modulus values
were scaled by a factor of 1.5 to obtain more realistic maxi-
mum deflections.

2.3 Optimal Control Design

2.3.1 Optimization Method

Direct collocation was used to solve the optimization prob-
lem of this study. In this method, the state and control are
approximated over subintervals by nth-degree polynomials.
The continuous-time optimal control problem is then tran-
scribed to a finite Nonlinear Programming Problem (NLP),
where the NLP can be solved using well-known software,
such as IPOPT. This solution is obtained iteratively through
mesh refinement methods, which both modify the number
of subintervals and nth-degree polynomials, until the objec-
tive function is minimized with satisfied constraints [19].
GPOPS-II is a general-purpose MATLAB software program
for optimal control problems that utilizes the Legendre-Gauss-
Radau (LGR) orthogonal direct collocation method. LGR
orthogonal collocation is defined by the method that collo-
cation points are chosen, where collocation points are se-
lected to be the roots of a Legendre polynomial [13]. The

IPOPT NLP software package was utilized to solve the re-
sulting large-scale NLPs with a relative tolerance of 10−10

and maximum iterations of 20000. Furthermore, mesh iter-
ations were continued until a mesh tolerance of 10−5 was
reached.

In this optimal control problem, the aim was to deter-
mine the optimal input function u∗(t) for the dynamic system

ẋ(t) = f [x∗(t), u∗(t), t], (2)

that was subject to the boundary conditions

φmin ≤ φ[x(t0), u(t0), t0, x(t f ), u(t f ), t f ] ≤ φmax (3)

where t0 represents the initial time, t f represents the final
time, and φ represents the generalized constraints to the states,
control, and time of the optimal control problem, and that
allowed an optimal state trajectory x∗(t) to minimize the ob-
jective function

J = Φ[x∗(t0), t0, x∗(t f ), t f )] +

∫ t f

t0
L[x∗(t), u∗(t), t]dt, (4)

Eqns. 2 to 4 form the foundation of the optimal control prob-
lem, and will be further defined for this application in the
follow subsections.

2.3.2 State and Control

MapleSim was used to obtain the differential dynamic equa-
tions described by Eqn. 2 in the form of an ordinary differen-
tial equation (ODE) for each state. To reduce the complexity
of the problem, the flexible beam component in MapleSim
only allow transverse deflection in the swing and droop plane
directions. The magnitude of torsion is minimal compared
to the bending deflection of the club, and therefore was not
included in this model [7]. The states were written as the
generalized coordinates of the biomechanical golfer model
and flexible shaft,

x(t) =
[
θB(t), θ̇B(t), vS (t), v̇S (t)

]
(5)

where the states θB(t), θ̇B(t) represent the angle and angu-
lar velocity of the torso, shoulder, forearm, and wrist, and
vS (t), v̇S (t) represents the bending coordinates of the shaft,
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with one in each transverse direction. The inputs to the sys-
tem to be optimized were generated torques at the torso,
shoulder, forearm, and wrist joint,

u(t) = [TT (t),TS (t),TF(t),TW (t)] . (6)

Generated torques were scaled by the Hill force-velocity
relationship of muscle, shown by Eqn. 7, and first imple-
mented in a golf swing model by [6],

TVc (t, ω) = Tpre(t)
ωmax − ω

ωmax + Γω
(7)

where the net active torque of each joint, TVc (t, ω), is pro-
duced by scaling the activation torque, Tpre(t), with the max-
imum possible joint angular velocity, ωmax, instantaneous
angular velocity, ω, and scaling constant, Γ.

2.3.3 Bounds

The boundary conditions that were used to describe Eqn.
3 are summarized in this subsection. The initial joint angles
used by [7] were selected for this study, which corresponded
to 0◦, -70◦, 0◦, and -35◦ for the torso, shoulder, arm, and
wrist, respectively. Although [7] used 0◦ for the initial wrist
angle, a relative angle of 35◦ was input between between the
club and hand in this study to provide a more realistic hand-
club grip [9]. Therefore, the initial wrist angle of -35◦ was
required to produce the same club-forearm angle as [7] of
0◦. Furthermore, generous bounds were placed on each joint
angle to represent their respective maximum and minimum
range of motion.

In addition, joint torques were bound by the constraints
used by Balzerson et al., which are listed in Tab. 2 [8]. The
optimizer selected optimal torque activations between 0 and
10% of the respective maximum value for each joint to rep-
resent an initial activation of muscle. An initial angular ve-
locity of -2 rad/s was input to the shoulder to simulate the
final moment of the backswing, which typically generates
an initial shaft deflection at the top of the downswing. To
ensure a realistic initial downswing position, the shoulder
angle was limited to reach -75◦. Additionally, rate of torque
development (RTD) is the phenomenon in which muscles
are limited by how quickly they can reach maximum force
[20]. To account for this, it was necessary to bound the lower
and upper limits of the rate of change of the shoulder and
wrist torque. In previous studies, mass normalized RTD was
found to vary proportionally with joint velocity in the range
of 40-130 Nm/kg/s in an upper limb torque interaction study
by Bastian et al. [20]. Taking the golfer’s mass used in this
simulation into account, the shoulder RTD was bounded at
±3200 Nm/s. Although wrist RTD values were not provided
in Bastians study or in other RTD literature, they were as-
sumed to be in proportion to the torque activation function
used by Mackenzie and Sprigings and Balzerson et al. and
are found in Tab. 2.

Table 2 Parameters for the torque generated at each joint

Joint Bound (Nm) ωmax (rad/s) Γ RTD (Nms-1)

Torso 200 30 3.0 4000
Shoulder 160 30 3.0 3200
Forearm 90 60 3.0 1800
Wrist 90 60 3.0 1800

2.3.4 Objective Function

The summarize the third component of the optimal control
problem, the objective function defined by Eqn. 4 is further
described here. Maximum ball carry has been used in pre-
vious optimization studies to obtain an optimal set of in-
put joint torque activations [8,18]. An impulse-momentum
model tuned for clubhead-ball impacts was used to calculate
ball launch conditions from clubhead kinematics, in which
a center face impact was assumed [8]. The ball launch con-
ditions were then input to a golf ball aerodynamic model for
calculating ball flight dynamics [21]. Bounds were placed on
the possible impact location between the center of the club-
face and golf ball to ensure a realistic ball strike. The model
was allowed to impact the ball between the ground (0 m) and
the maximum allowable tee height (0.1 m). Furthermore, the
ball could be struck between a position behind center stance
(-0.05 m) and 0.4m downrange, as well as between 0.8-2.0
m perpendicular to the address position, which provided a
realistic range of ball positions that could be obtained by the
golfer. To assist in minimizing ball carry deviation from cen-
ter, the maximum allowable side spin of the ball at launch
was ±300 rpm. To achieve maximum downrange ball carry,
the resulting objective function that was minimized, in the
form of Eqn. 4, can be displayed as

J =
1

X2 (8)

where X represents final downrange carry. With this simple
objective function containing only an end state variable, the
integral term in Eqn. 4 is not needed. As with [18], lateral
ball deviation was not minimized to allow freedom of the
model to choose optimal alignment.

3 Results and Discussion

3.1 Optimal States and Control

Figure 2 shows the resulting optimal activation torque and
velocity scaled torque produced by each joint as a result of
force-velocity scaling. To maximize the swing velocity, it
was expected that optimal control of each joint would at-
tempt to reach its maximum torque value at some point dur-
ing the swing. All joints activate at the onset of the swing to
transition from backswing to downswing. During the down-
swing, the torso and shoulder utilize their maximum rate of
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(a) Activation torque

(b) Velocity scaled input torque

Fig. 2 Optimal activation torque and scaled input torque generated by
the golfer model for the results of this study and Mackenzie and Sprig-
ings [7]

development to reach peak activation torque for the major-
ity of the swing. After the initial stabilizing torque during
the swing transition, the forearm activates later in the down-
swing, which is followed by activation of the wrist. This ac-
tivation pattern is the same as that observed in the results of
Mackenzie and Sprigings [7]. By utilizing the same torque-
velocity function as [7], a close comparison in net torque
profile can be observed between the results of [7] and this
study. This is particularly found in the torso and shoulder
during maximal activation. Furthermore, the optimizer of
this study chose very similar activation times for both the
forearm and wrist to that of [7]. The benefit of using the mul-
tiple activation method of this study was the ability to pro-
vide stabilization of the club during the transition of back-
swing to downswing.

In Figure 3, the profile of the shaft deflection is similar to
that of the Mackenzie and Sprigings model and experimen-
tal determined shaft deflection plots in the literature [4,9,7].
Mackenzie and Sprigings state that the lead/lag deflection
should reach its maximum value after the maximum toe-

Fig. 3 Displacement of the clubhead relative to the grip of the shaft in
the swing plane

up deflection, and that the shaft should have positive lead
at impact [7]. One deviation of the results of this study is
the neutral toe-up deflection at impact that was determined
by the optimizer, whereas a small toe-down deflection was
expected. This may have been the result of the relatively
steep shoulder plane that was selected for the biomechan-
ical model. The shoulder plane was selected to both match
the initial grip kinematics to experimental values, as well as
to maximize ball carry. It was found through simulation tri-
als that a small shoulder plane reduced error in initial grip
kinematics, and larger shoulder plane angles resulted in far-
ther ball carry distances. The benefit of the model of [9] is
the variable shoulder plane angle that results from a two-
DOF shoulder joint, which gives further control to the model
to identify an optimal and realistic downswing. To mini-
mize the oscillatory shaft vibration observed in the results
of Balzerson et al. [8], a shaft damping value of 6 × 10−3s
was used, which was identified in a previous study [9].

3.2 Objective Function Solutions

The optimal control was solved through minimization of the
performance index from Eqn. 8. The optimal control and
state trajectories produced a final clubhead speed of 46.7
m/s (105 mph) and ball speed of 68.6 m/s (153 mph) in a
downswing time of 0.243 s. The clubhead struck the ball at
an optimal ball height of 10 cm above the ground (the max-
imum allowable tee height), and 7.09 cm downrange of the
center of stance. These results align with expectations, as
the optimizer found an ideal clubhead delivery by maximiz-
ing tee height to increase the angle of attack and dynamic
loft, similar to results obtained in [9] in which the same tee
height was determined. Furthermore, most golfers tend to
place the ball further ahead in their stance when using the
driver to maximize ball carry, compared to a ball position
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closer to middle stance when using irons. The angle of at-
tack of the club was 3.44◦, and dynamic loft was 2.37◦. This
resulted in a vertical launch angle of 9.42◦ with a back spin
of 2250 rpm. The optimizer selected a horizontal launch an-
gle of 3.13◦ (push to the right) and draw spin of 300 rpm to
maximize the downrange carry of the ball. It is likely that the
biomechanical constraints of the model didn’t allow for the
optimal shot to follow a perfectly straight path. The smash
factor, which is known as the ratio of ball speed to clubhead
speed, was quantified by [9] to be 1.47 from simulation re-
sults, and 1.48 on the PGA Tour. Although [9] used a vol-
umetric contact model, the smash factor of this study was
found to be very similar at 1.46. The ball flight profile can
be observed in Fig. 4.

Fig. 4 Simulated ball flight

The swing kinematics were further validated by the com-
parison of grip position and orientation to the mean results
of 100 experimental golf swings presented by [18], which
is found in Fig. 5. The simulated kinematics show a similar
profile to the mean experimental results. Small discrepancies
can be seen in the initial simulated grip kinematics, which
are partly a result of the biomechanical constraints of the
model, as well as the small initial backswing of this study.

4 Conclusion

In summary, a golf swing model including a flexible club
and four degrees of biomechanical freedom was created in
MapleSim, and the resulting differential equations were ex-
ported to GPOPS-II for optimization of downrange ball carry.
Torque scaling by a muscle force-velocity relationship was
included in the dynamic model, and a limit on the rate of
torque development was implemented to impose realistic
biomechanical constraints on the optimal solution. Perform-
ing the optimization using direct collocation provided the

(a) Grip Position (Inertial)

(b) Grip Orientation (Euler Y-X-Z)

Fig. 5 Grip kinematics between this simulation and mean experimen-
tal results from [18]

opportunity to observe how an optimized torque profile would
compare to an optimized pre-defined single activation func-
tion. Direct orthogonal collocation allows for a more robust
optimization method, as it identifies a unique, continuous
time series input rather than identifying optimal timing pa-
rameters for a pre-defined input function. This optimization
method was applied to a golfer model with state-of-the-art
sub-models, including a 3-dimensional swing with biome-
chanical muscle scaling, use of validated flexible beam model,
aerodynamic ball flight, and impact model to maximize down-
range ball carry distance. This study produced optimized
torques with one to two primary activation sequences in each
joint, with the order of these activations occurring in similar
timing to those determined in literature. Overall, this study
found that the direct orthogonal collocation method can suc-
cessfully optimize a forward dynamic golf swing model.
Future work should aim to utilize this robust optimization
method to advance biomechanical golfer model research,
such as the model developed by [9].
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