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Abstract
Contact models of conforming surfaces are difficult to model accurately and efficiently. In multibody dynamics simula-
tions, contact models increase system equation complexity (often dramatically so) and can also introduce nonlinearities
and discontinuities into the system equations, decreasing the computational efficiency. This is particularly problem-
atic in predictive simulations, which may determine optimal performance by running a simulation thousands of times.
Contact modelling is even more complicated for large conforming surfaces, where the contact cannot be simplified to
a single point. An ideal contact model must find a balance between accuracy and computational efficiency. Volumet-
ric contact modelling is explored as a computationally efficient model conforming contacts. Volumetric contact has
been used previously in robotics and biomechanics contacts, but analytical contact equations have only been derived
for sphere-plane contact and 2D shapes. The model presented here improves on current work by deriving analytical
volumetric contact equations for ellipsoid-plane contact which can better represent the shape of some contact surfaces.
Equations for the volumetric geometrical values, normal force and damping, rolling resistance, tangential friction, and
spinning friction were derived. Friction is approximated using a continuous velocity-based model of friction, and the
possible limitations of this are described. This model may be useful for future use in modelling conforming contacts
that can be approximated as an ellipsoid contacting a plane.
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1. Introduction
Forward dynamics simulation, or predictive simulation, is a useful tool for the predicting the performance of a multi-
body system. A forward dynamics model can be used in an optimisation routine with a cost function that rewards
system performance in order to optimise the design of a system. Optimisation may require many simulations to con-
verge to a solution (often thousands), so a computationally efficient multibody model is needed, as well as an accurate
one.

One important aspect of some multibody models is contact modelling. Contact is difficult to model since contact forces
are often nonlinear, discontinuous, and result in stiff system equations. The motivation for this research was to develop
an efficient foot-ground contact model for gait simulation. The foot plantar surface is relatively large and compliant,
which requires a more complex model than a surface with a small contact area.

Detailed and accurate contact models that can account for complex and conforming contacts tend to be computationally
expensive (such as finite element models), making them poorly suited for optimisations [1], [2]. Simpler contact
models are often based on point-contact models [3]–[5] which are computationally efficient, but are only accurate for
small contact patches (not conforming surfaces). This issue can be partially alleviated by using a large number of
point contacts over the contact surface [6]–[9]. Alternatively, point contact models can be modified by using contact
geometry to determine the central or most important point of contact and apply the reaction forces at that point [8],
[10].

A balance is needed between a simplified model that will be computationally efficient, and an accurate model. Volu-
metric contact shows potential as an efficient continuous contact model for large contact surfaces.

2. Volumetric Contact
Volumetric contact was first proposed by Gonthier et al. for contact in robotic manipulators [11], [12]. Volumetric
contact is based on the elastic foundation model, which models the surface as a continuous collection of springs, as
shown in Figure 1.

Since volumetric contact considers the pressure developed across the whole contact surface, it is more accurate than
point contact models for complex and conforming geometries [13]. This also means that the pressure across the
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Figure 1: Volumetric contact surface interaction

contact surface can be calculated naturally with volumetric contact, unlike point contact models. The contact forces
can be found as an integral of the stresses developed across the contact area. If the contact geometry is represented as
simplified shapes—which is generally done for volumetric contact—the distributed forces over the contact surface can
be integrated to obtain analytical equations for the equivalent forces and torques at a resultant point. This results in a
set of equations much more efficient than discrete elastic foundation models, and not significantly more complex than
point contact models.

For volumetric contact, if the surface stiffness is linear, integration across the contact surface reveals that the normal
force is directly proportional to the volume of penetration of the two surfaces. Similarly, the centre of pressure (COP) is
at the centroid of this volume of penetration, and all other contact forces (rolling resistance and friction) can be related
to the volume of penetration and its properties [13], [14]. This allows for a simplified set of contact equations if the
contact volume and other geometric properties have analytical solutions.

To expand on previous work, analytical equations for ellipsoid-plane volumetric contact are derived in this paper.
Ellipsoids can match complex geometry more closely than spheres can, allowing for various geometries to be modelled
more accurately. Previously derived equations for sphere-plane contact [13], [15]–[17] will be used as a basis for
ellipsoid-plane contact, with reference to Gonthier’s detailed equations of volumetric contact [14].

3. Volumetric Contact Geometrical Values

3.1. Properties of sphere-plane contact
Contact equations for a generic sphere-plane contact were used as a basis for the ellipsoid-plane equations. Let a
unit sphere intersect a plane, where frame S is located at the centre of the sphere, ~cS is the centroid of the volume
of penetration, ~pS is a point on the plane, n̂S is the normal of the plane (for ground contact, this vector would point
upwards), and d is the depth of penetration (see Figure 2).
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Figure 2: Sphere plane diagram

For volumetric contact, some of the properties are based on the location of an imaginary contact plane (the normal force
is assumed to be perpendicular to this plane). For sphere-plane contact, the plane was treated as this contact plane, and
the same will be done for ellipsoid-plane contact.

It is useful to define several properties based on the depth of penetration d:

d = 1+~pS · n̂S (1)

For penetration distance d, the penetration volume can be defined as an integral of a revolution about the plane normal



axis. Let a temporary u-axis point along −n̂S from the centre of the sphere, such that r2 = 1− u2. The volume of
penetration is:

VS =

1∫
1−d

πr2du

=−1
3

πd2(d−3) (2)

Due to symmetry, the centroid must be along the u-axis.

~cS =−cSn̂S (3)

where

cS =
1

VS

1∫
1−d

πr2udu

=−3(d−2)2

4d−12
(4)

Another property of interest for volumetric contact is the weighted second moment of area (weighted by the depth of
penetration). This can also be thought of as the second moment of volume of the volume of penetration, with all the
volume compressed into a single plane parallel with the contact surface. The perpendicular axis theorem [18, p. 241]
applies this property: the second moment of volume about the plane normal axis must be equal to the sum of the second
moment of volume for two perpendicular axes lying in the plane. Due to symmetry of the sphere-plane penetration
volume, the second moment of volume for any axis lying in the plane must be equal and the second moment of volume
about the plane normal is twice that of an axis tangential to the plane.

The weighted second moment of area about the plane normal can be defined as:

Jn =

1∫
1−d

1
2

πr4du

=
1
30

d3
π(3d2−15d +20) (5)

As mentioned before, the weighted second moment of area about an axis tangential to the plane would be half this
amount:

Jt =
1
60

d3
π(3d2−15d +20) (6)

3.2. Sphere-ellipsoid conversion
To find the geometrical properties for an ellipsoid, assume that the sphere is stretched along all three axes to form an
ellipsoid: by a factor of a along the x-axis, b along the y-axis, and c along the z-axis (Figure 3).

To convert the geometrical values of a sphere-plane penetration volume to that of an ellipsoid-plane penetration volume,
let there be an equivalent, scaled frame E at the centre of the ellipsoid where

xE = axS (7)
yE = byS (8)
zE = czS (9)

Note that in Figure 3 n̂E is not the scaled version of n̂S, but the normal of the scaled plane.

Then the point on the plane in frame E can be related to the same point in frame S as:

~pE = S~pS (10)
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Figure 3: Sphere scaled to ellipsoid

where S defines a “stretch matrix” for the frame transformation:

S =

a 0 0
0 b 0
0 0 c

 (11)

Since the plane has been stretched, the direction of the plane normal vector would be changed by the inverse of the
stretch matrix:

n̂E =
S−1n̂S

|S−1n̂S|
(12)

Similarly,

n̂S =
Sn̂E

|Sn̂E |
(13)

3.3. Penetration volume and centroid
The penetration volume for the sphere has already been defined in Equation (4). The volume may also be defined as a
triple integral:

VS =
∫∫∫

V

dxSdySdzS (14)



where V represents the volume of penetration. For the ellipsoid:

VE =
∫∫∫

V

dxEdyEdzE

Substitute Equations (7)–(9) to relate the volume of penetration of an ellipsoid to that of a unit sphere (Equation (14)):

VE =
∫∫∫

V

adxSbdyScdzS

= abc
∫∫∫

V

dxSdySdzS

VE = abcVS (15)

Thus, the volume of penetration of an ellipsoid is the scaled volume of penetration of a sphere.

Similarly, the centroid of penetration can be related using the basic definition of the centroid of volume:

~cS =
1

VS


∫
V

xSdVS∫
V

ySdVS∫
V

zSdVS

 (16)

In frame E:

~cE =
1

VE


∫
V

xEdVE∫
V

yEdVE∫
V

zEdVE



=
1

abcVS


∫
V

axSabcdVS∫
V

bySabcdVS∫
V

czSabcdVS



=
1

VS


a
∫
V

xSdVS

b
∫
V

ySdVS

c
∫
V

zSdVS


~cE = S~cS (17)

3.4. Second moment of contact area
To determine the equivalent weighted second moment of area for an ellipse, first consider an arbitrary second moment
of volume matrix:

J =

Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz

 (18)

where:

Jxx =
∫∫∫

(y2 + z2)dV (19)

Jyy =
∫∫∫

(x2 + z2)dV (20)

Jzz =
∫∫∫

(x2 + y2)dV (21)

Jxy =−
∫∫∫

xydV (22)

Jxz =−
∫∫∫

xzdV (23)

Jyz =−
∫∫∫

yzdV (24)



A property that may be noted from Equations (19)–(21) is that:∫∫∫
x2dV =

1
2
(Jyy + Jzz− Jxx) (25)∫∫∫

y2dV =
1
2
(Jxx + Jzz− Jyy) (26)∫∫∫

z2dV =
1
2
(Jxx + Jyy− Jzz) (27)

If an object with second moment of volume J were to be stretched, by a factor of a along the x-axis, b along the y-axis,
and c along the z-axis then the new value for Jxx is:

J′xx =
∫∫∫

((by)2 +(cz)2)d(abcV )

= (abc)
(

b2
∫∫∫

y2dV + c2
∫∫∫

z2dV
)

using Equations (26) and (27) to relate back to the elements of J:

J′xx =
abc
2
(
b2(Jxx + Jzz− Jyy)+ c2(Jxx + Jyy− Jzz)

)
(28)

Similarly

J′yy =
abc
2
(
a2(Jyy + Jzz− Jxx)+ c2(Jxx + Jyy− Jzz)

)
(29)

J′zz =
abc
2
(
a2(Jyy + Jzz− Jxx)+b2(Jxx + Jzz− Jyy)

)
(30)

For the off-diagonal elements of J:

J′xy = a2b2cJxy (31)

J′xz = a2bc2Jxz (32)

J′yz = ab2c2Jyz (33)

Equations (28)–(33) can be used to define the transformation to the second moment of volume matrix when any volume
is scaled along all the x, y, and z-axes by factors of a, b, and c, respectively. Let this transformation be defined by the
function “scale” where

J′ = scale(J,a,b,c) (34)

In order to transform the weighted second moment of area of the sphere to that of the ellipsoid, two more coordinate
frames will be defined at the penetration volume centroid. Assume that there is a known coordinate frame for the plane
in contact with the ellipsoid in frame E (frame PE), where the z-axis is perpendicular to the plane (parallel with n̂E )
(see Figure 4).

Additionally, let there be a frame at the centroid of the sphere-plane volume, PS, with the z-axis parallel with n̂S and
the x-axis along the transformed~xPE axis:

x̂PS =
S−1x̂PE

|S−1x̂PE |
(35)

The y-axis is defined by the cross-product of the z- and x-axis.

With the coordinate frames fully defined, also let RPE be the rotation matrix from frame PE to E, and RPS from PS to
S.

The weighted second moment of area for a sphere-plane contact has been defined for the normal and tangential axes
(Equations (5) and (6)). This lines up with frame PS, and can be represented in a matrix:

JPS =

Jt 0 0
0 Jt 0
0 0 Jn

 (36)

In order to transform this from frame PS to PE, the equivalent will be found in frame S (by finding the rotation), then
scaled to frame E, and then rotated to frame PE:

JPE = RT
PE scale

(
RPS JPS RT

PS,a,b,c
)

RPE (37)
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Figure 4: Sphere and ellipsoid contact with vectors for frame at centroid

3.5. Relative velocity
The relative velocity of the two bodies at the penetration volume centroid is also of interest for volumetric contact. See
Figure 5 for frame and velocity definitions.
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Figure 5: Sphere and ellipsoid contact relative velocity

The relative velocity of the two bodies at the centroid is:

~vc =~vE +~ωE ×~cE − (~vP +~ωP×~cP) (38)

which can be divided into normal and tangential components based on the plane normal n̂E :

~vcn = (~vc · n̂E)n̂E (39)
~vct =~vc−~vcn (40)

The relative rotational velocity between the two bodies is:

~ωc = ~ωE −~ωP (41)

with components:

~ωcn = (~ωc · n̂E)n̂E (42)
~ωct = ~ωc−~ωcn (43)

3.6. Equation manipulation
The equations for the geometrical values of volumetric contact were expanded and simplified by using symbolic com-
puting software Maple (2016. Maplesoft, Waterloo, ON, Canada). Due to the length and complexity of the equations,
they will not be given here.



It was noted that the equations for the ellipsoid-plane model were significantly more complex than the sphere-plane
contact model on which it was based. In the authors’ opinion, it is likely that the equations for more complex shapes,
especially those with less symmetry, will be even more complex or infeasible to determine analytically.

4. Contact Forces and Moments

4.1. Normal force
From Gonthier’s derivations [14], the normal force for volumetric contact is:

~Fn = kVV (1+aV |~vcn|) n̂E (44)

where kV is the volumetric stiffness and aV is the damping coefficient. The other values (volume of penetration V and
relative normal velocity~vcn) were defined or derived in Section 3.

4.2. Rolling resistance moment
Rolling resistance for volumetric contact is given as [14]:

~τr = kV aV J~ωct (45)

where J is the weighted second moment of area (JPE in Section 3) and ~ωct is the relative tangential angular velocity.

4.3. Tangential friction force
Gonthier approximated tangential friction as follows [14]:

~Ft = Fnµ~vct (46)

where µ is a coefficient of friction, Fn the magnitude of the normal force, and~vct the tangential relative velocity at the
centroid.

To obtain a friction model that more closely matched dry friction, a continuous velocity-based model was used [19].
Incorporating that friction equation into Equation (46) resulted in the following model:

~Ft = Fn µ(|~vct |)
~vct

|~vct |
(47)

where

µ(v) = µd tanh
(

4
v
vt

)
+(µs−µd)

v
vt(

1
4

(
v
vt

)2
+ 3

4

)2 (48)

where µd is the dynamic coefficient of friction, µs the static coefficient of friction, and vt the transition velocity.

4.4. Spinning friction moment
Gonthier’s approximation for spinning friction is:

~τs = µ
Fn

V
J~ωcn (49)

Similar to tangential friction, this was adapted using the same friction model:

~τs =
Fn

V
µ(|~ωcn|)J

~ωcn

|~ωcn|
(50)

where

µ(ω) = µd tanh
(

4
ω

ωt

)
+(µs−µd)

ω

ωt(
1
4

(
ω

ωt

)2
+ 3

4

)2 (51)

where ωt is the transition angular velocity.



4.5. Accuracy of friction equations
Note that these friction equations are an adaptation of an averaged integral. Due to simplifications, this friction model
may not be accurate in all cases, such as when contact has a mixture of sticking and slipping or when a large amount
of spinning is present. Also, the model does not have exact stiction (since it uses a velocity-based friction model) and
does not capture the Contensou effect (since the tangential friction and spinning friction equations are decoupled).

The model should be a good approximation for foot-ground contact (the motivation behind this study) since it has a
relatively short contact time, low surface velocities, and little spinning. These simplifications may be a concern in other
applications where more spinning and slipping is present, especially if the value of friction is of interest.

5. Conclusion
Analytical equations for volumetric contact between an ellipsoid and a plane were derived and presented, based on the
equations for sphere-plane contact.

The friction model was adjusted from Gonthier’s proposed equations to match more closely with Coulomb friction. In
order to keep the equations analytical, the friction model was an approximation that cannot capture all effects, such as
perfect sticking or the Contensou effect.

These equations may be useful for modelling conforming contacts, especially contacts with geometry similar to an
ellipsoid.
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