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RESEARCHERS AT THE UNIVERSITY OF WATERLOO 
are strategically combining artificial intelligence 
(AI) methods with dynamics and model-based 
control approaches, to solve real-world prob-
lems that are too difficult or computationally in-
tensive to tackle with either AI or conventional 
methods on their own. Our goal is to combine 
the best features of machine learning and mod-
el-based control theories, in contrast to comput-
er scientists that are seeking purely AI solutions 
to dynamics and control problems. This article 
presents our recent work towards this goal, with 
an emphasis on two very active research applica-
tions: Autonomous Cars and Biomechatronics. 

Autonomous Cars
    To engage the CSME reader, we start with 
our autonomous car, the Autonomoose (Fig-
ure 1). From rolling dyno and track testing at 
Waterloo, we developed a physics-based model 
of the vehicle and tires. However, the details of 
the powertrain control were proprietary and 
unknown to us. Data collection from the on-
board CAN bus allowed us to train a double-lay-
er perceptron neural network representation 
of the powertrain, which was easily integrated 
with the vehicle and tire models using symbol-
ic computing. By combining the physics-based 
and AI-based models into a single hybrid rep-
resentation, we could create a model-predictive 
controller (MPC) for longitudinal speed that 
was both accurate and computationally efficient; 
further speedup was obtained by differentiating 
the symbolic model to obtain exact expressions 
for the gradients needed by the optimizer1.  The 
MPC was deployed on the Autonomoose as a 
ROS (Robot Operating System) node, and pre-
liminary track testing has demonstrated the im-
proved performance of this hybrid controller in 
comparison to previous PI-based approaches. 

TRACK TESTING WITH THE AUTONOMOOSE
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Integration of Machine Learning 
with Dynamics and Control: From 
Autonomous Cars to Biomechatronics

	 A challenging control task for automated 
driving is lane merging. Previous research uti-
lized rule-based or optimal control approach-
es to solve the merging problem2, but there is 
an increasing interest in using learning-based 
methods to train an automated merging policy3, 
partly due to the super-human intelligence dis-
played by deep reinforcement learning (DRL) in 
playing board games4. DRL algorithms use deep 
(multi-layer) neural nets as the policy repre-
sentation and, once trained, do not require the 
computing power of model-predictive control5.  
In our research, we examined decentralized de-
cision making and control for on-ramp merging 
using DRL. The goal was to merge autonomous-
ly from an on-ramp to a highway while avoiding 

stops and collisions. The on-ramp automated 
vehicle obtained the states of other vehicles with 
its own sensors; there was no centralized control 
from roadside units. We used the states of the 
automated (merging) and highway vehicles as 
the input to the DRL training framework, and 
the acceleration command for the automated ve-
hicle as the output. After training convergence, 
the learned policy enabled the automated vehi-
cle to decelerate to merge behind (or accelerate 
to merge ahead) of a highway vehicle, much like 
human driving. We tested the learned policy 
with 16,975 merging episodes and observed 0 
stops and only 1 collision, which is better perfor-
mance for highway merging than that achieved 
by humans6.

Biomechatronics
    The strong performance of reinforcement 
learning in the previous project motivated us to 
use DRL in our end-effector-based stroke reha-
bilitation robot, for which we have developed a 
model-predictive controller. For effective reha-
bilitation, the weights of the controller should 
be tuned for each individual patient. Manually 
tuning for different patients is time-consuming 
and will not lead to the best performance. In-
spired by7, we are designing an adaptive control-
ler with a DRL-based automatic tuner. Our goal 
is to develop a subject-specific controller, using 
measurements of the position and force at the 
robot end-effector, which will adapt to different 
patient movement and strength characteristics. 

The rehabilitation robot measurement data 
can be augmented with the motion of the user.  
Currently, this information is extracted from 
markers or wearable technologies that are cum-
bersome and have high setup time. This is the 
motivation for a related project that is using 
deep convolutional neural networks (CNNs) 
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FIG. 2: POSE ACTIVATIONS BEFORE AND AFTER TRAINING THE POSE ESTIMATION LAYERS FOR HUMAN ACTION RECOGNITION.

to simultaneously recognize actions and per-
form markerless tracking of human motion8. 
In this project, a custom CNN architecture was 
designed to circumvent some of the challeng-
es associated with training the complex neural 
network architectures commonly used for ac-
tion recognition by exploiting the spatial infor-
mation in pre-trained human pose estimation 
layers. More specifically, the generated pose 
data is re-projected using a stack of 3D convo-
lutions in a seamless network architecture that 
integrates human pose with action recognition. 
The advantage of this framework is that action 
predictions are based on pose information rath-
er than appearance, which is advantageous in 
single-environment applications where the vari-
ation in human movement is critical.  On Multi-
modal Human Action Dataset (UTD-MHAD)9, 
a 27-class multi-modal action recognition data-
set, the proposed method − requiring only an 
RGB camera − outperformed several methods 
using richer data streams from depth cameras 
and inertial sensors. Interestingly, it was found 
that the spatial activations produced by the pose 
layers changed after training the model for ac-
tion recognition.  Figure 2 demonstrates that the 
activations for the joints that contributed most 
to the action, such as the wrists and ankles, were 
greatly accentuated after end-to-end training.  
Conversely, the non-moving joints such as the 
knees and hips were attenuated. This interesting 
phenomenon can be leveraged to gain new in-
sights into discovering the key defining charac-
teristics for specific human actions.

Vision-based artificial intelligence has also 
advanced our exoskeleton rehabilitation robot-
ics research.  While many robotic vision applica-
tions have focused on autonomous navigation, 
recent research has considered energy savings 
from environment sensing. For instance, auton-
omous and connected vehicles use future envi-
ronment information to achieve energy-efficient 
driving through optimal power management.  
Environment recognition can likewise improve 
the energy-efficient control of lower-limb bio-
mechatronic devices (e.g., exoskeletons and 
prostheses) that assist seniors and rehabilitation 
patients with walking10. The implementation 
of such energy-efficient controllers, however, 
remains fundamentally contingent upon their 
ability to accurately predict oncoming environ-
ments. Therefore, our research has focused on 
developing an accurate environment recogni-
tion system with robotic vision and deep learn-

ing (Figure 3)11. Using a wearable RGB camera, 
approximately 2 million images were collected 
while walking through unknown outdoor and 
indoor environments; the labelled images were 
uploaded to IEEE DataPort. A 10-layer deep 
CNN was developed and trained using five-fold 
cross-validation to automatically recognize three 
different oncoming environments: level-ground, 
incline staircases, and decline staircases. The 
environment recognition system achieved 95% 
overall image classification accuracy. Extending 
these preliminary findings, our next-generation 
system focuses on 1) improving image classifica-
tion accuracy by using larger and more diverse 
training datasets, and 2) minimizing onboard 
computational and memory storage require-
ments using efficient deep CNNs designed for 
mobile and embedded vision applications. By 
developing more accurate and efficient predic-
tion of future walking environments, we can 
achieve more energy-efficient control of robotic 
lower-limb exoskeletons and prostheses. 
Conclusion

   We are currently witnessing an explosion 
of research into the application of artificial intel-
ligence to engineering problems.  In the Motion 
Research Group at the University of Waterloo, 
we are combining AI tools with dynamic mod-
eling and control theories. This hybrid approach 
has increased the efficiency, accuracy, and re-
al-time practicality of our engineering solutions, 
and fostered exciting new projects in the fields of 
Autonomous Cars and Biomechatronics.  We are 
optimistic that the rapidly-evolving progress in 
deep learning will further advance the frontiers 
of dynamics and control of future engineering 
systems. – A. Hashemi, Y. Lin, W. McNally, B. 
Laschowski, B. Hosking, A. Wong, 
and J. McPhee
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FIG. 3: SCHEMATIC OF THE 
ENVIRONMENT RECOGNITION SYSTEM 
INCLUDING DEEP CONVOLUTIONAL 
NEURAL NETWORK.


