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Abstract Human gait analysis is a complex problem in biomechanics because of highly nonlinear 

human motion equations, muscle dynamics, and foot-ground contact. 

Despite a large number of studies in human gait analysis, predictive human gait simulation is still 

challenging researchers to increase the accuracy and computational efficiency for evaluative studies 

(e.g., model-based assistive device controllers, surgical intervention planning, athletic training, and 

prosthesis and orthosis design). 

To assist researchers in this area, this review article classifies recent predictive simulation methods 

for human gait analysis according to three categories: 1) the human models used (i.e., skeletal, 

musculoskeletal and neuromusculoskeletal models), 2) problem formulation, and 3) simulation 

solvers. 

Human dynamic models are classified based on whether muscle activation and/or contraction 

dynamics or joint torques (instead of muscle dynamics) are employed in the analysis. Different 

formulations use integration and/or differentiation or implicit-declaration of the dynamic equations. 

A variety of simulation solvers (i.e., semi- and fully-predictive simulation methods) are studied. 

Finally, the pros and cons of the different formulations and simulation solvers are discussed. 

Keywords Human Locomotion. Gait Analysis. Predictive Simulation Methods. 

Neuromusculoskeletal Models. Skeletal models. 

1. Introduction 

Human motion and joint moment/muscle force prediction/estimation are two of the 

most challenging research topics in biomechanics. Human motion prediction can be very 

helpful in different areas such as surgical intervention planning, prosthesis and orthosis 

design, and athletic training. We will motivate our work through the following examples. 

Example 1: in total hip replacement surgeries, the prevalence of dislocations following 

surgery has motivated researchers to implement pre-surgical planning for positioning of 

the acetabular cup in a safe zone to decrease the likelihood of dislocation [1–3]. This can 
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be done using available safe zone studies  [3–5], which have been found lacking or 

implementing computer models and predictive dynamic simulations [2, 6, 7] to predict 

the hip joint reaction force, then find the optimal position for the acetabular cup by 

minimizing this force.  

Example 2: an effective design for a prosthesis or orthosis is a human-centered design, 

which considers human movement [8–12]. Without human motion prediction, the 

human-centered device design can only be verified by performing experimental trials on 

manufactured prototypes. However, the final iterative design will be expensive and 

inefficient. Therefore, there is a great need for human movement prediction in 

prosthesis and orthosis design.  

Example 3: clinical biomechanists are interested in joint moment and reaction force 

analysis. Joint reaction forces, which directly affect joint functions, should be minimized 

for the elderly and injured walkers to reduce pain in their joints [13–15]. These forces 

should also be minimized for athletes to improve their performance in doing a specific 

task optimally [16, 17]. 

The main goal of this article is to shed light on the features of the recent analysis 

methods of human gait and to compare these methods in terms of control 

methodologies. To find relevant publications for this article, a specific search algorithm 

has been used. The search algorithm was limited to the recent decade (2009-2019) and 

included the keywords “human motion/gait prediction, predictive simulation method, 

forward/inverse dynamics of human movement” and excluded certain areas (i.e., 

balance control and machine learning). 70 percent of the references in this article were 

found using this search algorithm. The remaining 30% were published prior to 2009 and 

are included in this article since they represent seminal contributions to human motion 

analysis. 

In this review, a few of the cited papers do not target human gait specifically; however, 

their methodologies can be extended to human gait studies. Furthermore, balance 

control in human motion is not reviewed in this paper, the main focus of which is on 

optimization-based predictive simulation methods. In these methods, stability is usually 

provided by stabilization constraints and not by balance control techniques. For more 

information about human balance and posture control during gait, the readers are 

directed to two review articles: [18, 19]. Moreover, machine learning techniques are not 

covered in this paper since they are mainly used for tracking purposes and not for 

predictive simulation studies, which are the focus of this paper. Available machine 

learning techniques in human gait have been reviewed in [20]. 

This paper is organized as follows. In the Basic Concepts section, first, essential terms in 

human task analyses are defined, followed by an explanation of problem formulation 

(which use explicit or implicit dynamic formulations), human model types, and 

simulation solvers (i.e., semi- and fully-predictive methods).  

Based on the workflow of the biomechanics analysis, human model types are divided 

into skeletal (SK), musculoskeletal (MSK) and neuromusculoskeletal (NMSK) models. 

Different problem formulation and simulation solvers developed for SK and MSK/NMSK 

models are discussed in sections 3 and 4, respectively. Furthermore, in the latter 

section, the muscle redundancy problem and the routines to solve it are presented. 
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In contrast to model-based approaches, neural networks (NNs) are widely used in 

biomechanics for real-time estimation and simulations in human gait analysis. The 

Neural Networks section provides a brief explanation of the recent NN methods in 

human task analysis. 

Next, in the Summary and Future Work section, recent methods for analyzing human 

gait models are summarized and various limitations are discussed. Furthermore, future 

prospects of improving predictive simulation methods are presented. 

2. Basic Concepts 

In this section, the main technical terms in human task analyses are briefly discussed in 

order to categorize reviewed studies. First, some author-defined terminologies are 

discussed. Next, based on our human task analysis classification, a comprehensive 

workflow, illustrating all parts of the human task analysis is presented. Finally, the 

human model types and simulation solvers are introduced. 

2.1. Terminologies 

Approach vs. Method 

In the current paper, approach refers specifically to problem formulation, while method 

indicates a general framework used to solve the human motion analysis problem. 

Routine vs. Formulation 

Routine is used for any optimization methodology, while formulation indicates any 

calculation procedure. 

Estimation vs. Prediction 

Estimation refers to the condition that the experimental data is available and 

corresponding simulation data is estimated using a method with data-tracking error 

evaluation. On the other hand, the prediction is used to find simulation data 

independent of the data-tracking error.  

2.2. Problem Formulation 

A human body can perform a task by receiving neural commands from the central 

nervous system (CNS). In biomechanics analyses, a dynamic formulation is developed 

from the workflow shown in Figure 1. This workflow shows the path from the neural 

commands to a specific posture and vice versa. The dynamic formulation can be 

represented either explicitly or implicitly. In the explicit dynamic formulation, the 

system dynamics are directly integrated or differentiated while in the implicit dynamic 

formulation, the system dynamics are considered as constraint equations that are 

implicitly satisfied inside an optimization-based simulation. 

An explicit dynamic formulation can be categorized according to forward, inverse and 

mixed approaches. However, since there is no need to use integration/differentiation 

methods to solve dynamics equations in implicit approaches, they cannot be categorized 
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like the explicit approaches. We refer to the implicit dynamic formulation as the implicit 

approach, which is discussed in section 4.6 in more detail. 

In explicit dynamic formulation, the solid arrows show the path of the forward (e.g., 

forward dynamics) approaches and the dashed arrows specify the path of the inverse 

(e.g., inverse dynamics) approaches. 
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Figure 1. Dynamic formulation workflow. 

In forward approaches, neural commands are received to produce muscle excitations, 

which are the inputs to muscle activation dynamics. Muscle activation dynamics can be 

modeled by first-order differential equations [21]. Muscle contraction dynamics are 

often modeled using a Hill-type muscle model to convert muscle activations to muscle 

forces [22]. Musculoskeletal geometry includes muscle attachment sites, muscle lines of 

actions, wrapping points and surfaces, and moment arms [23]. This geometry and 

muscle contraction dynamics are used to calculate joint moments (i.e., the input of 

skeletal motion dynamics). Note that in the current study, joint moment and joint 

torque are used interchangeably. Skeletal motion dynamics are ordinary differential 

equations, which are solved by numerical integration to determine the motion/posture. 

Inverse approaches are the reverse of the forward approaches. In other words, 

posture/motion is used to determine the neural commands. It should be noted that to 

estimate physiologically meaningful values for the neural commands, muscle activation 

dynamics, and muscle contraction dynamics must be included in the analysis; an 

example of this is presented in the fully inverse approach of [24]. 

In addition to forward and inverse approaches, there are other approaches that are 

called mixed approaches in this review.  In explicit dynamic formulations, a mixed 

approach may exploit the best features of forward and inverse dynamics approaches. 

2.3. Human Models 

Based on Figure 1, biomechanics models can fall into three categories: SK, MSK, and 

NMSK models. NMSK models are the most complex models since they include all the 

blocks shown in Figure 1. In MSK models, muscle activation dynamics is excluded and in 

SK models, muscle activation dynamics, muscle contraction dynamics and 

musculoskeletal geometry are excluded. These definitions of the human models are 

introduced to avoid any misconceptions while referring to them throughout this paper. 
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2.4. Simulation Solvers 

Once a dynamic formulation for a human model is selected, a solver is used to simulate 

the model for a specific task. Simulation solvers use predictive simulation methods 

including non-optimization- or optimization-based methods. Non-optimization-based 

methods benefit from straight-line programming and/or non-optimal controllers to 

solve the simulation problem of a specific task. With experimental motion data and 

using data-tracking errors, these methods can compute the joint torques or muscle 

forces. Since experimental data is needed, these methods can be considered as semi-

predictive methods.  

In semi-predictive methods, a data-tracking error is used. The main feature of these 

methods is their intrinsic realism because of tracking motion data [25]. However, a 

comprehensive database of human motions is needed to get meaningful results from 

semi-predictive methods. Furthermore, we cannot study the effects of changes in the 

task conditions, since the previously prescribed data does not contain the new changes 

(e.g., we cannot determine the outcome of a new surgical procedure for which no 

measurement data is available). 

Optimization-based methods use optimization routines and/or optimal controllers for 

task analysis. Optimization-based methods predict the optimal motion of human tasks 

[26] and fall into two different categories: semi-predictive and fully-predictive methods 

[27]. In contrast to semi-predictive methods, fully-predictive methods are knowledge-

based methods that do not require measured data. 

Fully-predictive methods do not require a motion database so they can be used to study 

how the changes in task conditions affect the results. For example, Chung et al. [28] 

have used only a knowledge-based cost function to predict joint motions and joint 

torques for both normal human running and slow jogging along curved paths without 

data-tracking. The multi-objective function of this optimization includes dynamic effort, 

impulse and upper-body yawing moment. The upper-body yawing moment should be 

minimized to avoid slipping on the ground [29]. The effects of foot location and 

orientation on the predicted results of running have been studied as well. 

For fully-predictive methods, it is necessary and also challenging to define 

physiologically meaningful objective functions [30] to satisfy human criteria. A 

physiologically meaningful cost function is an objective function that includes all the 

essential human criteria required for converging to a physiologically meaningful solution 

[24]. The essential human criteria are different for various human subjects and tasks. For 

example, the criterion for healthy walkers and walkers with orthoses or prostheses may 

be to walk with the minimum metabolic energy (i.e., the consumed energy per unit 

walking distance) [31, 32]. On the other hand, for disabled walkers, a healthy gait 

pattern might be an additional criterion. 

There is another belief that the prediction of the human motion would be more realistic 

if both the semi- and fully-predictive methods are simultaneously exploited (hybrid 

predictive method) [27]. Pasciuto et al. [27] have developed a constrained nonlinear 

optimization problem, in which the objective function is a weighted combination of 

data-based and knowledge-based contributions. To validate their proposed hybrid 

method, they have predicted human motion and joint torques during clutch pedal 

depression using semi-predictive, fully-predictive and hybrid predictive methods 
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separately and then compared the results. The comparison confirmed that the hybrid 

method predicts more realistic human motion and joint torques. 

2.5. Human Task Analysis Classification 

Using the technical terms described in this section, a general human task analysis 

classification is introduced by the authors and illustrated in Figure 2. In this classification 

and flowchart, all recent methods of human motion analysis can be categorized 

according to problem formulation and simulation solver. 
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Figure 2. The flowchart of human task analysis classification. 

3. Skeletal Models 

In this section, problem formulations for SK models are presented for different explicit 

dynamic formulations (Inverse Approaches, Forward Approaches, and Mixed 

Approaches subsections). Figure 3 shows the workflow of forward and inverse 

approaches. Different simulation solvers corresponding to each formulation are 

discussed within each subsection. The implicit approach will be discussed in the latter 

section. 
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Figure 3. The workflow of forward and inverse approaches for SK models. 

3.1. Inverse Approaches 

There are different methods to determine human joint moments. An invasive method is 

an instrumented prosthesis, which is not always practical. Another method is the inverse 

dynamics method, in which given captured motion data and measured external force 

and moment data, the inverse SK motion dynamics is solved for the joint torques [33, 
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34]. This method is a non-optimization-based method, in which motion data and 

ground-foot contact force data are required to be measured using a motion capture 

system and a force plate, respectively. Uncertainty in body segment parameters and 

errors in the experimental measurements and data-processing may result in unrealistic 

joint torques and inconsistencies between kinematics and ground reaction forces [35–

37].  

Although this method is non-invasive and relatively fast, unrealistic joint torques may be 

predicted due to numerical differentiation errors and inaccurate model parameters. 

Optimization-based methods may be used to improve the results of the inverse 

approaches. For example, in [38], inverse dynamics is used within a constrained 

optimization to reduce the inconsistency in the results of the inverse dynamics. In this 

paper, the optimization algorithm has applied minor changes to the measured 

kinematics to make the kinematic mechanically consistent with measured external 

forces. In other words, Kinematics are adjusted until simulated forces match 

experiments. 

3.2. Forward Approaches 

The joint torques obtained from the inverse dynamics can be used as the inputs to the 

forward SK motion dynamics in order to estimate the motion. Ideally, the motion 

estimated from the forward dynamics should perfectly match captured motion data. 

However, there may be discrepancies between the estimated motion and the captured 

motion data depending on the integration algorithm of the forward motion dynamics, 

the kinematic constraint stabilization algorithm and the differential-algebraic equation 

solver. Thus, to fulfill stability and robustness in the forward SK motion dynamics for 

human gait, three different control methodologies have been recently proposed: under-

actuated, fully-actuated and kinematically-constrained methodologies. 

The first methodology is needed when the human gait is under-actuated and the 

number of joint actuators is less than the degrees of freedom (DOFs) of the human 

model that freely moves in the plane/space. Therefore, there is no direct control over 

the three/six DOFs of the base body with respect to the global coordinate system. 

Hence, researchers are required to consider a foot-ground contact model to implicitly 

control those three/six DOFs [39, 40]. 

In the second methodology, all DOFs are considered to be actuated. Then, a set of non-

physical forces and moments, accounting for the inconsistency between calculated and 

captured motions, are assumed as a residual wrench. This wrench is composed of linear 

and rotational actuators to control the absolute DOFs of the base body (pelvis or trunk 

in most cases). This methodology is used to obtain dynamically consistent equations. 

The residual reduction algorithm (RRA) has been proposed [41] to reduce the residual 

wrench in order to closely track the captured motion. For example, Millard et al. [42] 

considered proportional-derivative (PD) controllers for controlling body joints and a 

balance controller for externally manipulating the pitch of the head-arms-trunk (HAT) 

segment. 

In the third methodology, a kinematically-constrained foot-ground contact model is 

imposed to provide a stable gait. During the single-support phase of the gait cycle, one 

foot is constrained to be fixed to the ground, yielding a fully-actuated open-chain model 

[43]. During the double-support phase, both feet are fixed to the ground, yielding an 
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over-actuated closed-chain model [44]. To provide stability, kinematic stabilization 

constraints are applied for each phase separately [24, 45, 46]. 

3.3. Mixed Approaches 

Some of the mixed approaches use the forward dynamics model and a controller 

with/without an inverse dynamics model to update the joint torques based on the data-

tracking error obtained from the forward dynamics simulations. Since these approaches 

have a feedback controller, they are also called feedback-control approaches. The hybrid 

zero dynamics-based control method (HZD) uses a feedback-control approach. Martin 

and Schmiedeler [47] have used HZD to estimate the gait motion over the full ranges of 

speeds by tracking experimental walking data. They have compared two planar models 

of the lower extremities (one of which in contrast to the other one does not have ankle 

joints) to study the critical role of the ankle joints in the human gait. HZD parameterizes 

joint angles as functions of a gait variable (i.e., step progression), which is an explicit 

function of time. HZD has been developed based on prior work suggesting that humans 

control their gait motion using phase variables [48]. Initially, HZD was used for point-

foot robots. Later, Martin and Schmiedeler used HZD by considering rigid circular feet, 

since the center of pressure between the foot and ground tends to trace circular arc 

patterns during walking [47]. 

Computed torque control method (CTC) also uses a feedback-control approach to 

estimate the gait motion in SK models. This method was initially used in robotics. In CTC, 

the controller contains an inverse dynamics model. Mouzo et al. [49] have developed a 

2D human model to analyze human gait using this method. CTC is a control method that 

uses motion tracking error to update predicted joint torques, evaluated by an inverse 

dynamics model, and then solves motion dynamics by the forward integration. To find 

the best estimation for joint torques, Mouzo et al. [49] have considered different sets of 

the forward dynamic outputs (i.e., motions of DOFs and ground reaction forces) as 

control inputs for CTC. Foot-ground contact, which was modeled based on [50], is a 

volumetric contact model. They have concluded that the weighted trajectories of all the 

DOFs can be the best control input to get satisfactory results. 

Another method is the proportional-integral-derivative control (PID), which is a classical 

feedback control method for controlling the plant model by feeding back the past error. 

Proportional-derivative control (PD) is a special case of PID. Pàmies-Vilà et al. [51] have 

compared the capabilities of PD and CTC in solving the forward dynamics of SK models. 

A kinematic perturbation was used for tuning the PD gains and pole placement 

techniques were used to determine control parameters in CTC. First, using experimental 

motion data, inverse dynamics was solved to determine joint torques. Then the 

calculated joint torques were used as the input of the forward motion dynamics to 

estimate the motion and ground reaction forces using PD and CTC separately. They 

showed that CTC outperforms PD for a balanced forward dynamics analysis. 

To deal with the challenges of the inverse approach, one cannot use the 

aforementioned non-optimization-based feedback controllers for prediction. Thus, some 

studies have recently applied optimization-based methods so that they can 

predict/estimate joint torques with motion prediction/estimation. 

A practical optimization-based method is the model predictive control (MPC). MPC uses 

an internal model to estimate/predict the output, compare it with the reference data, 
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and finally predict control inputs of the plant model by minimizing a cost function that 

can contain a data-tracking error (i.e., semi-predictive). Not only does MPC provide 

stability for the model but it also has predictive features. MPC is a fast near-optimal 

controller that seems very well-suited to real-time biomechatronic applications [52]. 

Sun et al. [53, 54] have simulated the human CNS using MPC in conjunction with PID. To 

validate their method, human gait has been modeled using the simulated CNS. The plant 

model is a 2D 9-DOF SK human model and the controller of the plant model is a 

combination of an MPC and PID. The methodology of the simulated CNS is as follows. 

First, either single support phase (SSP) or double support phase (DSP) is selected using 

the ground contact feedback of both feet. Next, joint torques, which are predicted using 

the MPC and PID, enter the plant model as inputs to predict motions. If SSP is selected, 

the PID and MPC are used to keep the HAT upward and reach a reference step length, 

respectively. If DSP is selected, the PID and MPC are used to keep the HAT upward and 

reach a reference center of mass velocity at the end of DSP, respectively. 

4. Musculoskeletal/Neuromusculoskeletal Models 

MSK/NMSK modeling is used to study how neural commands are converted to 

mechanical motion by means of musculotendon units spanning joints [55]. Muscle-

driven models are developed to study the role of muscles in human motions because 

muscles affect the energy flow between body segments. Muscle forces can be predicted 

using muscle-driven models. Prediction of muscle forces is advantageous since by having 

muscle forces during healthy and impaired movements, we can improve treatments for 

walking disorders as well as training programs for athlete performance. Recently, 

muscle-driven models have also been used to determine muscle synergies and 

coordination. 

To evaluate the muscle forces in an MSK/NMSK model, the muscle force-sharing 

problem should be solved. This muscle redundancy problem requires an optimization 

routine with a dynamic formulation. Since the muscle redundancy problem is solved 

using optimization-based methods, all the dynamic analysis approaches for the 

MSK/NMSK models are optimization-based methods (i.e., semi-predictive optimization 

methods or fully-predictive methods). 

In this section, the muscle redundancy problem and the routines to solve it are 

presented. Then, problem formulations for MSK/NMSK models are presented by 

dividing them into explicit dynamic formulation (Forward Approaches, Inverse 

Approaches, and Mixed Approaches subsections) and implicit dynamic formulation 

(Implicit Approaches subsection). Different simulation solvers corresponding to each 

formulation are discussed within each subsection. 

4.1. Muscle Redundancy Problem 

In the human body, since the number of muscles is more than the number of actuating 

joints (i.e., there are many different muscle coordinations to generate a specific human 

movement), a muscle redundancy problem should be solved for motion analysis. To 

solve the muscle redundancy problem, it seems a logical interpretation to assume that 

the CNS adjusts muscle forces in an optimized manner [56, 57]. Zajac et al. [58, 59] have 

presented a thorough review of concepts and routines, proposed up to 2003, to address 
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this challenge. In general, different variations of two optimization routines are used to 

calculate muscle forces during human tasks: static optimization and dynamic 

optimization. 

Static Optimization 

Static optimization (SO) is an inverse approach (e.g., experimental motion and externally 

applied forces are considered as the inputs to the MSK model). In SO, muscle forces are 

optimized and the cost function is calculated using time-marching; in other words, time 

frames are solved sequentially. On the other hand, some researchers have used the 

concept of static optimization in combination with either a forward approach [60] or a 

mixed approach [55, 61]. In these approaches, the inputs are neural controls (i.e., 

muscle activations or excitations), which are taken as optimization variables to estimate 

muscle forces through static optimization. In the meantime, the outputs (i.e., torques or 

kinematics of the model) are calculated through the mixed or forward approaches and 

compared with the experimental data to adjust the cost function for the static 

optimization. 

In static optimization routine, different expressions can be used as the cost functions 

which can be found in [62, 63]. Static optimization solves a different optimization at 

each time instance and then considers coupling between time instances to simulate 

dynamic equations. The instantaneous cost function results in low computation time 

and makes SO suitable for real-time simulations. Although SO is appropriate for semi-

predictive optimization-based methods, it is not suitable for minimizing a cost function 

during a whole task (e.g., metabolic energy) because it may lead to sharp fluctuations in 

control inputs. In addition, since SO does not account for contraction and activation 

dynamics, it may cause unphysiological results. 

Dynamic Optimization 

Dynamic optimization (DO) solves a two-point boundary-value problem in the optimal 

control of the MSK/NMSK models [64]. To solve this problem, there are some studies 

that have used parameterized optimization to solve the optimal control problem, and 

they have reported satisfactory results [65–68]. 

DO is suitable for the motions affected by the dominant muscle activation dynamics and 

co-contraction [69]. Since DO, unlike SO, uses the time history of the simulation along 

with the muscle contraction and activation dynamics, unphysiological results are not 

obtained, and it is possible to define time-integral cost functions. However, it has high 

computation time compared to SO. 

Other than DO and SO, different variations of them can be utilized to model muscle 

dynamics by minimizing a cost function that includes a data-tracking term, and muscle 

activation and contraction dynamics. These variations are discussed in the following 

paragraphs. 

Different Variations of Static Optimization 

Modified static optimization (MSO) was proposed to overcome the deficiencies of SO 

[74]. MSO is similar to SO, with the difference in having nonlinear constraints, which are 

related to the contraction and activation dynamics. 
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Another variation of SO has been proposed by Thelen and Anderson [25] to predict 

muscle activations. This optimization routine is a variant of CTC on the muscle level (not 

on the joint level), which is why it is called computed muscle control (CMC). CMC is a 

feedback-control approach and it is a combination of a PID controller, SO and forward 

dynamics models. It improves the results of the SO model, by simulating the forward 

dynamics model and feeding back the error to the SO model using the PID controller. 

CMC is able to track experimental motion data by feeding predicted muscle forces as the 

inputs to the forward dynamics model of studied movements (e.g., walking [78] and 

running [79]). Although CMC is more accurate than SO, it has the following drawbacks. 

First, since foot-ground contact forces are directly applied in CMC, inconsistencies may 

appear between estimated motion and experimental motion data. Second, because of 

explicit integration techniques, CMC may have a poor convergence. 

For data-tracking using forward simulations, CMC is accurate enough. However, 

Shourijeh et al. [80] have proposed a type of static optimization that is less complicated 

and as accurate as CMC, and it is more appropriate for the implementation of the 

forward approaches. They have solved the muscle redundancy problem using forward 

static optimization (FSO) and compared it with CMC in terms of computation time and 

prediction accuracy. The muscle activations have been predicted and motion has been 

estimated by tracking the movement of an arm model to validate the proposed 

optimization routine. FSO is similar to MSO, where instead of inverse dynamics, the 

forward dynamics problem is solved with activations or excitations as inputs. Looking 

closely, FSO is a special case of nonlinear MPC (NMPC), which optimizes the current time 

step while considering a single future time step. Another variation of FSO has been 

utilized in [81, 82]; these studies use different numerical algorithms for the implicit 

solution of the dynamic equation. 

Different Variations of Dynamic Optimization 

Typically, in DO, neural excitations are optimization variables that drive the NMSK model 

through the forward dynamics [69]; this optimization routine is also called forward 

dynamic optimization (FDO). FSO is like an FDO in which the objective function is 

optimized at each time step while satisfying kinematic constraint equations of the 

forward dynamics integration [80]. Anderson and Pandy [72] have utilized FDO to 

determine the muscle coordination in human gait. They have reported a CPU time of 

10,000 hours to solve the optimization for half a walking cycle. FDO is considerably time-

consuming since many numerical integrations are required to be computed for motion 

dynamics equations.  

In another study [73], Anderson and Pandy have also claimed that it is not necessary to 

model muscle activation and contraction dynamics for walking analysis because they 

have little effect on the computed muscle forces. By disregarding muscle activation and 

contraction dynamics in the optimization problem, the consistency with muscle 

physiology was reduced but the numerical calculation became faster [63]. Although FDO 

without muscle dynamics is faster, to better assess individual muscle function, muscle 

activation and contraction dynamic models are essential. 

Sometimes in DO, muscle forces can also be the optimization variables to produce 

desired joint torques obtained from the inverse dynamics problem of an MSK model 

[70], so-called inverse dynamic optimization (IDO). Some researchers use the concept of 
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dynamic optimization, in a forward/inverse approach and consider different inputs as 

optimization variables to solve the time-integral cost function [71]. 

To increase the computation speed, IDO with the inverse dynamics approach is used 

instead of FDO. In IDO, muscle dynamics can be considered as differential constraints 

[70]; satisfying muscle dynamics as constraints is faster than directly solving the muscle 

dynamics. To further increase the computation speed, the muscle constraints can also 

be neglected in IDO. However, the prediction accuracy may decrease and 

unphysiological results may be obtained. 

To increase the prediction accuracy of IDO (when muscle constraints are not included), 

IDO can be combined with a forward approach that includes the muscle 

contraction/activation dynamics (i.e., paths from 0 to 1/2 in Figure 1) [75]. This 

optimization routine, which is called inverse-forward dynamic optimization (IFDO), can 

also be combined with the forward dynamic model of the MSK model to generate a 

correction control input to the optimization problem (i.e., feedback-control approach); 

this gives the so-called inverse-forward dynamic optimization control (IFDOC) [75]. 

Ackermann [74] has used another variation of IDO, so-called extended inverse dynamics 

(EID), to solve the muscle redundancy problem by inverse dynamics equations. In EID, 

the inputs to the optimizer are the muscle forces along the corresponding tendons (path 

from 6 to 2 in Figure 1). Once the optimization problem was solved, the activations and 

neural excitations are evaluated by inverting contraction (i.e., following the path from 2 

to 1 in Figure 1) and activation dynamics (i.e., following the path from 1 to 0 in Figure 1), 

respectively. EID is analogous to MSO, but in MSO the optimal problem is solved 

instantaneously and the results of a time step are only dependent on the results of the 

previous time step. The computational load of EID is also less than FDO, and in contrast 

to SO, it considers contraction and activation dynamics together with a time-integral 

cost function [57]. However, the feasibility of EID is restricted by the size of the 

optimization problem.  

To overcome some limitations of EID, Quental et al. [77] have proposed the window 

moving inverse dynamics optimization (WMIDO). In WMIDO, a window is considered to 

be moving across k instants of time until the muscle redundancy problem is solved. 

Using this routine, the researchers are able to fully simulate the muscle dynamics. 

Another type of dynamic optimization is the neuromusculoskeletal tracking (NMST) 

which has been developed by Seth and Pandy [71] to predict muscle forces by 

minimizing the torque-tracking error and muscular effort. NMST has two stages; in stage 

1, the inverse SK model (path from 6 to 3) with sliding-mode tracking is used to predict 

joint torques. In stage 2, the forward neuromuscular dynamics (path from 0 to 2) is used 

to obtain optimal muscle forces such that the muscular model (path from 2 to 3) gives a 

torque close to the predicted torque in stage 1. 

In addition to the unknown muscle force prediction, if some model parameters should 

be identified in an IDO problem, single inverse dynamic optimization cannot solve the 

problem. Rasmussen et al. [76] have proposed an optimization routine called inverse-

inverse dynamic optimization (IIDO) that solves this issue by introducing an outer 

inverse dynamic parameter identification [65]. In this routine, both the inputs and 

outputs of the inverse dynamics are optimized through an outer optimization loop 

around the inverse dynamics in order to identify model parameters by maximizing the 

metabolic efficiency of the human task. 



13 

Other Routines 

There are some other routines for solving muscle redundancy problem. But, since they 

cannot be easily classified according to SO or DO, they are discussed in this section. 

In another approach, an analytical optimization technique has been used by Challis and 

Kerwin [83] to predict muscle forces. However, the evaluated forces are not bounded. 

Hence, this optimization routine may result in negative values for muscle forces, which is 

unphysiological. Terrier et al. [84] have used the pseudo-inverse to evaluate the inverse 

of the muscle moment arm matrix, then the muscle force constraints were imposed with 

the aid of the null space definition in quadratic programming. This optimization routine 

required some simplifications such as considering muscles as string elements. There are 

also other studies that have used specific tools such as stochastic modeling and muscle 

fatigue criterion to deal with muscle force sharing problem [85, 86]. 

Researchers have also used a neural strategy, so-called muscle synergy, for simplifying 

the control of multiple degrees of freedom. Muscle synergy theory (MST) deals with the 

muscle force sharing problem with a biologically-plausible aspect [87]. Based on MST, 

during a task, muscles are activated in a group called synergies. Thus, instead of having 

multiple muscular actuators, each joint will move by a small number of actuators 

(synergies). Although MST is computationally efficient [21], mostly it has been used in 

the inverse dynamics analysis  [88–91]. Yoshikawa et al. [92] have used equilibrium-

point-based synergies to translate human movement to a robot. Sharif Razavian et al. 

[93] have considered muscle synergies based on the task space in the forward dynamic 

simulations. 

Recent studies in the human movement analysis have focused on the optimization-

based predictive methods for obtaining novel movements [39, 94, 95]. However, in most 

of the aforementioned routines, experimental motion data is explicitly tracked; thus, 

novel movements cannot be predicted. To solve the muscle redundancy problem for 

novel movements, the optimization problem should be stated in terms of an optimal 

control problem. In the next section, we will discuss different optimal control methods 

and the possibility of their use for solving this problem.  

4.2. Optimal Control Methods 

Optimal control methods are divided into two categories: indirect and direct methods 

(see Figure 4) [96]. Indirect methods use the calculus of variations to obtain analytical 

expressions of optimal control that are adjoint differential equations. Thus, boundary-

value problems should be solved to obtain the optimal solution. However, finding an 

initial guess for adjoint variables is challenging since most of the variables are not 

physically meaningful. Furthermore, adjoint differential equations are highly nonlinear; 

hence, backward integration of those differential equations can be numerically unstable. 

 

Optimal Control Methods 

Indirect Methods 

Shooting Methods Collocation Method 

Direct Methods 
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Figure 4. Different methods in optimal control theory. 

In direct methods, it is not required to solve boundary-value problems. Instead, the 

control and/or state are parameterized and the optimal control problem is solved as a 

nonlinear programming problem (NLP). Systems with large-scale NLP (e.g., optimal 

control of human movement) can be solved using different software packages such as 

interior point optimizer (IPOPT) and sparse nonlinear optimizer (SNOPT). Direct methods 

are divided into two methodologies: direct shooting [97] and direct collocation [81]. 

In the direct shooting method, only the control inputs are parameterized and its 

computation time is much more than the direct collocation method in which both 

control inputs and states are parameterized. The direct shooting method computes 

numerical integration of dynamic differential equations during the optimization process, 

while the direct collocation method considers the dynamic equations as algebraic 

constraints, thereby not needing to compute explicit integration. However, convergence 

in direct collocation method heavily relies on a good initial guess, which can be 

challenging to define. 

4.3. Forward Approaches 

In forward approaches, all dynamic equations are solved by forward integration and the 

muscle redundancy problem is addressed using one of the optimization routines with 

the forward approach discussed in the Muscle Redundancy Problem section 4.1. Figure 5 

illustrates the order of the different stages to generate forward approaches for 

MSK/NMSK models.  
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Figure 5. The workflow of the forward approaches for MSK/NMSK models. 

Any simulation solver that uses SO [69, 73], FDO [65–69], or FSO [81, 82, 98] to solve the 

muscle redundancy problem in an MSK/NMSK model is an optimization-based predictive 

method for a forward approach. 

Since experimental data are not always available, and also semi-predictive optimization-

based methods are not good for the prediction of novel motions, some biomechanics 

researchers have focused on the forward approaches without data-tracking [39, 99] 

using either the simulated annealing algorithm or direct shooting method. 

Using the simulated annealing algorithm, Miller [99] has developed a 3D NMSK model to 

fully predict human gait by minimizing metabolic energy expenditure without data-

tracking. To determine metabolic energy expenditure, he has considered five methods 

that differ in their treatment of muscle activity, muscle lengthening, and eccentric work. 

Then, he has compared the methods in terms of their predictive abilities. In this 

research, muscle activation and contraction dynamics have been developed based on 

the Hill-type muscle models. All five models have predicted similar speeds, step lengths, 

and stance phase duration. 
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Porsa et al. [39] have compared two direct optimal control methods (i.e., direct shooting 

and collocation methods) in terms of computation time. Note that direct collocation 

method is an implicit approach and its corresponding methods are discussed in the 

Implicit Approaches section 4.6. These two control methods have been implemented on 

a planar MSK model to predict joint motions and muscle activations for the highest 

vertical jump without tracking experimental data. The foot-ground contact has been 

modeled using eight contact spheres per foot. The results showed that both methods 

converged to the same solution when their initial guesses are the same, but direct 

collocation converged up to 249 times faster than direct shooting. 

4.4. Inverse Approaches 

In inverse approaches, as shown in Figure 6, all dynamic equations are solved inversely. 

Such approaches have been proposed to avoid forward integration problems and semi-

predictive optimization-based [94] or fully predictive [24] methods can be used to solve 

the simulation problem. The methods that use IDO [70], EID and MSO [74] in their 

muscle redundancy problem are types of optimization-based predictive methods for 

inverse approaches.  
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Figure 6. The workflow of the inverse approaches for MSK/NMSK models. 

Schiehlen [24] has introduced an optimization-based method to simultaneously predict 

muscle forces and body motion. In this method, generalized coordinates have been 

considered as parameterized functions (spline polynomials) [100]. Furthermore, since 

muscle activations and excitations were required for defining an energy cost function 

and optimization constraints, those have been obtained by feeding muscle forces in 

inverse muscle contraction and activation dynamics. Finally, muscle forces and motion 

polynomials for an unsymmetrical walking have been evaluated by minimizing the 

energy cost and deviation from normal walking. 

4.5. Mixed Approaches 

Inverse Skeletal-Forward Neuromuscular Approaches 

For human gait analysis,  inverse skeletal-forward muscular models, unlike the forward 

simulations, do not require two complex and time-consuming elements: the balance 

controller [101] and foot-ground contact model [102]. As illustrated in Figure 7, in such 

approaches, muscle activation dynamics, muscle contraction dynamics and 

musculoskeletal geometry are generated forwardly and only SK motion dynamics is 

solved inversely. Then, the joint moments, obtained from the forward and inverse parts, 

are compared or the predicted results may be updated by a feedback controller (i.e., 

feedback-control approach). For example, NMST uses the feedback-control approach 

with inverse skeletal and forward neuromuscular models. Semi-predictive optimization-
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based methods for these approaches are generally used to evaluate joint moments 

[103] and predict muscle activations [61]. 
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Figure 7. The workflow of the inverse skeletal-forward neuromuscular approaches. 

Rajagopal et al. [103] have created an open-source high-fidelity 3D MSK model for 

human lower extremity to study human gait. The model includes an SK upper body and 

an MSK lower body. The musculotendon parameters are obtained from both cadavers 

and young healthy subjects. First, they have solved forward muscle activation and 

contraction dynamics to predict muscle activations and joint moments using CMC 

through tracking experimental motion data. To verify their model, they have compared 

the predicted muscle activations and joint torques with EMG data and inversely 

obtained joint torques, respectively. They could generate muscle-driven simulations in 

less than 10 minutes; hence, their model is computationally fast. The model and 

experimental data are available on https://simtk.org/projects/full_body/. 

Yamasaki et al. [61] have proposed a general semi-predictive optimization-based 

method for predicting muscle activations with a low computational cost. Their method 

has been validated for a single-joint NMSK model. First, a forward neuromuscular model 

and an inverse skeletal model have been developed for a general model with N joints 

and M musculotendon units. Then, the muscle redundancy problem has been solved 

using static optimization and compared with experimental joint torques in order to 

predict muscle activations. The main difference between the proposed method and 

similar methods is the use of static optimization as a feedback controller (i.e., 

optimization-based method for feedback-control approach). Furthermore, in addition to 

the motion data, first to fourth derivatives of the motion data have been applied as the 

input to the model and they have been used in defining constraints for the static 

optimization. 

Since EMG-driven models are used in inverse skeletal-forward neuromuscular 

simulations, their results are highly dependent on EMG data. The shortcoming of such 

simulations is that the EMG data may be adversely affected by cross-talk [104], 

movement artifacts [105] and preprocessing such as choice of filter type and cut-off 

frequencies [106]. Furthermore, activities of the deeply located muscles cannot be 

recorded by surface EMGs. Thus, researchers decided to predict muscle excitations in 

addition to joint moments to overcome the shortcomings of measured EMG data [107, 

108]. 

Sartori et al. [107] have presented a 3D NMSK model to predict muscle excitations and 

joint torques using motion data from five healthy subjects during walking and running. 

Their model could also predict the excitations of some deeply located muscles, which 

were missed during EMG data recording by surface EMGs. First, using experimental EMG 

data and motion data, they have forwardly solved muscle activation dynamics, muscle 

contraction dynamics and musculoskeletal geometry to determine joint torques. Then, 

they have compared obtained joint torques with experimental joint torques, determined 

by inversely solving motion dynamics for experimental motion data, to obtain joint 

https://simtk.org/projects/full_body/
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torque errors. Finally, static optimization has been utilized to predict muscle excitations 

by tracking experimental joint torques and EMG signals. This is done by minimizing the 

sum of squared joint torque and EMG errors. 

Shourijeh et al.[108] have developed a forward neuromuscular model and inverse 

skeletal model to predict muscle excitations, muscle forces and joint moments by 

tracking the joint moments inversely obtained from experimental motion data. They 

used a genetic algorithm (GA), sequential quadratic programming (SQP) and nonlinear 

simplex optimizer in the aforementioned sequence to achieve convergence for their 

optimization problem. The predicted muscle excitations were in a good correlation with 

the experimental EMG data for human gait. 

In another study, Meyer et al. [95] have predicted joint torques using patient-specific 

musculoskeletal geometry. To reduce the errors stemming from scaled geometry, this 

study presents a method to automatically adjust the EMG-driven NMSK model based on 

the patient’s musculoskeletal geometry including muscle-tendon lengths, velocities and 

moment arms. The model parameters are calibrated by comparing the calculated joint 

moments with the obtained joint moments from the inverse motion dynamics. The 

results have shown that with geometric adjustment, the predicted joint moments are 

more accurate than the models without those adjustments. All the data and model of 

this study are available on https://simtk.org/projects/emgdrivenmodel. 

Unlike most EMG-driven NMSK models, which predict the joint moments using scaled 

generic musculoskeletal geometry, subject-specific models can predict joint torques 

using subject-specific musculoskeletal geometry. In each subject, the neural excitation 

patterns can be obtained by EMG data. Thus, NMSK models can be developed as 

subject-specific models. Such models can be used to assist patients with neurological 

disorders since EMG signals can identify the error in neurological control [109]. 

Ma et al. [110] have modified the calculation efficiency and prediction accuracy of the 

current EMG-driven models. They have developed a patient-specific EMG-driven NMSK 

model including four parts: (1) MSK model that is developed based on patient’s motion 

and external load data to evaluate muscle kinematics (i.e., moment arms and 

musculotendon lengths). (2) EMG-driven model in which forward dynamics of muscle 

activation and contraction are solved using the muscle geometry obtained from (1) and 

raw EMG data to predict joint moments. (3) Inverse motion dynamics that has been 

applied to determine reference joint moments from patient’s motion data. (4) 

Parameter optimization in which parameters of muscle activation and contraction 

dynamics are optimized through joint moment error tracking. This method can 

accurately predict joint moments in real-time simulations. 

Forward Skeletal-Inverse Neuromuscular Approaches 

Unlike inverse approaches,  in the forward skeletal-inverse neuromuscular approach, 

instead of motion inputs, muscle forces are parameterized [98] as shown in Figure 8. 

Shourijeh and McPhee [98] have developed a 2D NMSK model considering a volumetric 

foot-ground contact. They have parameterized muscle forces using Fourier series. 

Human motion and muscle activations have been predicted using global 

parameterization within an optimal control problem. The predicted results were quite in 

a good agreement with the experimental data. The method of this paper is somehow 

https://simtk.org/projects/emgdrivenmodel
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similar to the method presented in [24], while in this paper muscle forces are 

parameterized and motion dynamics are solved forwardly. 
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Figure 8. The workflow of the forward skeletal-inverse neuromuscular approaches. 

Feedback-control Approaches 

Any simulation solver that uses CMC [25] or IFDOC [75] to solve the muscle redundancy 

problem in an MSK/NMSK model is a type of optimization-based method for feedback-

control approach. 

Ehsani et al. [111] have developed a general MSK model to predict muscle activations 

and muscle force patterns for an arbitrary human task. To this end, first, motion 

dynamics of the skeletal model have been developed and then musculoskeletal 

geometry and muscle contraction dynamics have been added to the skeletal model. 

Finally, CMC has been exploited to predict muscle activations to drive the MSK model by 

tracking experimental motion data. To validate the proposed model, a biceps curl has 

been simulated using this algorithm. The predicted muscle activations were quite close 

to EMG data captured for a biceps curl. 

4.6. Implicit Approaches 

By parameterizing the control inputs and states, direct collocation methods convert the 

system dynamics to an algebraic equation. Thus, since these methods do not explicitly 

use the forward/inverse dynamics approaches, they are types of implicit approaches. As 

it was discussed in the forward approaches, experimental data are not always available; 

thus, some biomechanics researchers have focused on the mixed approaches without 

data-tracking [39, 40, 112–114] using direct collocation methods to predict novel 

movements. 

Lee and Umberger [112] have created a framework to predict motion and muscle 

activations for MSK models using the direct collocation method. Motion and muscle 

activations (which have been considered as states and control inputs of the optimization 

problem, respectively) have been predicted simultaneously during the optimization 

process. Muscle activation and motion dynamics have been extracted using the 

biomechanical modeling software: OpenSim. The authors have used the IPOPT solver in 

MATLAB to apply direct collocation method for their optimization. Their model and 

method are available on http://simtk.org/home/directcolloc. 

Lin and Pandy [114] improved the capabilities of CMC by using the combination of CMC 

and direct collocation. They have proposed a semi-predictive optimization-based 

method to predict muscle excitations of walking and running tasks using both CMC and 

direct collocation methods. CMC has been exploited to determine a feasible initial guess 

for the state and control variables of direct collocation. Their method consists of three 

http://simtk.org/home/directcolloc
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steps; in the first step, CMC used the measured motion and contact forces to calculate 

muscle excitations (control variables) and reproduce the motion (state variables). In the 

second step, the calculated state and control variables from the previous step were 

discretized and a foot-ground contact model, simulated using six contact spheres under 

each foot, was used to generate an initial guess for the next step by minimizing the 

defect errors to satisfy the defect constraints. Defect constraints associated with the 

generalized speeds were generally larger than those corresponding to the other state 

variables due to inconsistencies between kinematics and ground reaction forces. In the 

last step, a direct collocation method was used to estimate the motion and predict 

muscle excitations by minimizing a multi-objective cost function including a data-

tracking term and a physiological term. 

Recently, Lin et al.[40] have exploited the direct collocation method to propose a fully-

predictive method for the prediction of motion, muscle excitations, foot-ground contact 

forces and also joint contact forces. They have developed an NMSK model to study 

human gait at different speeds, including a 3D model of articular contact for the knee 

joint and a foot-ground contact model. First, a data-tracking collocation optimization has 

been solved to estimate a feasible initial guess. Then, independent of experimental data, 

a predictive collocation optimization has been developed to predict novel patterns for 

human gait. 

Meyer et al. [113] have also developed a patient-specific EMG-driven NMSK model that 

is synergy-controlled and able to predict walking motions for post-stroke individuals. In 

this method, muscle synergy is used to solve muscle redundancy problem. In this study, 

the developed method has been compared with muscle activation-controlled and 

torque-controlled methods in terms of the accuracy of walking motion prediction using 

the direct collocation method. Since direct collocation method is sensitive to the initial 

guess, this study has presented a practical procedure to estimate a meaningful initial 

guess and predict the motion. First, a “calibration optimization” was applied to 

determine contact parameters by tracking walking at 0.5 m/s. Then, the “tracking 

optimization” was used to determine the initial guess for the walking speed of 0.5 m/s 

by tracking walking at the same speed. Finally, the “prediction optimization” was applied 

for different walking speeds. The accuracy of the method is checked by applying the 

prediction optimization for the 0.5 m/s walking.  Motion prediction is done for the 0.8 

m/s speed by tracking walking at 0.5 m/s, and a challenge-based study is done for the 

speed of 1.1 m/s. All three control methods (i.e., synergy-controlled, muscle activation-

controlled and torque-controlled methods) predict the motion well for 0.5 m/s walking 

by tracking the same speed. Only the synergy-controlled and muscle activation-

controlled methods could predict 0.8 m/s (fast) walking by tracking 0.5 m/s (slow) 

walking. Only the synergy-controlled model has predicted 1.1 m/s (very fast) walking 

without any data-tracking. 

Sometimes experimental data is also used in the direct collocation methods. De Groote 

et al. [94] have used the direct collocation method to solve the muscle redundancy 

problem and predict muscle activations given experimental motion data. First, the 

experimental motion data has been applied to an MSK model in OpenSim to inversely 

generate joint moments. Muscle geometry has been also obtained from the MSK model 

in OpenSim. Then, the joint moments and muscle geometry have been used in the 

optimization process to solve muscle contraction dynamics for predicting muscle 

activations. Their method has been implemented on both 2D and 3D MSK models. In this 
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research, two different formulations have been considered for muscle contraction 

dynamics. In the first formulation, tendon force has been considered as a state to 

describe contraction dynamics as algebraic constraints. In the second formulation, 

muscle length has been assumed as a state. The results proved that the first 

formulation, in contrast to the second one, could converge to an optimal solution in all 

cases for all initial guesses. 

5. Neural Networks 

To predict/estimate human motions and joint torques/muscle forces, model-based 

optimization routines are usually exploited. These routines are used to either estimate 

and predict based on experimental data or fully predict without data-tracking. 

A neural network (NN) can also be used for human motion prediction. With suitable 

training, a NN can provide real-time predictions and simulations for complex human 

tasks like gait. Some of the applications of NN in clinical biomechanics are discussed in 

[115]. NN methods entail two steps: the first step is the training step in which 

experimental data are used to estimate NN parameters using an optimization. The 

second step is the running step, which predicts outputs in real-time for a set of inputs. 

So far, three NN methods have been used to predict joint moments: feedforward neural 

network (FFNN) [116], recurrent neural network (RNN) [117] and wavelet neural 

network (WNN) [118]. In the first two methods, since the initial weights are randomly 

tuned, the training process may take longer than the last method. Furthermore, network 

output may converge to a local minimum in FFNN and RNN. However, since WNN 

exploits the theory of wavelets and NN at the same time, the output will converge to a 

global minimum, because WNN simultaneously benefits from the localization property 

of wavelets and general approximation of NN. 

Ardestani et al. [118] have developed a WNN to predict lower extremity joint moments 

in real-time. First, to validate the method, the joint moments predicted by WNN have 

been compared with those calculated by inverse motion dynamics. Measured EMG and 

ground reaction force (GRF) data have been assumed as WNN inputs. Measured motion 

and GRF data have been considered as the inputs of the inverse motion dynamics. Then, 

to show the superiority of WNN over a conventional neural network method in 

biomechanics (e.g., FFNN), those methods have been compared in terms of calculation 

accuracy. Joint moments have been predicted for three types of walking: normal, medial 

thrust, and walking pole gaits. The results have shown that WNN has higher accuracy 

than FFNN and higher computational speed than methods for inverse approaches. 

Many research studies have applied FFNN to predict human motion. Zhang et al. [119] 

have focused on the human model posture prediction using FFNN. Isaksson et al. [120] 

have also predicted lung tumor motion during respiration in advance using FFNN. Due to 

the aforementioned shortcomings of FFNN, radial-basis networks (RBN) have become 

the most popular in the motion prediction area, because it uses the smallest number of 

parameters when simulating a problem with a great number of outputs. Furthermore, 

the predicted results using the RBN method converges to a global minimum. 

Bataineh et al. [121] have used a general regression neural network (GRNN), which is a 

type of RBN, to predict human motion in real-time for walking and jumping on a box. In 

the training step, an optimization has been performed to inversely solve the motion 



21 

dynamics to determine model parameters for a GRNN. In this optimization, design 

variables were joint angles, parameterized by splines, and the cost function was a 

combination of weighted motion tracking error and summation of joint torques.  In the 

running step, GRNN, which had been trained in the training step, has been used. In this 

step, GRNN was able to predict motion in a fraction of second, while the training step 

took around 1-40 minutes. 

Although a NN can provide real-time predictions and convergence to a global minimum, 

it requires a considerably large database of human motions to train a high-fidelity NN. 

Since the system dynamics are not modeled in NN methods, their globally converged 

results may be inaccurate if the collected experimental data is not sufficient or accurate. 

Therefore, compared to the optimization-based methods, NN methods are less reliable. 

Optimization-based methods consider motion and joint torques/muscle forces as design 

variables of the optimization to avoid forward integration, which is considerably time-

consuming. This feature helps to achieve fast simulations without using NNs or another 

machine learning method. The other feature is that such methods do not necessarily 

require time histories of motions or joint torques/muscle forces for prediction [111]. 

6. Summary and Future Work 

The main goal of this review article is to highlight the features of the recent analysis 

methods of human motion (mainly for gait) and to draw a detailed comparison between 

these methods in terms of problem formulation and simulation solver. To this end, the 

recently-developed problem formulations and simulation solvers were classified and 

separately discussed for SK, MSK, and NMSK models to assist researchers to select an 

appropriate analysis method depending on their research purpose. 

Dynamic formulation approaches are either explicit or implicit. Explicit approaches were 

divided into forward, inverse and mixed approaches. A mixed approach may exploit the 

best features of forward and inverse dynamic approaches. In the explicit dynamic 

formulation, the system dynamics are directly integrated or differentiated while in the 

implicit dynamic formulation, the system dynamics are considered as constraint 

equations that are implicitly satisfied inside an optimization-based simulation. 

Once a dynamic formulation is selected for a human model, a solver is selected to 

simulate the model for a specific task. Simulation solvers are either non-optimization- or 

optimization-based. They are categorized according to semi- and fully-predictive 

methods, depending on whether a data-tracking term exists in the solver or not, 

respectively. Semi-predictive methods are pervasive because of their intrinsic realism. 

However, they require a comprehensive database of human motion and we cannot 

study the effects of changes in the task condition since the motion data are previously 

prescribed for the model. In contrast, fully-predictive methods do not require a motion 

database so they can be used to study how the changes in task conditions affect the 

results. The prediction may be more accurate if both the semi- and fully-predictive 

methods are simultaneously exploited. 

A brief overview of the most significant methods (since 2014) for human task analysis 

has been categorized according to SK, MSK and NMSK models in Table 1 

Table 2 and  
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Table 3, respectively. The tables include the problem formulations and simulation 

solvers recently exploited for human task analysis and since the main focus of this paper 

is on gait task, the aim of the authors was to primarily cover the references on gait 

analysis in these tables. A few non-gait applications are included because of the 

significance of the analysis methods. 

 

Table 1. Recent methods to analyze SK models. 

Ref. DOF Application 
Problem 

Formulation 

Simulation 

Solver 

[47] 

Lower extremities: 9-

DOF model and 7-

DOF model (without 

ankles) 

Joint torque prediction  and 

motion estimation over the full 

range of gait speeds 

Feedback-

control mixed 

approach  

HZD 

[49] Full-body: 14 DOF 

Joint torque prediction  and 

motion estimation for human 

gait 

Feedback-

control mixed 

approach 

CTC 

[51] Full-body: 14 DOF 

Comparison between PD and 

CTC in motion estimation for 

walking 

Feedback-

control mixed 

approach 

PD, CTC 

[27] 
Lower extremity: 13 

DOF 

Clutch pedal depression motion 

and joint torques prediction 

Forward 

approach 

Hybrid 

predictive 

method 

[28] 
Full-body: 55 DOF 

 

Joint torque and motion 

prediction for running and a 

slow jog along curved paths 

Forward 

approach 

Sequential 

quadratic 

programming 

(SQP) 

[53, 

54] 

Lower extremities: 9 

DOF 

Joint torque prediction and 

motion estimation for human 

gait (to design prosthesis and 

orthosis before manufacturing) 

Feedback-

control mixed 

approach 

A combination 

of MPC and PID 

[121] Full-body: 55 DOF 

Joint torque prediction  and 

motion estimation for walking 

and jumping on a box 

Machine 

learning, 

training: inverse 

approach 

General 

regression 

neural network 

 

Table 2. Recent methods to analyze MSK models. 

Ref. DOF Application 
Problem 

Formulation 

Simulation 

Solver 

[80] 

An arm:1 DOF with 

7 muscles and 2 DOF 

with 6 muscles 

Muscle activation prediction 

and motion estimation for an  

arm movement 

Forward 

approach 
FSO 

[39] 
Lower extremities: 

10 DOF, 48 muscles 

Motion prediction/estimation 

and muscle activation 

prediction for vertical jump 

Forward 

approach and 

implicit 

approach 

Direct shooting 

and collocation 

methods 

[103] 
Full-body: 37 DOF, 

80 muscles 

Muscle forces and joint 

moments prediction for 

walking and running 

Feedback-

control mixed 

approach 

CMC 

[111]  General model 

Muscle activation/force 

prediction and motion 

estimation (tested for biceps 

curl) 

Feedback-

control mixed 

approach 

CMC 
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[112] 
1 DOF with 2 

muscles 

Motion and muscle activation 

prediction; scaled it for a 2D 

lower extremity model 

Fully-predictive 

implicit mixed 

approach 

Direct 

collocation 

method 

 

 

 

 

Table 3. Recent methods to analyze NMSK models. 

Ref. DOF Application 
Problem 

Formulation 

Simulation 

Solver 

[99] 

Lower extremities: 

23 DOF with 40 

muscles 

Fully-predictive human gait 

motion by minimizing 

metabolic energy 

Forward 

approach 

Simulated 

annealing 

algorithm 

[24] 

Lower extremities: 

16 DOF with 28 

muscles 

Muscle force prediction and 

motion estimation for an 

unsymmetrical walking  

Inverse 

approach 

Parameter 

optimization 

[107]  
Full-body: 19 DOF 

with 34 muscles 

Muscle excitation and joint 

moment predictions for human 

walking and running 

Inverse skeletal-

forward 

neuromuscular 

mixed approach 

Static 

optimization 

[108] 

Lower extremities: 

16 DOF with 46 

muscles 

Muscle excitation/force and 

joint moment predictions for 

human gait 

Inverse skeletal-

forward 

neuromuscular 

mixed approach 

Genetic 

algorithm (GA), 

SQP,  Nonlinear 

simplex 

optimizer 

[61] 

Single joint with a 

pair of antagonistic 

muscles  

Muscle activation prediction 

(which is applicable to any 

NMSK model) 

Inverse skeletal-

forward 

neuromuscular 

mixed approach 

Static 

optimization 

[110] 
Knee joint with 8 

muscles 

Joint moment prediction in real 

time for gait rehabilitation 

Inverse skeletal-

forward 

neuromuscular 

mixed approach 

Simulated 

annealing 

algorithm 

[95] 

Lower extremities: 

29 DOF with 35 

muscles 

Patient-specific joint moment 

prediction for gait 

rehabilitation 

Inverse skeletal-

forward 

neuromuscular 

mixed approach 

SQP 

[98] 
Lower extremities: 

11 DOF, 16 muscles 

Muscle activation prediction 

and motion estimation for 

human gait 

Forward 

skeletal-inverse 

neuromuscular 

mixed approach 

Global 

parameterization 

[114] 
Full-body: 21 DOF 

with 66 muscles 

Muscle excitation and motion 

prediction for walking and 

running 

Implicit 

approach 

CMC, 

Direct 

collocation 

method 

[40] 
Full-body: 25 DOF 

with 80 muscles 

Motion, muscle excitation, 

foot-ground contact force, and 

joint contact force prediction 

for human gait at different 

speeds 

Implicit 

approach 

Direct 

collocation 

method 

[113] 
Full-body: 31 DOF 

with 70 muscles 

Prescribing walking motion for 

an individual post-stroke using 

motion prediction in 

rehabilitation 

Implicit 

approach 

Direct 

collocation 

method 

[94] 

Lower extremities: a 

9-DOF 2D model 

with 18 muscles and 

a 16-DOF 3D model 

with 86 muscles 

Muscle activation prediction 

for human gait 

Implicit 

approach 

Direct 

collocation 

method 
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Among the problem formulation approaches classified in this review paper, mixed and 

implicit approaches have been the most popular in the recent literature on predicting 

human gait. 

Since SK models are simpler than MSK/NMSK models, they enable researchers to focus 

on more complex control methods by disregarding muscle dynamics. However, for most 

biomechanics applications, muscle dynamics should be considered to predict more 

realistic motions and joint contact forces. 

Regarding the recent literature on MSK/NMSK models, there are very few research 

studies on fully-predictive simulations of novel gait motions independent of motion 

data-tracking [40, 113], and there is still a need to decrease the computation time of the 

fully predictive simulations and increase the accuracy of the predicted results. Promising 

future avenues to increase the speed of predictive gait simulations include the use of 

symbolic programming (to generate optimized simulation code and exact derivatives) 

and the use of fast near-optimal model-predictive controllers. 

Recent fully-predictive studies are limited by numerical programming, which requires a 

finite difference method to evaluate the gradients and Hessians in the optimization 

problem. However, finite differencing is an error-prone methodology and may result in 

unreliable results for higher-order derivatives. Studies such as [122–125] have shown 

that symbolic dynamic equations can resolve this issue. Furthermore, the use of 

symbolic equations can enhance the accuracy and speed of optimal control methods 

[126].  

To model the foot-ground contact in these fully-predictive simulations, a finite number 

of contact points, moving relative to the foot, has been used. Hence, these foot-ground 

contact models can be assumed as multiple point contact models, in which the normal 

contact force is evaluated by the depth of penetration using the Hunt-Crossley method 

[127]. However, since the Hunt-Crossley method is restricted to the contact points (not 

the contact surfaces), an unnatural foot shape is obtained.  In a recent study, Brown and 

McPhee [128] have developed an ellipsoidal foot-ground contact model that may have 

better accuracy and higher calculation speed than its comparable foot-ground contact 

models. 

To the best of the authors’ knowledge, the results of the toe joint including its torque, 

motion and relevant muscle activations have not been included in predictive simulations 

even though toe joints have an important role in gait analyses [129]. Thus, the accuracy 

of gait simulations may be improved by including toe joints, and by replacing multiple 

point contact foot ground models with volumetric or other distributed methodologies 

that better capture the foot geometry. 

Finally, future predictive gait simulations may use a combination of model-based and 

machine learning methods (e.g., NN), to exploit the best features of each method to 

obtain fast and accurate simulations of human gait. 
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