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Abstract. A general regularized contact model, including normal compliance, energy dissipation,
and tangential friction, is described in this paper. The normal damping coefficient is formulated as
a function of the coefficient of restitution e and the impact velocity only; the results are energy-
consistent, with continuous force progression at the beginning and end of the impact, for both small
and large values of e. The introduced seven parameter friction model based on an explicit formulation
of the friction forces is suitable for real-time applications. The friction forces are split into its sliding
and sticking contribution and a temporal lag effect, the dwell-time, is included using a novel dwell-
time dependent stick state variable. Several examples are presented to demonstrate the features of
this general contact model. The simulation results for a double pendulum hitting a plane are obtained,
and a comparison with a benchmark problem shows the model behavior is in good agreement with
published results.

Key words: contact dynamics, friction, coefficient of restitution.

1. Introduction

In the setting of the International Space Station Program, Canada is responsible for
the verification of all tasks involving the Special Purpose Dextrous Manipulator
(SPDM) [25]. In this context hardware-in-the-loop simulations (HLS) have been
successfully applied for tasks involving contact dynamics [7]. However, the HLS
concept turns out to be very costly and material-intensive. Alternatively, simulation
can be used to complete the task verification. But this requires the development of
accurate models for contact situations with friction, applicable for typical robotic
tasks at low velocities.

The contact models must have minimal computational overhead since the entire
simulation will be running on a real-time system operating at 1000 Hz. The time
allowed to perform all the computations, including those required for the contact
dynamics, must always remain below 1 ms. Most real-time simulation systems
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utilize fixed-step explicit integrators such as Runge—Kutta or even Euler to maintain
a predictable computation time. The contact models must therefore be compatible
with these ODE solvers.

Traditionally, impact responses are predicted by rigid-body models in conjunc-
tion with impact hypotheses, such as Newton’s, Poisson’s, and Stronge’s [8, 10,
29, 32]. Hereby, the equations of motion are derived by balancing the system’s
momenta before and after the impact, i.e., without explicitly considering contact
compliances. This is also known as piecewise analysis [16].

For the direct central and frictionless impact, the coefficient of restitution e is
used to express energy dissipation, relating, depending on the impact hypothesis,
either velocities (Newton), impulses (Poisson), or energies (Stronge) before and
after the impact as used in the works by e.g. Wittenburg [35], Wehage [33], and
Lankarani and Nikravesh [17].

However, these rigid-body approaches neglect the small displacements occur-
ring during collision. This allows for great simplifications since changes in velocity
become instantaneous, and can be calculated without integrating accelerations over
the contact period, but it leads to a loss of information about the contact forces that
cause these changes in velocities. Also, in the case of the SPDM, the manipulator
itself is flexible, and this results in impact durations in the order of 50 ms when
the manipulated payloads come into contact with the environment. As a result, the
impact duration cannot be assumed to be instantaneous.

In contrast, compliance models — also known as regularized models — describe
the rate-dependent normal and tangential compliance relations over time. Further-
more, the stiffness properties can be directly related to the interfering geometries
and, hence, a model more related to physical quantities can be derived.

Typical regularized models consist of a combination of spring and damper ele-
ments with linear or nonlinear force characteristics. For direct central and friction-
less impacts Hunt and Crossley [11], Khulief and Shabana [15], and Lankarani
and Nikravesh [17] use a continuous contact model with a local compliance in the
normal direction. The energy dissipation is a function of a damping constant which
can be related to the impact velocity and the coefficient of restitution. Marhefka
and Orin [24] demonstrated the validity of the expression for the damping, and that
the derived formulations are only valid for e close to unity.

If friction is also present, static and kinetic coefficients of friction, ug and uc,
are applied additionally to relate normal and tangential forces during the sticking
and sliding states, as shown in e.g. [3, 10, 14, 32, 34]. An extension of the above
mentioned models can be found in [22] in which the impact of rigid bodies, includ-
ing friction and energy dissipation, is modelled using a regularized approach with
spring, dash-pot elements and hysteresis in normal and tangential directions.

Tenaglia et al. [30], Stronge [29] and Ma [23] also extended the direct central
frictionless contact force model to three dimensions by adding a tangential com-
pliance effect to model the friction. Friction models using local compliance are
also known as bristle models [6]. However, the proposed models do not take into
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account the dependency of the static friction on the time of contact, the so-called
dwell-time [26].

This paper introduces a novel three-dimensional contact force model. The model
can be used to simulate fully elastic to completely plastic impacts that are in direct
central as well as eccentric configurations. The contact phase can be intermittent or
lasting. In the latter case, the friction model will handle stationary as well as rolling
contact situations. Frictional effects, such as stick-slip transition and static friction
dwell-time dependency, are included in this model. It is shown how the proposed
model can be implemented for any geometry where the contact area is small in
comparison to the dimensions of the body. Simulation results for several examples
are included.

2. A Regularized Contact Model

The term regularized describes the reformulation of a problem to derive a solvable
formulation [20]. The contact forces are described as a function of the contact
deformation by smoothening the discontinuity of the impact and friction forces
in the constraints [5, 31]. Hertz’s theory provides a good approximation of the
contact force between hard compact bodies where the contact region remains small
in comparison with the size of either body. Hence, the force approach law based on
Hertzian theory is a regularization of the contact force problem.

For non-conforming elastic bodies, the local deformations in the contact region
resulting from the reaction forces will create a small area where the surface of the
bodies conform exactly. Stronge [29] showed that contact models with compliance
in the normal and tangential direction to the contact surface area provide a good
prediction of experimental results for non-collinear and/or oblique impacts. In this
section, novel models using compliance in the normal contact force and the tangen-
tial friction force will be presented. Defining n as the outward unit vector normal
to the contact area, the contact force f; is decomposed into normal f;, and tangential
fi components:

fc=fn+ft=fnn+fta (1)

where the magnitude of the normal force is f,. Similarly, we define the relative
velocity v, at a contact point in terms of its normal and tangential components v,
and v; as

Vi = Vy + Vg, (2)
where

Vo, = n(n-v,) =nuv,,

Vi = mMXVv)xn=v,— (v,-n)n, 3)

and the magnitude of the normal velocity is v;,.
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2.1. NORMAL FORCE MODEL

The compliant normal-force model proposed by Hunt—Crossley for direct central
and frictionless impacts is a non-linear spring-damper model of the form

fo=—OxP)x —kx?, @)

where x and X = v, are the penetration depth and speed, A is the ‘hysteresis
damping factor’ and k is the spring constant. In Section 3, it is shown how x and v;
are computed for a given geometric pair. The force approach law based on Hertzian
theory yields p = 3/2 when the two contacting bodies are linearly elastic spheres.
Non-linear spring models for other geometric pairs have been derived [13]. If the
colliding bodies i and j have a mass m; and m, respectively, then the effective
mass m can be obtained from m~! = mi_1 —|—m;1 [18]. Defining the damping factor
a by A = a k, the equation of relative motion can be written as

mi, +kx? (1 4+av,) =0. &)

To prevent the contact model from applying tensile forces, a must be selected such
that

l+av,>0 Vo, (6)

As Marhefka and Orin [24] and Stronge [29] showed, Equation (5) is separable
and can be integrated over the impact phase as follows

Vo Xo

n k
/—U dvn+—/x”dx:0, 9
14+av, m

Vi i

where x;j, x,, v; and v, are the penetration depths and velocities at the start and end
of the impact phase. Noting that x; = x, = 0, the second term of Equation (7) is
zero. Hence, v, depends exclusively on v; and a, and is independent of the system’s
effective mass, stiffness, or the type of spring model used.

To get a better understanding of the relationship between v;, v, and a, we define
the effective coefficient of restitution for the contact model e. as

Ceff = —Vo/V;. ®)
Substituting v, = —er v; into Equation (7) and integrating, yields
avi—In(1+av) +erav;+In(l —egav)) =0. 9

Since a and v; always appear together in Equation (9), a dimensionless factor d
defined as d = a e v; is introduced and a relationship for d and e.i independent
of v; is obtained. The solution to Equation (7) simplifies to

1 e .
Td/; ff _ ed (1+1/eerr) (10)
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Figure 1. Damping factor d as a function of eegf.

Since d is a function of e. only, a v; = d /e is also a function of e only. Thus,
the damping factor a is always inversely proportional to v; (and v,) for any e.s, and
for any impact velocity.

The solution for Equation (10) has multiple branches (one of them being d = 0).
However, a valid solution for this problem should be such that Equation (6) is
satisfied. Noting that v; < v, < —ee v; (for v; < 0), we conclude that the valid
solution branch for d will be such that d < 1 for any e.y.

Figure 1 shows the corresponding solution branch for d. Clearly, d is always
less than or equal to 1 and goes to zero at e.if = 1. The solution can be obtained by
solving Equation (10) with a numerical bisection algorithm. A good initial guess,
dest = 1 — eZ; is provided. Since the relationship between e and d is constant,
the solution can be found a-priori and does not need to be computed during the
simulation. This branch uniquely defines the damping factor d as a function of e.s.
The hysteresis damping factor is now expressed as

kd

Ceff Vi

A = (11)
Equation (11) predicts that A will become very large as e.; becomes small,
an observation that is consistent with the need to have high energy dissipation in
plastic impacts.
It has been shown that at low impact velocities and for most linear materials
with an elastic range [9], the coefficient of restitution can be approximated by

€emp = I —auv;, (12)

where « is an empirically determined constant that is valid for a limited range of
impact velocities. For steel, bronze or ivory, « is equal to 0.08...0.32 s/m. Using
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Figure 2. Effective coefficient of restitution for two models of d (mass: 0.454 kg;
k=3.4-10'"N/m*/2; ¢ = 0.2 s/m).

the definition of eemp and some simplifying assumptions, Hunt and Crossley [11]
and Marhefka and Orin [24] derived a simpler formula for A

3
AHC = Eak. (13)

A definition dyc corresponding to the model proposed by Hunt and Crossley
can be obtained by setting Equation (11) equal to Equation (13) and replacing «
using Equation (12), resulting in

dHC = %eeff (1 - eeff)- (14)
Figure 1 shows that the Hunt and Crossley definition for d approximates the exact
solution only in the region where e is near unity.

Figure 2 shows the ratio of e t0 eemp obtained using the model proposed
by Hunt and Crossley [11] for the impact of a sphere on a plane, and the model
proposed here as a function of impact velocity, with « = 0.2 s/m. Clearly, the
model proposed here yields a dynamic behavior that is consistent with any given
value of the coefficient of restitution. Hence, the model can also be used for plastic
impacts, given that a function for the coefficient of restitution is provided. The
model proposed by Hunt and Crossley [11] is consistent with the given coefficient
of restitution only when v; = 0 (and e = 1 from Equation (12)), i.e. for perfectly
elastic impacts.

Stoianovici and Hurmuzlu [28] tuned the damping factor to obtain a good match
between experimental and simulated results of a beam impacting a hard surface,
without formal knowledge of the exact relationship between A and e.s. Instead,
they arbitrarily varied A to get the best possible match. The damping factor thus
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Figure 3. Contact force vs. indentation for various values of ecf (mass: 0.454 kg;
k =3.4-10' N/m3/2),

identified approximates the experimental behavior only in the range of normal
impact velocities used in the experiment. The damping factor model proposed here
is not subject to this limitation, since v; can be varied over a wide range, without
reducing the accuracy of the approximation, as shown in Figure 2.

Figure 3 shows the contact force profile as a function of indentation depth for
the same sphere-plane impact, for various restitution coefficients ranging from 0.1
to 1. Notice that, at large values of the restitution coefficient, the damping in the
compression and restitution phase is essentially symmetric. On the other hand, for
low values of e,y most of the energy (area inside the curve) is dissipated in the
compression phase and the hysteretic damping becomes asymmetric.

2.2. TANGENTIAL FRICTION MODEL

While the damping in the normal contact force is a significant phenomenon through
which energy is dissipated during the impact phase, we must also consider the
effects of the friction acting along the surface of the contacting bodies in the region
of contact.

Unlike the derivation done in the previous section, where the magnitude of the
normal contact force was derived using scalar equations, the surface friction force
is a vectorial quantity by nature. For oblique and/or non-collinear impacts, the
dynamics of motion will in general be coupled in all directions. Thus, it would be
incorrect to use two independent, one-dimensional friction models for the friction
forces acting along a two-dimensional surface. Furthermore, the stick-slip trans-
itions cannot be considered in the context of an arbitrary direction, e.g. when two
colliding bodies are moving with respect to each other; they cannot be sticking in
one direction, and sliding in another.
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Canudas de Wit et al. [6] introduced a one-dimensional dynamic friction model
that combines the stick-slip behavior and Stribeck effects, which is characterized
by decreasing friction with increasing velocity at low velocity [2]. To model these
frictional effects, it is postulated that the two rigid bodies make contact through
elastic bristles. The friction force is modeled as a function of the bristle deform-
ation z and deformation rate z. The bristle state is defined at the velocity level,
and integrated to obtain local deformation. This model can be transformed into
a vectorized friction model by simply expressing the bristle deformation z as a
vectorial quantity, z, without affecting the model properties. The friction force
generated from the bending of the bristles is described as

for = 002+ 01 2, (15)

where o, is the stiffness and o is a damping coefficient. However, the use of this
model results in ordinary differential equations (ODEs) that are very stiff at low
relative velocities (i.e. small v;), and cannot be solved using explicit ODE solvers.
The bristle state dynamics can be shown to have a time constant of 1/|v,|, which
becomes very large at low velocities, while the time constant associated with the
relative body motion dynamics are small and constant during stick.

A new definition for the bristle state is therefore needed. To this end, the bristle
dynamics model for z is reformulated into two distinct sub-models: z for the stick-
ing regime and z for the sliding regime. A sticking state function s is introduced
to transition smoothly between the stick-slip friction regimes. The deformation rate
is now expressed as

Z=szgy+ (1 —s)Zy, (16)
where
5 = e VeV0/@d) (a7

and vg is the velocity at which the Stribeck effect occurs. With this formulation,
Z becomes Z (sticking case) when v, approaches zero, i.e., (1 —s) ~ 0. If v,
increases, z becomes Z (sliding case), i.e., s ~ 0.

When the friction state is in the stiction regime, the relative motion of the
bristles should match exactly the relative motion of the rigid bodies, i.e. the surfaces
stick together. Hence, Z is defined as

ist = V;. (18)

The sliding rate Zg is defined in terms of the Coulomb friction force fc that acts
while the two bodies are sliding with respect to each other. Coulomb friction acts
in a direction opposite to the relative velocity v; between the two bodies and its
magnitude is pc fn, where e is the Coulomb friction coefficient. The friction
force fc is thus described by

fC = /"LC fn dire(vt’ UG)’ (19)
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where dir, (v, v¢) returns a unit vector along the direction of v, and uses the relaxed
sign convention near a small velocity tolerance v.:

Ve .
[Vi|?

dir, (v, ve) = 3
W= v (a1 (). v < v
Ve 2 ve 2\ ve ’ t €

While the two rigid bodies are sliding with respect to each other, the friction force
fi,: applied by the bristle should be fc. Setting Equation (15) equal to Equation (19),
and solving for z ~ z,

|V[| Z Ve,

(20)

1
1= —fc— 2% 21)
o1 o1
Equation (21) is a first order ODE and has a time constant t,, = 07/0,. The

bristle dynamics time constant ty, controls how fast the bristles reach a steady-
state deformation when two rigid bodies are moving at a constant relative velocity.
To summarize, the bristle deformation rate is given as

. 1 Oo
z=svi+ (1 —s)(—fc — —1z2). (22)
o1 01
While the two rigid bodies are sticking to each other, the maximum friction force
is limited by the stiction force us f,, where g is the stiction coefficient. Experi-
mental observations [26, 4] have shown that the full magnitude of the stiction force
does not come into effect as soon as the relative velocity becomes zero. Instead,
the maximum stiction force gradually increases over time, and eventually reaches
the upper limit g f,. This phenomenon is also called dwell-time dependency.

On the other hand, the temporal lag effect associated with the dwell-time is
only present for the slip-stick transition, i.e. it takes some time for the microscopic
asperities to settle into each other and for the molecular bonding to take place. As
soon a stick-slip transition occurs, these bonds shatter at once. Hence, there is a
need to include two time constants to correctly model the dwell-time effect on the
maximum stiction force. A new state, sqy, 1S introduced to model the effect of the
dwell-time on the maximum stiction force

f(s — Saw); 8 — Saw =0,
Saw = Y (23)

1 .
E(S — Sdw); 5 — Sqw < 0,

where g4y, is the dwell-time dynamics time constant and ty, is the bristle dynamics
time constant, as before. With the definition proposed for sgy, in Equation (23), sqw
simply follows the value of s with a long time delay as s goes to 1 (sticking) while
it follows it very quickly (as fast as the bristle dynamics allow) when s goes to zero
(sliding). The maximum stiction force fi,.x can now be defined as

Smax = fa(pc + (s — pc)Saw)- (24)
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Figure 5. Bowden and Leben stick-slip experiment for |v¢| = 0.05 m/s.

As mentioned previously, the bristle friction force should never exceed fiax at
any time. In particular, the stick-slip friction regime transition can only happen if
the magnitude of the bristle force becomes saturated, such that the surfaces of the
two rigid bodies can start accelerating with respect to each other and the relative

velocity increases beyond vs. To this end, we introduce the saturation function
sat(for, fimax)

fbr; |fbr| = fmaXa
sat(for, fmax) = (25)

% fmax; |fbr| > fmax-

The tangential friction force f; can now be computed. A term proportional to the
relative tangential velocity is added to account for viscous friction so that

fi = —(sat(fy,, fmax) + oy V), (26)

where o7 is the viscous damping coefficient. Hence, the proposed friction model
is a seven parameter model. These parameters are: us , ¢, 0o, 01, 02, Us and
74w Note that the bristle dynamics time constant is inferred from o, and o, and
a numerical tolerance v, must also be specified. As a guideline the v, should be

at most one tenth of vs. In all following experiments a value of v, = 1/100 vg is
used.
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Figure 7. Bowden and Leben stick-slip experiment for |v¢| = 0.15 m/s.

Table 1. Numerical values for Bowden and Leben stick-slip experiment.

Hus Hc 0o ol 02 vs Tdw

015 0.1 10°N/m +10°Ns/m 0.1Ns/m 0.00lm/s 2s
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Using the parameters given in Table I, the friction model was used to simulate
the response of a spring-mounted block sitting on a plate that is moved at a constant
speed as shown in Figure 4. This experiment was first proposed by Bowden and
Leben who built an apparatus to study the stick-slip process [26].

To test our vectorized model, the motion direction is at 45 deg from the x-axis
in the x—y plane, moving away from the origin, the spring constant is k = 2 N/m,
the mass m = 1 kg and the gravitational constant is 10 m/s?. The block sticks
to the plate until the spring force is high enough to overcome the friction force,
at which point the block slides in the opposite direction to the plate. The results
are plotted in Figures 57 for three different speeds of the plate. The position axes
show the distance from the origin and the force axes correspond to the magnitude
of the friction force.

Note the sharp spikes in the friction curves corresponding to transitions between
forward and reverse velocities of the block. When the plate is moving slowly, the
position curve drops almost vertically as soon as the block starts sliding. Then, as
the plate moves faster the amplitude of the oscillations decreases, and the profile
becomes similar to a sinusoidal wave. However, in all cases, the first peak of the
friction profiles always extends up to the maximum stiction limit, a consequence
of the dwell-time dynamics (the friction model is initialized in the ‘sticking’ state).
Subsequent peaks are of lesser magnitude for higher speeds of the plate, because
there is not enough time for the stiction force to reach its maximum value of g f.
This dynamic behavior corresponds to the observations by Rabinowicz [26].

3. Contact Model Implementation

The contact model derived in the previous section computes the contact forces
between two non-conforming rigid bodies as a function of the relative velocity v, in
the contact region, and the penetration depth x. In addition, the point of application
of the contact force is required. Note that the contact region is assumed to be very
small, so the moments generated by the local deformations in the contact region
are neglected. This section will demonstrate how to set up the proposed contact
model for the simulation of collision between two rigid bodies with arbitrary non-
conforming shapes. The case of the sphere-plane pair will be presented as an
example.

For a given non-conforming geometric pair, a point of action p, is defined as
the point where the equal and opposite contact forces are applied to the two bodies.
In the case of the sphere-plane pair, the Hertz force approach law is based on the
deepest penetration distance. The point of action is selected as the point along the
sphere surface at which the sphere surface normal is exactly opposite to the plane
normal. This choice is convenient since by measuring the height of the point of
action with respect to the plane surface, the desired penetration distance is obtained.

We describe the states of two arbitrary bodies i and j by defining body-fixed
frames X; and K. Each frame origin is located by the position vectors r; and
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Figure 8. Point of action and penetration depth for a sphere-plane pair.

r; relative to an inertial ‘world” frame X,,. Their orientation is assumed to be
described by the rotation matrices R; and R ;. The frames translate at a velocity v;
and v; and rotate with an angular velocity @; and ;.

For the sphere-plane example, the position of the center of the sphere (i) with
respect to K; is pyyp, and the sphere radius is R. The surface of the plane (j) is
located at a height /2 ; along the plane normal n from the origin of X ;, see Figure 8.
In the following derivations, all vectorial quantities are assumed to be expressed in
K. Typically, pg,;, and n are specified in local frame coordinates by the user, but
they can be easily transformed into X, by using R; and R ;.

In the case of the sphere-plane geometric pair, the point of action is found as
follows:

P, =T+ psph —Rn. (27)
The height x of the point of action with respect to the plane is given by
x=(p,—r;) -n—hj, (28)

which is the expression for the penetration depth needed to evaluate Equation (4).
This same expression can be used to detect contact, i.e. when x < 0, so a separate
collision detection algorithm is not needed for this case.

In the general case, p, must first be identified using a collision detection al-
gorithm. Then, p, is arbitrarily assumed to belong to one of the bodies, say body
i, after which the surface normal n and height 4 to the surface of the other body j
can be found as a function of (p, —r;).

The relative velocity at the point of action is given by

Vi=Vi+w X (p,—T;)—V;—w; x(p, —r;). (29)
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Table 11. Numerical values for the bouncing ball experiments.

Hus Hc 9o o1 02 vs Tdw

045 04 10°N/m 10*Ns/m ONs/m 0.lm/s 00ls

The contact force f. is then computed by substituting Equations (28) and (29) into
Equations (3), (4) and (26). Since f. is a function of the states s and z, Equa-
tions (22) and (23) are added to the set of original system of ODEs.

Note that there is no need to convert the contact model input data into normal
and tangential components with respect to the surface. The vectorized friction
model automatically generates a friction force along the direction of tangential
displacement. Although, f; acts in the tangential plane, it is a vectorial quantity that
can be resolved in any frame of reference, here K ,,. The same holds true for f,.
Hence, f; can be directly added to f;, as in Equation (1).

A useful feature of the proposed contact model is that it can be directly applied
to model contact between bodies that are rolling with respect to each other. Since
the input to the friction model is the relative tangential velocity between the two
contacting surfaces, the bristle model will integrate over time the motion of the
point of action. In effect, the friction model “tracks” the point of action, which is
moving with respect to both bodies.

Once the force generated from the local surface deformations has been com-
puted, its contribution to the body forces f; ; and moments 7; ; acting on each body
are given by

fi =1; 7v,=(@,—nn) xf,

The proposed contact model adds little computational overhead to the multibody
dynamics simulation since Equations (4) and (26) are simple explicit expressions,
and thus it is suitable for a real-time implementation. For the case of arbitrary
geometries, the only extra computational effort will be focused on finding the loc-
ation of the contact points and the penetration depths, the determination of which
has been intensely investigated in the past decade, and for which very efficient
algorithms are available [12, 21].

4. Numerical Examples
4.1. A BOUNCING BALL

A simulation model was implemented for a 2 kg ball, with 0.1 m radius, colliding
with an inclined plane. From the horizontal position, the plane is rotated 20 deg
about the +Y axis. Gravity g = 9.81 m/s? acts in the —Z direction. The ball
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Figure 10. Velocity components versus time.

is given an initial velocity of —1 m/s in the X direction and 0.5 m/s in the Y
direction. The normal impact model with k = 10° N/m*? was set to have a
constant coefficient of restitution of 0.5. The friction model parameters are shown
in Table II.

Figure 9 shows the three-dimensional trajectory of the ball center, plotted in a
xyz frame that is rotated with the plane. Thus, once the state of pure rolling has
been reached, the only acceleration is g sin 20 in the local x direction. The x and y
components of the path are projected onto the z = 0 plane. Figure 10 shows the cor-
responding velocity profiles. Note that when pure rolling occurs (zero z velocity),
the velocity in the y direction remains constant while the x component increases
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Figure 12. Velocity components versus time.

linearly, as expected. Note also that the angular velocities remain constant, except
for the component in the y direction, which also increases linearly in agreement
with |v| = R|w|. It is seen that the two motions are coupled by the friction force
which imposes a no-slip condition.

The same ball was then dropped on the inside surface of a 1 m radius cylinder
aligned in the Y direction. The ball was given an initial offset from the cylinder
axis of 0.3 m in the X direction so that the first impact will cause motion in the
X—Z plane only.

Figure 11 shows the resulting three-dimensional trajectory of the ball center.
The X and Y components of the trajectory are shown below in the Z = 0 plane.
Note the ball oscillations inside the cylinder. Figure 12 shows the velocity profiles.
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Figure 13. Trajectory of sphere impacting a cylinder (3D motion).
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Figure 14. Velocity components versus time.

The angular velocity in the Y direction oscillates, while the other angular velocity
components are zero. Again, there is coupling between the translational and rota-
tional motions through the effect of the friction. See also that the model changes
the orientation of the friction force to correctly impose the no-slip condition. It is
easy to verify that |v| = R|w| during the rolling motion, e.g. |v| = 1 m/s when ||
peaks at 10 rad/s.

The same experiment was then conducted, but this time the ball is given an
initial velocity of 0.3 m/s in the Y direction.

Figure 13 shows the trajectory of the ball center, with the X and Y components
projected onto the z = O plane. Note the ball oscillation as it rolls along the
cylinder. Figure 14 shows the corresponding velocity profiles. As expected, a non-
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zero angular velocity in the Z direction results from the first impact, while the X
component of angular velocity is no longer constant. Note also that the amplitude
of the oscillation does not decay with time. This is to be expected since there is no
spinning or rolling frictional effects included in the proposed contact model, and
the tangential friction force does no work. Figure 15 shows the total energy of the
sphere (kinetic and potential) and the contact model spring as a function of time.
Clearly, energy is dissipated during the impact phase, but as soon as the sphere
settles into pure rolling motion the energy is constant.

4.2. A DOUBLE PENDULUM

Figure 16 shows the schematic diagram of a double pendulum, with a spring placed
at the bottom to represent the surface compliance. The tip of the pendulum is
allowed to hit the surface located 0.61 m below the first joint axis. The govern-
ing equations of motion were obtained using a computer algebra system [19, 27].
The two coupled ODEs and the contact force model are then evaluated and solved
numerically within the Simulink simulation environment using the ode3 fixed-step
solver.

The initial conditions were selected to give the system high kinetic energy
with the tip of the pendulum moving towards the plane. To better illustrate the
effects of the contact model on the system’s response, the joints are modeled as
frictionless. The normal impact model with k& = 10° N/m3/? was set to have a
constant coefficient of restitution of 0.9. The friction model parameters are shown
in Table III.
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Figure 16. Mechanical test system: double pendulum (¢o, = 45 deg, ¢y, = 0 deg,
¢o; = —120 deg/s, ¢o, = 130 deg/s, £; =0.5m, m; =5.0kg, £, =0.25m, my = 2.0kg,
g =9.81 m/s2, h = 0.61 m).

Table 11I. Numerical values for double pendulum experiments.

us Hc 0o (4] a2 Us Tdw

0.15 012 10°N/m ~105Ns/m ONs/m O0.lm/s 0.75s

The resulting joint motion is shown in Figures 17 and 18. The second joint
motion first moves into the positive angles region, and finally settles at a negative
angle around —65 degs. Figure 19 shows the corresponding tip motion in the x—y
plane as it moves from the initial position (marked by a circle) into the bouncing
motion. It can be seen that after bouncing several times, the tip settles into a slowly
decaying oscillatory motion in x. Note that if the contact surface had been well
lubricated and therefore free of the stick-slip effect, the damping caused by the
lubrication would have slowly dissipated the kinetic energy in the system. The
final resting position would then be at the equilibrium where ¢; = 0 deg since
the surface is modeled as being perfectly horizontal. Instead, the stick-slip effect
of the tangential friction model causes the final resting position of the first joint to
be off-center by 2.2 deg. Figure 20 shows that the friction model switches into the
‘sticking mode’ after 6.5 s, as sqw goes to 1.
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Figure 21 shows that the total energy in the system is constant in between col-
lisions, drops rapidly when the tip bounces on the surface and then slowly decays

down to a constant value once lasting contact occurs.

The double pendulum model was then modified to match the benchmark simu-
lation model from [1] where [y = [, = 1 m, m; = m, = 2 kg and the link intertia
are J| = J, = 1/6 kg m?. The energy dissipation occurring over a single impact
is studied at two pendulum configurations (a) at ¢,, = 18 deg, ¢,, = 12 deg,
and (b) at ¢,, = 0 deg, ¢,, = 20.7 deg. The initial velocities in both cases are
$o, = ¢o, = —1 rad/s. The percentage of energy loss is computed for three
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different values of the coefficient of restitution, as a function of friction coeffi-

cient values. In our simulations, the values for ug and pc were set equal so that

Us = e = WU, and vary from O to 1. The other contact model parameters are the

same as before.

The results are shown in Figures 22 and 23 and match perfectly the benchmark
results, except for the e = 0 case, which cannot be implemented with our restitution
model, as this results in a division by 0. For our simulation, e = 0.01 was used
instead, and the resulting energy dissipation is shown to be very similar to the

results for e = 0 of the benchmark simulation.
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Figure 23. Double pendulum results for case (b).

5. Conclusions

A general regularized contact model was characterized and implemented. The model
is suitable for real-time simulation, e.g. in robotic applications, since the resulting
ordinary differential equations are simple, and can be solved using explicit solvers.
The model is separated into compliant normal and tangential force models.

For the normal model, a novel method of computing the damping coefficient
was introduced. The exact relationship between the coefficients of damping and
restitution was derived. As a result, the model behavior is consistent with any
prescribed value (or experimental function) for the coefficient of restitution. The
normal force model can therefore be used to simulate elastic as well as nearly-
plastic impacts, and is not restricted to a specific range of impact velocities. The
vectorized tangential friction model correctly includes stick-slip behavior and the
dwell-time frictional lag effect. The model behavior was shown to be qualitatively
consistent with experimental observations.

Numerical simulation examples of a sphere colliding on a plane and on the in-
terior surface of a cylinder under the action of gravity were provided. The resulting
dynamic behavior is physically realistic and satisfies the condition |v| = R|w|
once the state of pure rolling is reached. The model was also used to simulate
the collision of the tip of a double pendulum on a plane. The double pendulum
simulation results were compared to a benchmark simulation and found to be in
good agreement.
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The authors are currently developing experiments in an effort to validate the
contact model proposed here, and to determine empirical values of the parameters
appearing in our model.
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