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Abstract

A comprehensive modular one-dimensional physics-based mathematical model is developed for non-isothermal

compressible flow, pressure drop, and filtration and regeneration processes in wall-flow diesel particulate filters.

Employing a modified orthogonal collocation method and symbolic computation in Maple™, the governing partial

differential equations are reduced to a control-oriented model governed by ordinary differential equations which can

be solved in real time. Numerical examples are provided to indicate the accuracy and computational efficiency of the

developed model and to study the different behaviors of wall-flow diesel particulate filters.
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Introduction

Due to a better efficiency compared to spark-ignited engines
(e.g. gasoline engines), diesel engines (also known as
compression-ignition engines) are steadily increasing their
market share in many countries. New diesel engines,
however, have to comply with continuously tightening
legislation on particulate matter (soot or black carbon) and
NOx emissions. Diesel particulate matter cannot be removed
or converted into less hazardous compounds by using a
traditional catalytic converter1. In this regard, the idea of a
diesel particulate filter (DPF), consisting of either a fibrous
or a porous ceramic medium to remove diesel particulate
matter (ash and soot) from the exhaust gas of a diesel engine,
has received much attention2. The most popular DPFs are
cellular (honeycomb) ceramic (cordierite, silicon carbide,
or aluminum titanate) wall-flow filters which can capture
more than 85 % of the harmful diesel particulate matter.
However, the wall-flow DPFs produce a (non-negligible)
back-pressure and require regular maintenance to remove the
accumulated soot and ash. Soot is normally removed from
the DPF through a regular on-board passive or active process
known as filter regeneration in which soot is burned off and
ash is left behind. Ash, by definition, is incombustible and
should be removed from the DPF through a much less regular
cleaning process, e.g. by utilizing reverse flow of air through
the DPF to blow out the accumulated material3.

With increasing demands for wall-flow DPFs4, modeling
of their behavior under different operating conditions has
become more important. Fast (or even real-time) computer
models are required for design and optimization of DPFs
as well as controlling the engine combustion, devising and
controlling efficient regeneration schemes, deciding about
the intervals between the regeneration cycles, and on-board
diagnostics of DPFs5–7. In model development, a critical
challenge is including the significant features of the DPF
while keeping the model order as low as possible.

A number of lumped, one-dimensional (1D), and two-
dimensional (2D) models for regeneration, filtration, and
pressure drop of DPFs have been presented and veri-
fied, through experiments or by comparison against three-
dimensional (3D) computational fluid dynamics (CFD) mod-
els. Extensive mathematical models have been developed to
describe the (catalytic and non-catalytic) thermal regener-
ation of DPFs. Bissett and Shadman2;8;9 developed mathe-
matical models for thermal regeneration of wall-flow DPFs.
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Koltsakis and Stamatelos10–12 extended the models of Bis-
sett and Shadman to account for incomplete soot oxidation
and catalytic regeneration effects. A few other lumped and
2D thermal regeneration models were also developed7;13,
but have received less attention compared to the models
developed by Bissett and Shadman. Indeed, the 1D thermal
regeneration model of Bisset9 (and its extention by Kolt-
sakis and Stamatelos12) is probably the most well-received
mathematical tool for representing the non-isothermal com-
pressible flow and heat transfer in DPF channels during
regeneration. There is not, however, a widely-accepted math-
ematical model for the filtration and pressure drop of wall-
flow DPFs. Instead there are many different lumped, 1D, and
2D models5–7;13–23 and none of these appear to be promising
as a general tool applicable to different DPF designs and
operating conditions. Hereof, the 1D across-the-wall models
developed by Haralampous et al.6, Torregrosa et al.24, and
Serrano et al.25 seem to be the most comprehensive models
available in the literature.

Many of the aforementioned regeneration, filtration, and
pressure drop models do not take into account the transient
terms of the flow and the effect of exhaust gas pressure on
its density. Instead, these models are based on considering a
quasi-steady-state compressible flow where the gas density
is only related to the gas temperature and the (constant)
ambient pressure. Therefore, they are inappropriate for
modeling DPFs subject to transient flows (e.g. DPFs placed
upstream of the turbocharger and those used in off-road
applications) or highly loaded DPFs where the pressure drop
is high enough to necessitate considering pressure variation
effects on the exhaust gas density. There are only a few
models in which an unsteady and fully compressible flow
is considered inside the channels of wall-flow DPFs24–28.
Except for the model developed by Piscaglia and Ferrari28,
these models lack a 1D regeneration formulation (i.e. they
use lumped equations to calculate the deposit layer thickness
which is assumed to be constant along the inlet channel
length). Apart from Torregrosa et al.24 and Serrano et al.25,
previous models also lack 1D across-the-wall filtration and
pressure drop formulations (i.e. they assume small deposit
and substrate layer thicknesses and use average in-wall
variables in their formulations). In addition, a difficulty
with most of the aforementioned filtration and pressure
drop models is that they are incapable of representing the
nonlinear pressure drop behavior of DPFs during transient
loading, when the deep bed filtration is transforming into the
surface filtration20. The filtration and pressure drop model
developed by Serrano et al.25 is one of the few available
models that can capture this nonlinear pressure drop

behavior. Finally, all of the available 1D models are set up as
numerical models (based on computational finite difference
and finite element approaches) with high computational
costs, which makes them unsuitable for model-based design,
optimization, and control developments. In summary, there
is no comprehensive 1D DPF model in the literature that:

• represents all features of the DPF operation (i.e. its
nonlinear pressure drop, filtration, and regeneration)
by using 1D equations,

• considers transient and fully compressible non-
isothermal flow inside DPF channels,

• and, at the same time, is applicable for model-based
control development and computationally inexpensive
to solve.

The first goal of the present study is to develop a
comprehensive modular physics-based mathematical model
for regeneration, filtration, and pressure drop of wall-flow
monolithic DPFs that is capable of:

• representing the full transient behavior of the non-
isothermal compressible flow inside the channels,

• taking into account the couplings between the pressure
variation and thermal effects (during filtration and
regeneration) and the compressible gas flow inside the
channels,

• and illustrating the nonlinear pressure drop behavior
which is known to take place during the transition from
deep-bed filtration to surface filtration.

The second goal of this study is to address and implement
a method to symbolically convert the developed 1D model
(governed by partial differential equations) into a control-
oriented model (governed by a set of ordinary differential
equations) that can be simulated in real time and be used for
model-based control development.

These goals are pursued in the following sections to
develop the desired control-oriented 1D DPF model. The
developed model is validated by comparing its results
against theoretical and experimental results available in the
literature. Numerical results are also used to illustrate the
appropriateness of the model for real-time applications.

Physics-Based Mathematical Model

Ceramic wall-flow monoliths, shown in Figure 1, are derived
from the flow-through cellular substrates (i.e. extruded
porous ceramic materials) by plugging the opposite ends of
adjacent channels in a checkerboard pattern. They consist
of many parallel channels, typically of square cross-section,
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Figure 1. Wall-flow monolithic diesel particulate filters; left:
actual silicon carbide and cordierite filters 29 (courtesy of NGK),
right: schematics of channels and flow 9.
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Figure 2. Schematics of channels and flow pattern in a
wall-flow monolithic diesel particulate filter.
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Figure 3. Schematic geometry of a quarter inlet/outlet channel
set, considered control volume, and flow pattern.

running axially through the DPF and are distinguished
by their high surface area per unit volume and filtration
efficiency. As shown in Figure 2, the plugged ends of the
upstream (inlet) channels force the diesel exhaust carrying
the soot particles to flow through the porous substrate which
act as a mechanical filter. The porosity of the substrate is
chosen to trap the soot particles at the lateral surfaces of the
inlet channels. The first trapped particles form a layer (cake)
of deposit which will help in filtering the subsequent soot
particles.

The purpose of this section is to develop a modular
comprehensive 1D model for a ceramic wall-flow monolithic
filter. The model should account for both filtration and

regeneration processes and includes sub-model modules
for the fluid dynamics of the exhaust gas inside the
filter channels, the filtration process and its associated
pressure drop across the porous walls, the convectional heat
exchanges between the exhaust gas and the channel walls
and the axial heat conduction in the channel walls, and
the reaction kinetics of the soot oxidation. The equations
representing these sub-models will be solved along with
the exhaust gas state and property equations, as a separate
sub-model module, and the proper initial and boundary
conditions, which can also be considered as a module of the
model. These are explained in more detail in the following
subsections. Note that in this paper the word “wall” is used
to collectively represent both the porous ceramic substrate
of the filter and the porous deposit layer formed by the
accumulated particles.

Assumptions

The main assumption, necessary for a 1D model develop-
ment, is that all the inlet channels have the same geom-
etry, flow, filtration, thermal, heat transfer, and chemical
characteristics, as do the outlet channels. This assumption
is supported by the flow self-adjustment resulting in an
identical deposit layer across the inlet channels9;17. The pres-
sures, velocities, temperatures, and deposit layer thickness
are averaged values over the channel cross-sectional area
or the wall thickness and only vary in the axial direction.
Most notably, the wall-flow temperature and the wall (filter
substrate plus deposit layer) temperature are considered to be
equal and constant over the wall thickness and the wall-flow
pressure is assumed to be the mean value of the pressures
in the inlet and outlet channels and constant over the wall
thickness. The other model assumptions used in this study
are stated in the following subsections.

Considering these assumptions and the schematics and
the lines of symmetry shown in Figure 2, it is sufficient
for modeling purposes to only consider a quarter inlet/outlet
channel set. As shown in Figure 3, this set includes one
quarter of an inlet channel and one quarter of an adjacent
outlet channel.

A differential control volume in the axial direction (x-
axis), as shown in Figure 3, is used to derive the required
governing equations. The independent variables are time (t)
and axial coordinate (x) and the main dependent variables
are velocity (v), pressure (p), and temperature (T ) in the
representative inlet and outlet channels and in the wall
(respectively denoted by v1, p1, T1, v2, p2, T2, and v0, p0,
T0) along with the deposit layer thickness (wd). Recall that
the local wall temperature Tw is assumed to be equal to the
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local wall-flow temperature T0 (i.e. Tw = T0) and, therefore,
is not a separate variable.

Geometry

The changes in the geometry of the channels due to the
thermal effects (e.g. thermal expansions) are assumed to be
negligible. Moreover, the thickness of the plugging sections
at the opposite ends of the inlet and outlet channels is
considered to be negligible compared to the length of the
channels. Therefore, the inlet and outlet channels have the
same constant lengthL. Due to the filtration and regeneration
processes (i.e. accumulation and oxidation of particles),
however, the inlet and outlet channels have different widths
D1 (which is time-varying) and D2 (which is constant).
Based on Figure 3, one can write:

D1 = D2 − 2wd = D2

(
1− 2wd

D2

)
, (1)

where wd is the deposit layer thickness (which varies with
time during the filtration and regeneration processes). Then,
the cross-sectional perimeters Pi and areas Ai of the inlet
and outlet channels, corresponding to the quarter inlet/outlet
channel set shown in Figure 3, will be:

P1

4
= D1,

A1

4
=
D1

2

4
,

P2

4
= D2,

A2

4
=
D2

2

4
.

(2)

In addition, the cross-sectional areas of the filter substrate
and the deposit layer corresponding to the quarter inlet/outlet
channel set shown in Figure 3 may be obtained as:

As

4
=
(
D2 +

ws

2

)
ws = D2 ws

(
1 +

ws

2D2

)
,

Ad

4
=
(
D2 − wd

)
wd = D2 wd

(
1− wd

D2

)
,

(3)

where ws is the thickness of the porous ceramic substrate
(which is a constant).

Fluid Dynamics

Fully-developed flows with negligible gravity and vehicle
acceleration effects are considered inside the channels. The
changes in the mass flow rate due to the filtration or
regeneration are taken to be insignificant. In addition, the
quasi-steady wall-flow is assumed to be perpendicular to
the wall, both when entering the wall and when leaving it,
with properties that are averaged over the wall thickness.
Considering these assumptions and the control volume
shown in Figure 3 and using the general 1D Reynolds

transport theorem30, one can derive the conservation of mass,
linear momentum, and energy equations for the inlet and
outlet channels of the DPF.

The continuity (conservation of mass) equation for the
inlet and outlet channels may be written as:

∂

∂t

(
ρiAi

)
+

∂

∂x

(
ρiAi vi

)
− (−1)

i
(
ρ0 P2 v0

)
= 0, (4)

where equations (1) and (2) are recalled and i = 1

corresponds to the inlet channel and i = 2 indicates the outlet
channel. In equation (4), ρi and vi (i = 1, 2) represent the
density and velocity of the exhaust gas inside the inlet and
outlet channels and ρ0 and v0 are the density and velocity
of the exhaust gas inside the porous wall. In equation (4),
ρ0 P2 v0 represents the average in-wall mass flow rate per
unit length of the channel (see the Appendix).

Similarly, the linear momentum equations in the axial
direction, i.e. x-axis, may be obtained as:

∂

∂t

(
vi ρiAi

)
+

∂

∂x

(
σi ρiAi vi

2
)

+Ai fi

( 1

Di

)(1

2
ρi vi

2
)

+Ai
∂pi
∂x

= 0,
(5)

where pi represents the pressure of the exhaust gas at the inlet
and outlet channels, σi is the linear momentum coefficient
which can be calculated from the assumed flow profile in
the channels30, and fi is the friction coefficient. In general,
the friction coefficient fi is a function φf,i of the channel
Reynolds number Rei and relative roughness

εi
Di

30:

fi = φf,i(Rei,
εi
Di

) = φf,i(
ρi viDi

µi
,
εi
Di

), (6)

where µi is the (dynamic) viscosity of the exhaust gas in
the inlet and outlet channels. Assuming a fully-developed
laminar flow of the exhaust gas inside the square cross-
section channels of the DPF, one can simply write31:

fi = φf,i(Rei) =
Cf,i
Rei

=
Cf,i µi
ρi viDi

, Cf,i = 56.92. (7)

Alternatively, one can use the more accurate equation
suggested by Bissett et al.32

Analogously, the conservation of energy equations for the
inlet and outlet channels will be derived as:

∂

∂t

((
ui + σi

vi
2

2

)
ρiAi

)
+

∂

∂x

((
hi + κi

vi
2

2
− 4

3

µi
ρi

∂vi
∂x

)
ρiAi vi

)
− (−1)

i
((
h0 +

v0
2

2

)
ρ0 P2 v0

)
= q̇i,

(8)
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where ui is the exhaust gas internal energy in the inlet and
outlet channels, hi and h0 are the exhaust gas enthalpies at
the channels and inside the wall, κi is the kinetic energy
coefficient calculable from the assumed flow profile in the
channels30, and q̇i is the rate of the heat transferred to the
fluid in the channels.

The 6 relations of equations (4), (5), and (8) (obtained
by substituting i = 1, 2) represent the dynamics of the non-
isothermal compressible flow in the channels.

Filtration and Pressure Drop Across the Wall

It is assumed that the particles are uniformly distributed
between the inlet channels and particle deposition is directly
proportional to the wall-flow mass flow rate. Accumulated
ash is assumed to be negligible. The parameters, variables,
and equations used to characterize the filtration process and
its associated pressure drop are not explicitly dependent on
the flow pressures and temperatures. The porosity and mean
pore size of the filter substrate and porosity of the deposit
layer are assumed to remain constant during the filtration and
regeneration. It is also worthwhile to note that the pressure
drops associated with expansion and contraction of the flow
at the inlet and outlet ducts of the whole DPF are not dealt
with in this paper (these can be added as lumped parameter
equations if desired).

As noted previously, the average exhaust gas pressure
across the wall system (useful for calculation of the gas
density inside the wall) is taken to be the mean value of the
pressures inside the inlet and outlet channels, i.e.:

p0 =
1

2

(
p1 + p2

)
. (9)

About the filtration efficiency, note that as soon as the first
particles are collected by the filter substrate, they bridge over
(or aggregate) and start forming a layer or cake of deposit
which itself acts as a very fine filter. As a consequence, the
filtration efficiency increases as particles are being trapped
and the deposit layer is being formed14. The overall filtration
efficiency is defined as the ratio of the mass of particles
trapped inside the filter to the total mass of the particles
entering the filter. This filtration efficiency η is assumed
to increase asymptotically (based on a negative exponential
function) as the first particles are being collected and reach
its maximum as soon as a deposit layer is initialized, i.e.:

η = ηmax −
(
ηmax − ηmin

)
exp

(
− wd

wd,ref

)
, (10)

where ηmin is the clean filter efficiency, ηmax is the
maximum filtration efficiency achieved after initiation of

a deposit layer, and wd,ref is a reference deposit layer
thickness that can be determined experimentally. Note
that this phenomenological equation can be replaced with
more complex equations, e.g. those suggested by Opris
and Johnson14 or those by Serrano et al.25, if a more
accurate filtration efficiency calculation is desired. Having
the filtration efficiency η and the in-wall mass flow rate per
unit length of channel ρ0 P2 v0, the rate of change of the
deposit layer thickness due to the filtration will be obtained
as (see the Appendix):

∂wd,f

∂t
=

1

ρd P1

(
η X1 ρ0 P2 v0

)
, (11)

where X1 is the mass fraction of the particulate matter (i.e.

mass of particles per unit mass of the exhaust gas) in the inlet
channel.

For across-the-wall pressure drop calculations, note that
the complexity of the flow pattern inside the porous wall
does not allow for an analytic expression to be derived.
Many authors have used the quasi-empirical Darcy’s law
and related the pressure drop to the product of exhaust
gas viscosity and the wall-flow velocity5;13–15;17;20;22. For
higher wall-flow velocities, an inertial term, i.e. the product
of exhaust gas density and the wall-flow velocity squared,
is known to affect the pressure drop calculations. There
have been authors who suggested the addition of this
inertial term, i.e. Forchheimer’s extension6;7;9;16;18;19;21. In
these correlations, Darcy’s permeability and Forchheimer’s
inertial coefficients are not easy to interpret, and are to be
measured experimentally for different filter substrates and
deposit layers. Accordingly, it is preferred in this paper to use
a quasi-empirical correlation containing easier-to-measure
parameters, like porous media properties, and well-known
flow parameters/variables for pressure drop calculations
across the DPF porous wall. One such correlation is the
Ahmed and Sunada equation (with the same basis as Darcy’s
law with Forchheimer’s extension), which may be considered
both a phenomenological and a Navier-Stokes type model,
combined with the modified Ergun equation, which includes
a model of the porous media19;33. By using this equation
and by considering the schematic shown in Figure 3, the
assumptions noted previously, and the approach taken by
Konstandopoulos et al.17, one can obtain the following
expression for the pressure drop across the wall system (see
the Appendix):

∆p = p1 − p2 = Cv0 v0 + Cv02 v0
2, (12)
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where:

Cv0 =
(
αsD2 ln(

D2 + ws

D2
) + αd

D2

2
ln(

D2

D1
)
)
µ0,

Cv02 =
(
βs

D2 ws

D2 + ws
+ βd

D2 wd

D1

)
ρ0,

(13)

and:

αs = α′s
(1− εs)

2

εs
3 ds

2 , βs = β′s
(1− εs)

εs
3 ds

,

αd = α′d
(1− εd)

2

εd
3 dd

2 , βd = β′d
(1− εd)

εd
3 dd

.

(14)

In equations (13) and (14), µ0 is the exhaust gas viscosity
inside the wall, εs and ds are the ceramic substrate porosity
and mean pore size, εd and dd are the deposit layer
porosity and mean pore size, and α′d, β′d, α′s, and β′s

are the nondimensional constants of the deposit layer and
the ceramic substrate to be determined experimentally. One
can assume α′d = α′s = 150 and β′d = β′s = 1.7533. The
relation given in equation (12) may be solved to obtain the
following expression for the wall-flow velocity v0:

v0 =
1

2 Cv02

(√
Cv0

2 + 4 Cv02 ∆p− Cv0
)
, (15)

where a positive pressure drop (i.e. ∆p > 0) implies a
positive wall-flow velocity (i.e. v0 > 0).

Now it is useful to take into account the nonlinear
relationship between the pressure drop and the deposit layer
thickness for the limiting case where wd → 09;14;20. For this
purpose, it can be considered that the first particles trapped
by the wall place are close to each other and form a porous
medium with small pores of sizes comparable to the size of
soot particles. The later trapped particles, however, aggregate
or bridge over each other and form a porous medium with
larger pores of sizes a few times larger than the size of soot
particles. This pore size variation results in a faster increase
of the pressure drop in the beginning of the deposit layer
formation. Therefore, the mean pore size of the deposit layer
dd is assumed to asymptotically grow as the deposit layer
thickness wd is increased, i.e.:

dd = dd,max −
(
dd,max − dd,min

)
exp

(
− wd

wd,cr

)
, (16)

where dd,min and dd,max are the minimum and maximum
values of the deposit layer pore size and wd,cr is a critical
thickness—all to be determined experimentally. Although
the porosity of the deposit layer may also vary as the deposit
layer is being formed, due to a general lack of information
about this variation, the porosity of the deposit layer is

assumed to have a constant average value during the filtration
and regeneration.

The relations given in equations (9) and (15) are
required to complement the fluid dynamic equations derived
previously and the relation in equation (11) is useful to obtain
one of the key state variables, i.e. the deposit layer thickness
wd (see equation (32)).

Heat Transfer

The temperatures of the deposit layer and the filter substrate
are taken to be equal and constant over the wall thickness
and are collectively represented as the wall temperature.
The wall-flow temperature (i.e. temperature of the exhaust
gas passing through the wall) is equal to this local
wall temperature and, therefore, is constant over the wall
thickness (i.e. the inter-phase heat transfer between the wall
and the wall-flow is assumed to be so large that solid and
fluid temperatures may be taken to be equal). It is also
assumed that there is no heat generation (e.g. due to soot
oxidation and other chemical reactions) inside the inlet and
outlet channels. There are only convection heat transfers
inside the channels, between the exhaust gas and the wall,
and conduction heat transfer inside the wall, in the axial
direction. Considering these assumptions and the schematic
shown in Figure 3, the corresponding equations for the heat
transfer in the inlet and outlet channels of the DPF can be
obtained.

The rate of heat transferred to the fluid in the channels
(per unit length of the channel), i.e. q̇i in equation (8), can be
written as:

q̇i = qi,c + qi,g = ci Pi

(
Tw − Ti

)
+ 0

= ci Pi

(
Tw − Ti

)
,

(17)

where Tw and Ti are the wall temperature and the exhaust
gas temperature inside the channels, qi,c is the convection
heat transport in the channels, qi,g is the heat generated
in the channels (e.g. due to any chemical reaction), and ci
is the local convection heat transfer coefficient in the inlet
and outlet channels. Recall that, based on the assumptions,
Tw = T0 and qi,g = 0.

In addition, one can derive the following equation for the
conduction heat transport in the axial direction inside the
filter wall (i.e. the filter substrate plus the deposit layer) and
derive: (

ρsAs Cp,s + ρdAd Cp,d

) ∂Tw

∂t

− ∂

∂x

((
ksAs + kdAd

) ∂Tw

∂x

)
= q̇w,

(18)
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where ρs, ks, Cp,s and ρd, kd, Cp,d are the density, thermal
conductivity, and specific heat of the filter porous substrate
and the porous deposit layer respectively and q̇w is the rate
of heat transferred to the wall per unit length of the channel
which can be written as:

q̇w = q̇w,c + q̇w,g

= c1 P1

(
T1 − Tw

)
+ c2 P2

(
T2 − Tw

)
+ q̇w,g,

(19)

where q̇w,c is the rate of convection heat transport to the wall
and q̇w,g is the rate of the heat generated in the wall (e.g.

due to a regeneration process), both per unit length of the
channel. Assuming that the regeneration process is the only
source of the heat generation in the wall, an expression for
q̇w,g is given in equation (30).

The relation in equation (17) complements the conserva-
tion of energy relations given by equation (8), which along
with equation (18) represent the transportation of the heat in
the channels and in the filter wall.

It is worth noting that the thermal conductivity and
specific heat of the porous ceramic substrate and the porous
deposit layer may be calculated based on their porosity, the
properties of their solid phases, and the properties of the
wall-flow exhaust gas. For the porous ceramic substrate one
can derive14;34:

ks = k0

(
1 +

3 (1− εs) (kssk0 − 1)

3 + εs (kssk0 − 1)

)
,

ρs Cp,s =
(

1− εs

)
ρss Cp,ss + εs ρ0 Cp,e,

(20)

where εs represents the porosity of the substrate, ρss, kss,
and Cp,ss are the density, thermal conductivity, and specific
heat capacity of the solid (nonporous) ceramic and ρ0, k0,
and Cp,e are the properties of the wall-flow exhaust gas.
Analogously for the porous deposit layer one can write:

kd = k0

(
1 +

3 (1− εd) (ksdk0 − 1)

3 + εd (ksdk0 − 1)

)
,

ρd Cp,d =
(

1− εd

)
ρsd Cp,sd + εd ρ0 Cp,e,

(21)

where εd represents the porosity of the deposit layer and
ρsd, ksd, and Cp,sd are the density, thermal conductivity, and
specific heat capacity of the solid particles (mainly carbon
particles) forming the deposit layer.

Also note that by neglecting the entrance effects, the
local heat transfer coefficients ci (i = 1, 2), associated with
the forced convection heat transport by the 1D flow of the
exhaust gas inside the inlet and outlet channels, can be
determined from the channel Nusselt number Nui which

itself can be expressed as a function φNu,i of the channel
Reynolds number Rei and the channel Prandtl number Pri

31:

ci =
Nui ki
Di

,

Nui = φNu,i(Rei,Pri) = φNu,i(
ρi viDi

µi
,
Cp,e µi
ki

),

(22)

where ki and Cp,e are the thermal conductivity and the
(constant pressure) specific heat capacity of the exhaust gas
in the inlet and outlet channels. For the cases where the
Prandtl number Pri of the fluid does not vary appreciably
(e.g. for air), equation (22) reduces to31:

ci =
Nui ki
Di

,

Nui = φNu,i(Rei) = φNu,i(
ρi viDi

µi
).

(23)

By assuming a fully-developed laminar flow of the exhaust
gas inside the square cross-section channels of the DPF, one
can simply derive Nui = 3.6131 or:

ci =
3.61 ki
Di

. (24)

It is also possible to use the more complex and accurate
equation suggested by Bissett et al.32

Reaction Kinetics

As noted previously, typical diesel particulate matter consists
mainly of combustible carbonaceous cores, absorbed
compounds, sulfates, and metal oxides which can react
with the oxygen present in the exhaust gas. However,
the main chemical reaction that is usually considered to
occur in a DPF (during the regeneration at sufficiently high
temperatures) is the soot particle oxidation, i.e. first-order
heterogeneous (incomplete) oxidation of carbon. Note that
the oxidation of soot particles aided by nitrogen dioxide
NO2, which is the dominant regeneration mechanism in most
catalytic DPFs, is not considered in this work. It is assumed
that this oxidation occurs only inside the deposit layer
(the oxidation inside the channels or in the filter substrate
wall are negligible) and results in shrinkage of the deposit
layer without changing its physical properties such as bulk
density and porosity. Also, it is assumed that the convection
transports of oxygen in the channels and wall dominate the
diffusion transports, and that the depletion of oxygen in the
reactive deposit layer does not influence the upstream oxygen
concentration. Therefore, the oxygen concentration in the
inlet channel is assumed to remain constant in the axial
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direction, and be equal to the oxygen concentration of the
exhaust gas entering the filter.

Usually the soot particle oxidation is represented as the
complete oxidation of carbon to carbon dioxide CO2

9.
However, carbon monoxide CO has been observed in
noticeable quantities in the reaction products downstream
the DPF in several works35, suggesting the possibility
of an incomplete oxidation. Based on the relatively large
difference between the formation enthalpies of CO and CO2,
it is expected that an incomplete oxidation significantly
affects the heat released during the regeneration and,
consequently, the entire regeneration process. In this work,
the soot particle oxidation is mathematically modeled as an
incomplete carbon oxidation (in the absence of a catalyst).
The very complex incomplete carbon oxidation is lumped in
(or simplified to) an apparent one-step kinetic scheme based
on the following reaction10;12:

C +
(1 + γ

2

)
O2 −−→ γ CO2 +

(
1− γ

)
CO (25)

or equivalently:

C +
(1 + γ

2

)
O2 −−→ CO1+γ, (26)

where γ (0 ≤ γ ≤ 1) is the index of the completeness of the
carbon oxidation.

Considering the aforementioned assumptions and the
reaction given by equation (25) or (26), the variation of the
oxygen molar concentration across the wall may be derived
as (see the Appendix):

∆Y

Y1
=
Y1 − Y2

Y1

= 1− exp
(
− SdKd

(1 + γ

2

) wd

v0

(
1− wd

D2

))
,

(27)
where Y1 and Y2 are the oxygen molar concentrations in
the inlet and outlet channels, Sd is the specific surface (or
area) of the porous deposit layer, and Kd is the reaction rate
coefficient inside the deposit layer which can be expressed
as2;9;10;12:

Kd = K Tw exp
( −E
Ru Tw

)
, (28)

where K is the collisions frequency factor (or reaction rate
constant), E is the activation energy of the carbon oxidation,
and Ru is the universal gas constant. Note that the molar rate
of oxygen depletion (per unit length of the channel), which
is of importance for determination of the rate of particle
depletion and also the rate of heat generation inside the

wall, may be obtained as
ρ0 P2 v0

Me
∆Y , where Me is the

molecular weight (or molar mass) of the exhaust gas. Also,

using equation (25) or (26), the molar rate of the carbon
particle depletion (per unit length of the channel) can be

calculated as
ρ0 P2 v0

Me
∆Y

2

1 + γ
.

Now the rate of change of the deposit layer thickness due

to the regeneration (oxidation), i.e.
∂wd,r

∂t
, can be related to

the molar rate of the carbon particle depletion and one can
derive (see the Appendix):

∂wd,r

∂t
=
−1

ρd P1

(
MC

ρ0 P2 v0

Me
∆Y

2

1 + γ

)
, (29)

where MC is the molecular weight of carbon. Additionally,
the rate of the heat generation per unit length of the channel,
inside the wall (or more accurately inside the deposit
layer) and due to the carbon particle oxidation, i.e. q̇w,g in
equation (19), can be obtained as:

q̇w,g = HCO1+γ

ρ0 P2 v0

Me
∆Y

2

1 + γ
, (30)

where HCO1+γ
is the heat or enthalpy of reaction for the

incomplete carbon oxidation noted in equation (25) or (26),
which can be calculated as a combination of the specific
heats or formation enthalpies of CO2 and CO, HCO2 and
HCO:

HCO1+γ
= γ HCO2 +

(
1− γ

)
HCO. (31)

The relations given by equations (30) and (31) are used
to complement the through-the-wall heat transfer equation
in equations (18) and (19), and the relation given by
equation (29) is useful to represent the rate of change of the
deposit layer thickness wd (see equation (32)).

Deposit Layer Thickness

Based on equations (11) and (29), when taking into account
both the filtration and the regeneration processes, the
following relation can be obtained for the overall rate of
change of the deposit layer thickness:

∂wd

∂t
=
∂wd,f

∂t
+
∂wd,r

∂t

=
ρ0 P2 v0

ρd P1

(
η X1 −

MC

Me
∆Y

2

1 + γ

)
.

(32)

State and Property Equations

The equations derived in the previous subsections, governing
the fluid dynamics, heat transfer, reaction kinetics, pressure
drop, and filtration process inside the DPF, contain
parameters which can depend on others and vary in time.
Some of these varying parameters, such as the friction
coefficient fi and convection heat transfer coefficient ci,
were defined right after their usage. The purpose of this
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section is to define the variable parameters which are
functions of the state variables and were not described
previously.

Assuming that the exhaust gas is ideal, the equation of
state for the exhaust gas (inside the inlet and outlet channels
and the wall) may be written as:

ρi =
pi

Re Ti
, ρ0 =

p0

Re T0
, (33)

where Re is the exhaust gas specific gas constant which may
be obtained by dividing the universal gas constant Ru by

the molecular weight of the exhaust gas Me, i.e. Re =
Ru

Me
.

Also, the enthalpy of the exhaust gas (in the channels and the
wall) is:

hi = Cp,e Ti, h0 = Cp,e T0, (34)

and the internal energy of the exhaust gas (in the channels
and the wall) may be expressed as:

ui = hi −
pi
ρi

= Cp,e Ti −Re Ti = Cv,e Ti,

u0 = h0 −
p0

ρ0
= Cp,e T0 −Re T0 = Cv,e T0,

(35)

where Cv,e = Cp,e −Re is the constant volume heat
capacity of the exhaust gas.

The viscosity and thermal conductivity of the exhaust gas
may be calculated according to9:

µi = Cµ
√
Ti, µ0 = Cµ

√
T0, (36)

and:

ki =
(
Cp,e + Ck

)
µi, k0 =

(
Cp,e + Ck

)
µ0, (37)

where Cµ and Ck are constant coefficients which are given
in Table 1. In addition, the heat capacity for the solid
(nonporous) phases of the deposit layer and the ceramic
substrate may be obtained from9:

Cp,ss = CCp,ss,i + CCp,ss,ii Tw + CCp,ss,iii Tw
−2,

Cp,sd = CCp,sd,i + CCp,sd,ii Tw + CCp,sd,iii Tw
−2,

(38)

where CCp,ss,i, CCp,ss,ii, CCp,ss,iii and CCp,sd,i, CCp,sd,ii,
CCp,sd,iii are constant coefficients as given in Table 1.

Boundary and Initial Conditions

The partial differential equations governing the processes
inside the DPF require appropriate initial and boundary
conditions to be solvable. In regard to the initial conditions
(ICs) at time t = 0, the DPF starts from a static clean

condition, in equilibrium with the ambient pressure and
temperature, in which:

v1 = v2 = 0, p1 = p2 = pa,

T1 = T2 = T0 = Ta, wd = 0,
(39)

where Ta is the ambient temperature and pa is the ambient
pressure.

About the boundary conditions (BCs) at the beginning
of the inlet channel where x = 0, it is assumed that the
conditions of the exhaust gas entering the DPF, i.e. its
velocity ve,in and temperature Te,in, are known and one can
write9:

v1 = ve,in, T1 = Te,in,

v2 = 0,
∂Tw

∂x
= 0.

(40)

Note that, to get a smooth solution, the inlet exhaust gas
conditions should initially be in accordance with the initial
conditions noted in equation (39). Also, by assuming that the
pressure of the exhaust gas at the end of the outlet channel,
i.e. pe,out, is known (e.g. equal to the ambient pressure), the
BCs at the end of the outlet channels where x = L can be
written as:

p2 = pe,out,

v1 = 0,
∂Tw

∂x
= 0.

(41)

It is worthwhile to note that by substitution from the
BCs in equations (40) and (41) into the linear momentum
equations given by equation (5) one can derive two extra BCs
as:

at x = 0 :
∂p2

∂x
= 0,

at x = L :
∂p1

∂x
= 0,

(42)

which may be useful when solving the DPF equations
numerically.

Model Order Reduction

As noted previously, the second goal of this study is to
convert the comprehensive 1D model of wall-flow DPFs,
developed in the previous section as the first goal, into a
control-oriented model which is still accurate but can be
solved in real-time. Such a computer model will be useful for
design optimization and advanced controller development.
The equations of the DPF model, derived in the previous
section, can be combined into a set of 8 nonlinear partial
differential equations (PDEs). However, achieving a real-
time simulation of this set of PDEs, where variables change
in time and axial direction (i.e. x-axis), is a challenge.
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There are several approximation schemes by which the
spatial domain of the model can be discretized and the
governing PDEs can be reduced or converted into a system
of ordinary differential equations (ODEs) that can be solved
efficiently. Among different discretization or approximation
schemes, the commonly-used numeric approaches, such
as finite difference and finite element formulations, are
computationally expensive and hide the physics of the model.
Black box techniques such as look up tables and neural
networks are fast but offer no access to model parameters.
Neither of these methods are, therefore, suitable to reduce
distributed-parameter models for model-based design and
control purposes.

Symbolic reduction methods, such as weighted residual
schemes and variational principles36, can generate reduced
models which both expose the model parameters and
are computationally efficient. If combined with symbolic
simplification algorithms of computer algebra packages,
such as Maple™, symbolic reduction methods can result in
very efficient models. Further reduction of the so-obtained
symbolic models is also possible by using advanced model
order reduction schemes, such as the proper orthogonal
decomposition.

Method of Weighted Residuals

The method of weighted residuals (MWR) is a general
method of symbolically reducing time-dependent PDEs
to ODEs36 which encompasses several schemes, such as
subdomain, collocation, Galerkin, and least squares methods.
It is based on expanding the unknown solution as the
finite summation of a set of known trial spatial functions
multiplied by unknown time-varying coefficients. There are
three important steps in the application of MWR: choice of
trial functions, choice of a criterion (weighting functions),
and calculation of weighted residuals. First, the approximate
solution is substituted into the PDE to form a residual. Then,
using a (complete) set of known weighting functions, the
weighted integrals of the residual are set to zero to derive
a set of ODEs from which the unknown coefficients can be
computed.

The Galerkin method is one of the best known approaches
where the weighting functions are chosen to be the same as
the trial functions. The method forces the residual to be zero
by making it orthogonal to each member of a complete set of
functions. The method, however, is not suitable for nonlinear
PDEs where the integrals of the weighted residual cannot
be calculated analytically and may result in a very complex
system of ODEs if a numerical integration has to be used.
This is also true for other MWR schemes with other choices

of the weighting functions in which the analytic integration
of the weighted residual is not feasible.

One exception is the collocation method in which the
weighting functions are chosen to be the displaced Dirac
delta functions. This choice of weighting functions reduces
the integration over the domain to the evaluation at a point
inside the domain. Thus, the method forces the residual
to be zero at some specified collocation points and, since
no spatial integration is required, it drastically reduces the
drudgery of setting up the ODEs. It has proved to be
suitable for nonlinear PDEs and when applicable, is highly
recommended. It is worthwhile to note that the method can
be as accurate as the Galerkin approach (and other MWR
schemes) provided a high-order approximation is used.
These higher order approximations are easily achievable by
using the collocation method.

Orthogonal Collocation Method

In collocation methods, the low-order approximation results
depend on the choice of collocation points. There are
choices of collocation points that make the calculations more
reliable and accurate. The orthogonal collocation method
(OCM)36;37 uses a set of n orthogonal polynomials, up to
order (n− 1), as trial functions and the roots of the (n+ 1)th
orthogonal polynomial (of order n) as collocation points.
Thus the choice of collocation points is no longer arbitrary.
The residual function is, therefore, forced to contain the
(n+ 1)th orthogonal polynomial as a factor, because its
zeros are set to match the roots to the (n+ 1)th polynomial.
Due to orthogonality relations, the OCM has an accuracy that
is comparable to that of the Galerkin method37.

Noting that the OCM approximate solution only depends
on the collocation points and not on the form of trial
polynomials, two adjustments on trial polynomials are
suggested and used in this work to expedite the reduction
procedure. First, Lagrange polynomials of order (n− 1),
based on n nodal points, are used as trial functions to
ensure that the unknown coefficients have the same physical
meaning and order of magnitude (they would represent the
solution at the nodal points). This helps in smoothing the
behavior of the final ODEs. Second, the n nodal points
of the Lagrange polynomials are set to coincide with
the n collocation points. As shown in the following, this
significantly simplifies the form of the final ODEs.

For illustration of how the suggested (modified) OCM can
effectively reduce PDEs to a set of ODEs, consider a general
nonlinear 1D PDE of the form:

φ(y(x, t), ẏ(x, t), y′(x, t), x, t) = 0, (43)
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where φ is a general nonlinear function (boundary conditions
are neglected for simplicity of description), x and t are the
spatial coordinate and time, y(x, t) is the unknown solution,
and ẏ(x, t) and y′(x, t) are time and spatial derivatives of
y(x, t). The approximate solution is written as:

ȳ(x, t) =

n∑
i=1

Yi(t)Li(x), (44)

where Yi(t) = Yi are unknown coefficients and Li(x) are the
Lagrange trial polynomials with nodal points x̂j :

Li(x) =

n∏
j=1,j 6=i

x− x̂j
x̂i − x̂j

. (45)

Note that:

Li(x̂j) = δij =

{
1 i = j

0 i 6= j
, (46)

where δij is the Kronecker delta.

Substitution from equation (44) into equation (43) results
in the residual function:

R(Yi, Ẏi, x, t) =

φ(

n∑
i=1

Yi Li(x),

n∑
i=1

Ẏi Li(x),

n∑
i=1

Yi Li
′(x), x, t),

(47)

where Li′(x) is the spatial derivative of Li(x) with respect
to x. The final ODEs are obtained by forming weighted
residuals (the residual function evaluated at the collocation
points x̄j) and setting them equal to zero:

Wj(Yi, Ẏi, t) = R(Yi, Ẏi, x, t)

∣∣∣∣
x=x̄j

=

φ(

n∑
i=1

Yi Li(x̄j),

n∑
i=1

Ẏi Li(x̄j),

n∑
i=1

Yi Li
′(x̄j), x̄j , t) = 0,

j = 1, . . . , n.
(48)

The n ODEs in equation (48) are the reduced form of the
PDE given in equation (43).

Now, by recalling equation (46), for the case where the
nodal points of the trial Lagrange polynomials are the same
as the collocation points (x̂j = x̄j), the set of ODEs in
equation (48) is reduced to:

Wj(Yi, Ẏi, t) = φ(Yj , Ẏj ,

n∑
i=1

Yi Li
′(x̂j), x̂j , t) = 0,

j = 1, . . . , n,

(49)

which, for the case where φ is linear with respect to the ẏ,
can be solved to obtain:

Ẏj = φ′(Yj ,

n∑
i=1

Yi Li
′(x̂j), x̂j , t), j = 1, . . . , n. (50)

A comparison between the ODEs given by equation (49)
or (50) and those in equation (48) indicates that the modified
OCM results in a set of ODEs which are decoupled to a
great extent and, therefore, are significantly less expensive
to solve. This modified OCM will be used to reduce the
governing PDEs of the developed DPF model into a system
of computationally-efficient ODEs as shown in the following
section.

Numerical Results

In this section the accuracy and computational efficiency
of the developed DPF model will be illustrated through
some numerical examples. The examples consider a single
ceramic wall-flow DPF, without the rest of the diesel after-
treatment components, subjected to transient engine flows
without cycle-by-cycle variations.

The model parameters for these examples (mainly
corresponding to typical cordierite EX-80 100/17 and
EX-80 200/12 filters9;10;13;38) are given in Table 1. The
examples are designed to describe the capabilities of the
model in representing the nonlinear pressure drop, pressure-
induced compressibility effects, and transient flow dynamics
associated with a wall-flow DPF.

The modified OCM, suggested in the previous section,
is implemented as a ninth-order approximation (n = 9) in
Maple™ and is used to convert the 7 PDEs of the derived
DPF model into a set of 63 ODEs. These ODEs are then
numerically integrated in MapleSim™ by employing the
“Implicit Euler” procedure, which is a fixed time-step solver
in MapleSim™. To demonstrate the computational efficiency
of the model, the required time for simulating each transient
(unsteady) example (averaged over 5 runs on a desktop PC
equipped with an Intel® Core™ i7-4790 @ 3.90 GHz CPU
and 16 GB of RAM, running the 64-bit Windows 10) is
measured and reported. The constant time-step is set to be
0.01 s for all the examples. One should be careful that, for
the cases when the DPF model is fed with (high-frequency)
engine cycle-by-cycle data, this time-step is not sufficiently
small to capture the high-frequency time dependencies nor
is it small enough to guarantee the convergence of the
numerical time integrator. Accuracy and efficiency of the
developed model in these cases will not be considered in this
paper and will be left to a future work.

Prepared using sagej.cls



12 Journal Title XX(X)

Table 1. Summary of the DPF model parameters (typical
cordierite EX-80 100/17 and EX-80 200/12 filters)

Parameter Value for
EX-80 100/17 EX-80 200/12

N 3006 6013
L 0.305 m
D 2.11 mm 1.49 mm

σ1, σ2 1
Cf,1, Cf,2 56.94
Nu1,Nu2 3.61

ws 0.43 mm 0.31 mm
εs 48 %
ds 12 µm
α′s 150
β′s 1.75
ρs 1290 kg/m3

ks 2.093 W/(m ·K)
CCp,ss,i 1.071× 10+3 J/(kg ·K)
CCp,ss,ii 1.561× 10−1 J/(kg ·K2)
CCp,ss,iii −3.436× 10+7 J ·K/kg
wd,ref 3.5 µm
wd,cr 3.5 µm
εd 72.5 %

dd,min 0.076 µm
dd,max 0.228 µm
α′d 150
β′d 1.75
ρd 550 kg/m3

kd 0.837 W/(m ·K)
Sd 5.5× 10+7/m
CCp,sd,i 1.728× 10+3 J/(kg ·K)
CCp,sd,ii 9.667× 10−2 J/(kg ·K2)
CCp,sd,iii −1.774× 10+8 J ·K/kg
Ru 8.314 J/(mol ·K)
Me 0.029 kg/mol
Re 286.7 J/(kg ·K)
Cp,e 1172 J/(kg ·K)
Cv,e 885.3 J/(kg ·K)
Cµ 1.364× 10−6 kg/(m · s ·K1/2)
Ck 3.586× 10+2 J/(kg ·K)
K 596 m/(s ·K)
E 1.5× 10+5 J/mol
HCO 3.934× 10+5 J/mol
HCO2 0.984× 10+5 J/mol
γ 0.6
ηmin 90 %
ηmax 100 %
Xin 32× 10−6

Yin 0.154
pa 101.325 kPa
Ta 300 K

Example 1: Steady-State Flow in the Channels

As the first example, the DPF model is simulated under the
steady-state conditions used by Konstandopoulos et al.16,
i.e. inlet mass flow and temperature of 0.18 kg/s and 673 K

(or inlet velocity and density of 24.8 m/s and 0.54 kg/m3).

x/L
0 0.25 0.5 0.75 1

v̂

0

0.35

0.7

1.05

1.4
Konstandopoulos’s Model

Our Model

Figure 4. Dimensionless inlet (blue), outlet (red), and in-wall
(green) velocities for a steady-state flow in a clean EX-80
100/17 DPF; our model prediction versus Konstandopoulos’s
1D model data 16.

The model parameters are those in Table 1 corresponding
to the EX-80 100/17 filter (first column values) except that
εs = 43 %.

The dimensionless inlet, outlet, and in-wall velocities are
shown in Figure 4 and reasonably match those reported by
Konstandopoulos et al.16 which are obtained using a 1D
theoretical model and a 3D CFD model. These dimensionless
velocities, i.e. inlet v̂1, outlet v̂2, and in-wall v̂0, are defined
as:

v̂1 =
v1

ve,in
, v̂2 =

v2

ve,in
, v̂0 =

v0 4L

ve,inD1
. (51)

Example 2: Transient Filter Loading and
Nonlinear Pressure Drop

The second example is aimed at illustrating the nonlinear
pressure drop of a wall-flow DPF during transient loading.
The example is based on the experimental data reported by
Suresh et al.38 and Zhang et al.13 where a cordierite EX-80
200/12 filter is subject to inlet mass flow and temperature
of 0.13 kg/s and 608 K. The model parameters are those in
Table 1 corresponding to the EX-80 200/12 filter (second
column values).

The predicted and measured38 pressure drops across
the filter during the 4-hour loading (filtration) process are
depicted in Figure 5. No systematic parameter identification
was performed to obtain the appropriate model parameters
(only some minimal parameter tuning was done); however,
Figure 5 illustrates the strong capability of the model to
represent the nonlinear pressure drop behavior of DPFs.

It is also worthwhile to note that it only takes about 155 s

to run this 4 h (14 400 s) simulation of a loading wall-flow
DPF.
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Figure 5. Nonlinear pressure drop variation during the loading
of an EX-80 200/12 DPF; our model prediction versus
experimental data reported by Suresh et al. 38.

Example 3: Transient Complete Regeneration

The third example describes a simple complete regeneration
of a wall-flow DPF which was considered by Bissett et

al.9. It is based on exposing a loaded wall-flow DPF, with
a deposit layer of 11.17 µm thickness, to an inlet flow of
hot exhaust gas with mass flow rate and temperature of
0.038 kg/s and 950 K. The model parameters are those
in Table 1 corresponding to the EX-80 100/17 filter (first
column values) except that L = 0.254 mm.

The variations of the total pressure drop across the DPF
and the maximum temperature inside the DPF substrate
during the regeneration are shown in Figures 6 and 7.
Again, considering the minimal parameter adjustments that
were performed, the figures demonstrate a good agreement
between the 1D model developed in this paper and the 1D
model of Bissett et al.9.

The main observable difference is that our model predicts
a faster regeneration process which starts sooner and,
therefore, calculates a higher maximum temperature inside
the DPF. This is even more evident in Figures 8 and 9 which
show three snapshots of the wall temperature profile and the
flux of wall mass flow rate (i.e. ρ0 v0) profile along the DPF
length. Note that our model’s snapshots at 22.4 s, 27.5 s and
51.5 s are equivalent to Bissett’s model’s snapshots at 26.5 s,
31.8 s and 63.6 s (those snapshots taken at the same time have
significant differences).

Another point in Figures 8 and 9 is the fact that
whereas the modified OCM with ninth-order approximating
polynomials are enough for representing the smooth wall
temperature variations inside the regenerating DPF, the
stiffer wall-flow flux seems to require a higher-order
approximation. It is interesting that, as expected, the
approximate profiles in Figure 9 try to represent the actual

t (s)
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∆
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a
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Figure 6. Nonlinear pressure drop variation during the
regeneration of an EX-80 100/17 DPF; our model prediction
versus Bissett’s 1D model data 9.

t (s)
0 50 100 150 200

T
w
,m

ax
(K

)

600

775

950

1125

1300

Bisset’s Model
Our Model

Figure 7. Maximum wall temperature variation during the
regeneration of an EX-80 100/17 DPF; our model prediction
versus Bissett’s 1D model data 9.

profiles on average and fluctuate about the actual profiles at
different times.

Finally, it is noteworthy that this 200 s simulation of a
regenerating wall-flow DPF takes only 2.2 s to be completed.

Conclusions

The physics-based DPF model developed in this study and
its reduction by using the modified OCM have proved to
result in a reduced DPF model which is both accurate and
computationally efficient. The reduced model can be solved
about 100 times faster than real time (with a fixed-step
solver with 0.01 s time steps) and is capable of taking into
account the compressibility and transient nature of the flow,
the inertial terms of the pressure drop across the wall, and
the nonlinear pressure drop behavior of the filter during the
transient loading.

In contrast to most previous studies, e.g. Bissett et al.9,
the work is not based on assuming a very thin deposit layer
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Figure 8. Snapshots of wall temperature during the
regeneration of an EX-80 100/17 DPF; our model prediction at
t = 22.4 s (blue), t = 27.5 s (red), and t = 51.5 s (green) versus
Bissett’s 1D model data 9 at t = 26.5 s (blue), t = 31.8 s (red),
and t = 63.6 s (green).
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Figure 9. Snapshots of flux of wall mass flow rate during the
regeneration of an EX-80 100/17 DPF; our model prediction at
t = 22.4 s (blue), t = 27.5 s (red), and t = 51.5 s (green) versus
Bissett’s 1D model data 9 at t = 26.5 s (blue), t = 31.8 s (red),
and t = 63.6 s (green).

and filter substrate and takes into account the variations of
the wall-flow velocity across the wall due to the trapezoidal
shape of the wall cross section.

It is important to note that the inclusion of transient terms
of the flow dynamics resulted in a reduced model governed
by a system of only ODEs and not a system of differential-
algebraic equations (DAEs). This is of great advantage
because DAEs are computationally more expensive to
solve than ODEs. In addition, most model order reduction
schemes, such as the proper orthogonal decomposition
method, can only be applied to models which are governed
by pure ODEs. Finally, ODEs are required for most model-
based control development.

The presented model is modular and each of its submodels
(modules) can be updated if necessary. For example, the soot

oxidation submodel can be updated to represent the catalyzed
regeneration of a catalytic DPF.

To close, it should be noted that the comparison between
the accuracy of the full transient model presented in this
paper with that of a quasi-steady model will be the subject of
a future work. It would be of interest to see how the retained
transient terms in mass, momentum, and energy equations
may help to obtain more accurate results, in particular
for cases when engine cycle-by-cycle flow, temperature,
pressure, and emission data (with high-frequency time
variations) are used to feed the DPF model.
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Appendix: Derivation of Filter Wall
Equations

This appendix provides more details on derivation of the
previously-mentioned equations governing the flow (see
equations (4) and (8)), accumulation and oxidation of the
particles (see equations (11) and (29)), pressure drop (see
equations (9), (12), and (13)), and oxygen depletion (see
equation (27)) over the wall of wall-flow DPFs.

It is firstly useful to recall equations (1), (2), and (3),
describing the geometry of the wall system in a wall-flow

DPF, and summarize them in (see Figure 3 or 10):

D1 = D2 − 2wd,

P1 = 4D1, A1 = D1
2,

P2 = 4D2, A2 = D2
2,

As = 4
(
D2 +

ws

2

)
ws,

Ad = 4
(
D2 − wd

)
wd.

(52)

In-Wall Mass Flow Rate

The in-wall mass flow rate per unit length of the channel ṁ0

is one of the key terms when modeling wall-flow DPFs. It can
be expressed as the product of the in-wall (cross-sectional)
perimeter and the wall-flow density and velocity. Assuming
a quasi-steady wall-flow that has no component in the axial
direction (i.e. along x-axis in Figure 3) one can conclude
that, despite the variations of the in-wall perimeter and wall-
flow density and velocity in the lateral direction (i.e. y-axis in
Figure 3 or 10), the in-wall mass flow rate ṁ0 as the product
of these parameters remains constant in the wall (), i.e.:

ṁ0 = ρP v = constant, (53)

where ρ and v are the wall-flow density and velocity (which
may vary in the lateral direction along the y-axis) and P is
the local perimeter inside the wall system. Note that based
on the ideal gas law:

ρ =
p

Re T0
, (54)

where p and T0 are the wall-flow local pressure and average
temperature. Moreover, based on the schematics shown in
Figure 10 and by recalling equation (52), one can write:

P = 4D,

D =


D1 + 2 y 0 ≤ y ≤ wd +

ws

2
D2 + 2

(
ws + wd − y

)
wd +

ws

2
< y ≤

wd + ws

.

(55)

The in-wall mass flow rate ṁ0 can also be represented
in terms of the in-wall perimeter and the wall-flow density
and velocity at a reference point (or surface) in the lateral
direction. Selecting this point to be right on the surface of
the filter substrate in the inlet channel (i.e. at y = wd in
Figure 10), the in-wall mass flow rate will be:

ṁ0 = ρ0 P2 v0,

ρ0 =
p0
′

Re T0
≈ p0

Re T0
,

(56)
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Figure 10. Schematic geometry of the wall system
corresponding to a quarter inlet/outlet channel set, and in-wall
flow pattern.

where ρ0, v0, and p0
′ are wall-flow density, velocity, and

pressure at y = wd and p0 is the wall-flow average pressure.
In equation (56), the average wall-flow pressure p0, taken
as the mean value of the pressures in the inlet and outlet
channels, is assumed to differ only slightly from the wall-
flow pressure at y = wd, i.e. p0

′. This is a reasonable
assumption considering that, for a clean filter, the pressure
drop across the wall is very small, usually about 1 %

of the pressures inside the DPF channels, and, therefore,
the average pressure p0 differs by only 0.5 % from the
pressure on the lateral surface of the inlet channel at y = wd.
Moreover, for a loaded filter, due to the nonlinear pressure
drop behavior of the deposit layer, usually a main portion of
the wall pressure drop takes place over the very thin layer of
the deposit that is initially formed on the surface of the filter
substrate9;14;20. Therefore, the average wall-flow pressure p0

usually occurs inside the deposit layer but very close to the
lateral surface of the inlet channel at y = wd.

On-Wall Particle Accumulation and Oxidation

During the filtration, the rate of the mass of particles
accumulated on the lateral surface of the inlet channel (per

unit length of the channel), i.e.
∂md,f

∂t
, can be calculated

from the DPF filtration efficiency η, the mass fraction of the
particulate matter in the exhaust gasX1, and the in-wall mass
flow ṁ0:

∂md,f

∂t
= η X1 ṁ0. (57)

During the regeneration, note that the molar rate of oxygen
depletion inside the wall can be calculated as the product of

the in-wall exhaust gas molar flow rate
ṁ0

Me
and the variation

of the oxygen molar concentration across the wall ∆Y =

Y1 − Y2. Thus, by using the molecular weight of carbon
MC, the rate of the mass of particles oxidized on the lateral
surface of the inlet channel (per unit length of the channel),

i.e.
∂md,r

∂t
, can be obtained as:

∂md,r

∂t
= −MC

ṁ0

Me
∆Y

2

1 + γ
, (58)

where recall that, based on the reaction given by
equation (25) or (26), each mode of oxygen depleted in the

wall will oxidize
2

1 + γ
mode of carbon particles.

Combining equations (57) and (58), the overall mass rate
of the particles accumulated and oxidized (during filtration
and regeneration) on the lateral surface of the inlet channel

(per unit length of the channel), i.e.
∂md

∂t
, can be written as:

∂md

∂t
=
∂md,f

∂t
+
∂md,r

∂t

= ṁ0

(
η X1 −

MC

Me
∆Y

2

1 + γ

)
.

(59)

Assuming that the deposit layer density ρd remains constant
during the filtration and regeneration, the rate of change

of the deposit layer cross-sectional area, i.e.
∂Ad

∂t
, can be

calculated from
∂md

∂t
as:

∂Ad

∂t
=

1

ρd

(∂md

∂t

)
. (60)

Separately, the last relation in equation (52) can be used and
differentiated with respect to time to find:

∂Ad

∂t
= 4

(
D2 − 2wd

) ∂wd

∂t
= P1

∂wd

∂t
, (61)

where equation (52) is recalled (also see Figure 10). Now,
one can substitute from equation (61) into equation (60)
to obtain the overall rate of change of the deposit layer

thickness during the filtration and regeneration, i.e.
∂wd

∂t
, as:

∂wd

∂t
=

1

P1

(∂Ad

∂t

)
=

1

ρd P1

(∂md

∂t

)
=

ṁ0

ρd P1

(
η X1 −

MC

Me
∆Y

2

1 + γ

)
=
ρ0 P2 v0

ρd P1

(
η X1 −

MC

Me
∆Y

2

1 + γ

)
,

(62)

where substitutions from equations (59) and (56) are used to
derive the final from.

In equation (62), note that the rate of change of the deposit
layer thickness during the filtration and regeneration, i.e.
∂wd,f

∂t
and

∂wd,r

∂t
respectively, are individually identified to

be:
∂wd,f

∂t
=
ρ0 P2 v0

ρd P1

(
η X1

)
,

∂wd,r

∂t
=
ρ0 P2 v0

ρd P1

(
− MC

Me
∆Y

2

1 + γ

)
.

(63)
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In-Wall Pressure Drop

As noted previously, the quasi-empirical correlation sug-
gested by Ahmed and Sunada combined with the modified
Ergun equation19;33 can be used to predict the pressure drop
across the wall system in a wall-flow DPF.

The general form of the Ahmed and Sunada equation,
correlating the velocity vector inside a porous medium to the
gradient of the pressure, is:

− ~∇p = αµ~v + β ρ‖~v‖~v, (64)

where ~∇p is the pressure gradient vector, µ and ρ are the
viscosity and density of the fluid, ~v is the flow velocity
vector inside the porous medium, and α and β are the porous
medium parameters to be empirically established. A well-
known model for determination of the coefficients α and β
in equation (64) in terms of the porous medium parameters
is the modified Ergun equation which suggest that:

α = α′
(1− ε)2

ε3 d2
, β = β′

(1− ε)
ε3 d

, (65)

where ε is the porosity of the medium, d is the an appropriate
characteristic length of the medium (e.g. mean pore size),
and coefficients α′ and β′ are nondimensional constants to
be determined experimentally. A good assumption for these
constants is α′ = 150 and β′ = 1.75 as appeared in the
original Ergun equation33.

Considering Figure 10 and taking into account only
the (1D) wall-flow and pressure drop along the y-axis,
perpendicular to the wall system including the porous deposit
layer and the porous filter substrate, equation (64) can be
employed to write:

− dp

dy
=

{
αd µ0 v + βd ρ v

2 0 ≤ y ≤ wd

αs µ0 v + βs ρ v
2 wd < y ≤ wd + ws

,

(66)
where:

αs = α′s
(1− εs)

2

εs
3 ds

2 , βs = β′s
(1− εs)

εs
3 ds

,

αd = α′d
(1− εd)

2

εd
3 dd

2 , βd = β′d
(1− εd)

εd
3 dd

.

(67)

By assuming that all the parameters in equations (66) and
(67), except the wall-flow density ρ and velocity v, keep a
constant average value over the wall thickness (during both
filtration and regeneration), one can integrate equation (66)
to obtain an expression for the total pressure drop across the
wall system.

For the deposit layer (i.e. 0 ≤ y ≤ wd), one can use
equation (53) and rewrite equation (66) as:

− dp

dy
= αd µ0

( ṁ0

ρP

)
+ βd ρ

( ṁ0

ρP

)2

, (68)

which, by using equation (54), can be rearranged to:

− 1

Re T0
p dp = αd µ0

(ṁ0

P

)
dy + βd

(ṁ0

P

)2

dy. (69)

By substitution from equation (55), one can integrate
equation (69) over the deposit layer thickness (from y = 0

to y = wd) and obtain:

1

2Re T0

(
p1

2 − p0
′2
)

= αd µ0

(ṁ0

4

) 1

2
ln(

D2

D1
)

+ βd

(ṁ0

4

)2 wd

D2D1
,

(70)

where equation (52) is used and recall that p0
′ is the wall-

flow pressure at y = wd. Analogously, for the substrate layer
(i.e. wd < y ≤ wd + ws), one can obtain:

1

2Re T0

(
p0
′2 − p2

2
)

= αs µ0

(ṁ0

4

)
ln(

D2 + ws

D2
)

+ βs

(ṁ0

4

)2 ws

D2

(
D2 + ws

) . (71)

Now, equations (70) and (71) can be added together to
write:

1

2Re T0

(
p1

2 − p2
2
)

=
p1 + p2

2Re T0

(
p1 − p2

)
=(

αd
1

2
ln(

D2

D1
) + αs ln(

D2 + ws

D2
)
)
µ0

(ṁ0

4

)
+
(
βd

wd

D2D1
+ βs

ws

D2

(
D2 + ws

))(ṁ0

4

)2

.

(72)

By noting that p0 =
p1 + p2

2
and recalling equations (56)

and (52), one can simplify equation (72) to obtain an
expression for the pressure drop across the wall system
(including both deposit and substrate layers):

∆p = p1 − p2

=
(
αd

1

2
ln(

D2

D1
) + αs ln(

D2 + ws

D2
)
)
µ0D2 v0

+
(
βd

wd

D2D1
+ βs

ws

D2

(
D2 + ws

)) ρ0D2
2 v0

2

=
(
αd

D2

2
ln(

D2

D1
) + αsD2 ln(

D2 + ws

D2
)
)
µ0 v0

+
(
βd

D2 wd

D1
+ βs

D2 ws

D2 + ws

)
ρ0 v0

2.

(73)
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In-Wall Oxygen Depletion

Consider the schematics shown in Figure 10 and in particular
focus on the section through the deposit layer rather than the
sections through the filter substrate or the channels. Based on
the assumptions noted previously and the reaction given by
equation (25) or (26), the oxygen balance equation inside the
porous deposit layer (where the whole oxidation occurs) can
be written as2;10:

d

dy

(
Y
ṁ0

Me

)
= − P SdKd Y

ρ

Me

(1 + γ

2

)
, (74)

where Y is the oxygen molar concentration at each point y
inside the deposit layer (0 ≤ y ≤ wd). It is useful to mention

that Y
ṁ0

Me
is the molar flow rate of oxygen at each point

inside the deposit layer and Y
ρ

Me
is the molar density of

oxygen at that point.

Noting that
ṁ0

Me
remains constant through the deposit

layer, the relation in equation (74) can be rewritten as:

ṁ0

Me

(dY
dy

)
= − P SdKd Y

ρ

Me

(1 + γ

2

)
, (75)

which by substitution from equation (53) can be simplified
to:

dY

dy
= − SdKd Y

(1 + γ

2

) 1

v
, (76)

or, after the separation of variables:

dY

Y
= − SdKd

(1 + γ

2

) dy
v
. (77)

By neglecting the variations of the wall-flow density in
the deposit layer and assuming the wall-flow density ρ to
be equal to the average wall-flow density ρ0 (implying
that P v = P2 v0 or Dv = D2 v0 in the deposit layer),
equation (77) can be integrated over the deposit layer
thickness to derive an expression for the variation of the
oxygen molar concentration across the deposit layer ∆Y d:

∆Y d

Y1
= 1− exp

(
− SdKd

(1 + γ

2

) D2 wd − wd
2

D2 v0

)
,

(78)
where equation (52) is recalled. Because it is assumed that
there is no reaction occurring inside the porous ceramic
substrate layer, ∆Y d would be equal to the change in the
oxygen molar concentration across the whole wall system
(including the porous deposit layer and the filter porous
ceramic substrate), i.e. ∆Y , and one can write:

∆Y = Y1 − Y2 = ∆Y d. (79)

Nomenclature

English Letters

A Channel cross-sectional area

C Heat capacity

D Channel hydraulic diameter

E Reaction activation energy

H Reaction heat (enthalpy)

K Reaction rate coefficient

L Channel length

M Molecular weight

N Number of inlet channels

P Channel perimeter

R Gas constant

S Specific area

T Temperature

X Mass fraction (of particles)

Y Mole fraction (of oxygen)

c Convection heat transfer coefficient

d Pore size (pore diameter)

f Friction coefficient

h Enthalpy

k Conduction heat transfer coefficient (thermal con-
ductivity)

m Mass

p Pressure

q Heat added to the system per unit length

s Entropy

t Time

u Internal energy

v Velocity

w Thickness

x Axial coordinate

y First lateral coordinate
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20 Journal Title XX(X)

z Second lateral coordinate

Calligraphic Letters

C General coefficient

K Collisions frequency factor

Greek Letters

∆ Difference (delta)

α First pressure drop coefficient

α′ Coefficient in the first pressure drop coefficient
relation

β Second pressure drop coefficient

β′ Coefficient in the second pressure drop coefficient
relation

γ Completeness index for soot (carbon) oxidation

ε Porosity

η Filtration efficiency

κ Kinetic energy coefficient

µ Dynamic viscosity

π Number π

ρ Density

σ Linear momentum coefficient

φ, φ′ General (nonlinear) function

Multi-Letter Symbols

Re Reynolds number

Nu Nusselt number

Subscripts

�0 Wall-flow

�1 Inlet channel (flow)

�2 Outlet channel (flow)

�a Ambient

�C Carbon

�c Convection

�CO Carbon monoxide (CO)

�CO2
Carbon dioxide (CO2)

�CO1+γ
Incomplete carbon oxidation product (CO1+γ)

�cr Critical value

�d Porous deposit layer

�e Exhaust gases

�f Filtration

�g Generated

�i Inlet/outlet channel (flow); i = 1 for inlet channel
and i = 2 for outlet channel

�in Incoming (inlet) flow conditions

�min Minimum

�max Maximum

�O Oxygen

�o Outer

�out Outgoing (outlet) flow conditions

�p At constant pressure

�r Regeneration

�ref Reference value

�s Porous substrate

�sd Solid deposit

�ss Solid substrate

�sys System

�u Universal

�v At constant volume

�w Wall (i.e. deposit layer plus substrate layer)
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