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Abstract 

This paper discusses modeling of a power-split hybrid electric 

vehicle and the design of a longitudinal dynamics controller for the 

University of Waterloo’s self-driving vehicle project. The powertrain 

of Waterloo’s vehicle platform, a Lincoln MKZ Hybrid, is controlled 

only by accelerator pedal actuation. The vehicle’s power 

management strategy cannot be altered, so a novel approach to grey-

box modeling of the OEM powertrain control architecture and 

dynamics was developed. The model uses a system of multiple neural 

networks to mimic the response of the vehicle’s torque control 

module and estimate the distribution of torque between the 

powertrain’s internal combustion engine and electric motors. The 

vehicle’s power-split drivetrain and longitudinal dynamics were 

modeled in MapleSim, a modeling and simulation software, using a 

physics-based analytical approach. All model parameters were 

identified using Controller Area Network (CAN) data and 

measurements of wheel torque data that were gathered during vehicle 

road testing. Using the grey-box powertrain model as a framework, a 

look-ahead linear time-varying (LTV) model predictive controller 

(MPC) for reference velocity tracking is proposed. Using some 

simplifying assumptions about the powertrain dynamics, the control-

oriented model was reformulated in a pseudo-Hammerstein form. 

Inversion of the nonlinearities allows linear MPC algorithms to be 

applied directly to the linear portion of the system. The performance 

of the MPC was tested using multiple model in the loop (MIL) 

reference velocity tracking scenarios, and benchmarked against a 

tuned proportional-integral (PI) controller. Using the novel control-

oriented model of the OEM powertrain, the MPC was found to track 

the desired velocity trajectory and reject measurable disturbance 

inputs, such as road slope, better than the PI controller. 

Introduction 

The introduction of hybrid electric vehicles (HEVs) to the automobile 

industry has been a significant part of a larger push for ‘green’ 

transportation options. HEVs combine the advantages of internal 

combustion vehicles and electric vehicles by integrating both power 

sources into a single powertrain system. By the year 2020 over one 

million new HEVs are expected to be sold in the US per year because 

of government incentives and shifting consumer preferences [1]. One 

of the most common forms of HEV available for purchase in the 

modern consumer vehicle market is the power-split HEV. The Toyota 

Prius, Ford Focus Hybrid, and Lincoln MKZ Hybrid are all examples 

of power-split HEVs. The powertrain of power-split HEVs has been 

designed such that it can switch powertrain operating modes to 

behave similarly to a pure electric vehicle, a series hybrid, or a 

parallel hybrid. 

The versatility of power-split powertrains makes them significantly 

more complex than the powertrains of internal combustion vehicles, 

electric vehicles, or series and parallel HEVs. As a result, modeling 

the dynamics of power-split powertrains for the purposes of vehicle 

dynamics control or energy management control can be challenging. 

Previous work in the literature has modeled similar power-split 

powertrains using primarily analytical models of the engine, electric 

motors, battery, and drivetrain [2] [3], but such approaches require 

significant a priori knowledge of the powertrain control architecture 

and component designs. Other approaches to modeling of power-split 

powertrains have relied heavily on experimentally determined maps 

of individual component performance [4]. Fully experimental 

approaches result in highly accurate models of system performance, 

but they require powertrain disassembly and extensive testing of 

individual components. The Lincoln MKZ Hybrid powertrain model 

proposed in this paper combines the analytical approach with the 

experimental approach by introducing a grey-box modeling method. 

The control architecture and power source dynamics of the 

powertrain are modeled with neural networks while the drivetrain is 

modeled using a physics-based approach. Related works in the 

literature have used NNs to design energy management systems for 

hybrid vehicles [5], however using an NN to emulate an existing 

HEV torque controller appears to be a unique application. The 

proposed model was defined with limited a priori knowledge of the 

system’s architecture, and is identified entirely from full vehicle road 

testing.  

A unique model predictive control (MPC) approach to longitudinal 

vehicle dynamics control for power-split HEVs is also proposed in 

this paper as a proof-of-concept. A linear time-varying (LTV) MPC 

for reference velocity tracking was designed by using the grey-box 

powertrain model as a framework and converting it to a control-

oriented formulation. Application of neural network models in 

predictive control for automotive application has been explored 

frequently in literature [6] [7] [8]. For HEV applications, neural 

network based model predictive control has primarily been used for 

design of energy management controllers [9] [10]. The application of 
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neural network hybrid powertrain models in vehicle dynamics MPC 

has not been previously studied.  

MPC for longitudinal dynamics has been explored frequently in 

literature [11] [12], however most work has assumed that driveshaft 

torque is applied directly to the wheels without considering 

powertrain dynamics. The proposed longitudinal dynamics controller 

considers the neural network and physics-based powertrain dynamics 

as a part of the MPC control-oriented model. The reformulated 

control-oriented model of the powertrain takes the form of a pseudo-

Hammerstein model, which allows a linear MPC approach to be 

applied. 

Data Acquisition 

Experimental data used for model parameter identification was 

acquired using two data acquisition systems. The first data 

acquisition system is a Vehicle Measurement System (VMS) by 

A&D Technologies. The VMS consists of three primary sensors 

which are mounted at each wheel: The Wheel Force Sensor (WFS), 

Wheel Position Sensor (WPS), and Laser Ground Sensor/Laser 

Doppler Velocimeter. Figure 1 depicts a portion of the VMS system 

mounted on front right wheel of the Lincoln MKZ. 

 

Figure 1. VMS system mounted to the front right wheel of the Lincoln MKZ. 

For the purposes of powertrain parameter identification only the WFS 

and WPS were required. The WFS is a custom hub which is mounted 

with an array of strain gauges. From the strain gauges, forces and 

moments in all three principal axes of wheel are determined. The 

WPS consists of a 6-DOF arrangement of digital encoders. This 

allows the system to detect the position and orientation of each wheel 

relative to the chassis. Throughout track testing the VMS system was 

used to measure force and torque at each wheel as well as wheel 

angular velocity and acceleration. 

The second data acquisition system is a Vector CANalyzer hardware 

and software tool. The CANalyzer was used to measure various 

internal signals from the Lincoln MKZ’s Control Area Network 

(CAN) bus. Signals measured using the CANalyzer include: battery 

state of charge (SOC), accelerator pedal position (APP), vehicle 

speed (𝑣𝑥), desired total driveshaft torque (𝑇𝑑𝑠𝑑), as well as speeds 

and torques of the generator, traction motor, and engine. 

Experimental data was acquired using a combination of road and 

track testing of the Lincoln MKZ. Road testing was used exclusively 

to gather data for neural network identification of the supervisory 

controller subsystem and the TCM and power source subsystem, as 

depicted in figure 2. Track testing was used as a controlled 

environment to gather data with the VMS which subsequently was 

used for parameter identification of the drivetrain subsystem. 

High-Fidelity Powertrain System Modeling and 

Parameter Identification 

The powertrain of the Lincoln MKZ Hybrid is controlled using a 

complex power-split hybrid energy management system. Figure 2 

depicts the full system model. For the purposes of this paper, the 

powertrain system was divided into three primary subsystems that 

were each modelled and identified separately. The first subsystem is 

a model of the mapping from accelerator pedal position (APP) to 

desired total powertrain output torque, 𝑇𝑑𝑠𝑑, which is calculated by 

the vehicle’s supervisory controller. At this stage of the modeling 

process the system’s response to brake pedal input is neglected; 

modeling of braking dynamics is considered to be outside of the 

scope of the paper. 

The second subsystem is a model of the low-level vehicle torque 

control module (TCM), which determines how torque is allocated to 

each powertrain power source, as well as the dynamics of the power 

sources themselves. The third subsystem is a model of the vehicle’s 

power-split drivetrain dynamics and its interaction with the vehicle’s 

tire and suspension dynamics. For simplicity the steering dynamics 

and other complexities of the vehicle model are ignored. High fidelity 

vehicle dynamics modeling of the Lincoln MKZ is outside the scope 

of this work. The details of each subsystem model are described 

below.

 

Figure 2. Diagram depicting an overview of the Lincoln MKZ 's hybrid powertrain control system architecture. 
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Supervisory Torque Controller Subsystem 

The supervisory torque controller of the Lincoln MKZ determines the 

overall desired driveshaft torque, 𝑇𝑑𝑠𝑑, as a function of APP and 𝑣𝑥. 

In addition, a transport delay exists in the desired torque response. 

The response of the supervisory controller to these inputs is highly 

nonlinear. 

For the purposes of this paper the supervisory controller was modeled 

using a double-layer perceptron neural network with a time-delayed 

feedback of the output variable and a timestep of 0.05 seconds. This 

form of neural network is well-suited for modeling the system since it 

is a universal approximator of non-linear functions [13].The three 

inputs to the network are APP, 𝑣𝑥, and 𝑇𝑑𝑠𝑑 at the previous time step, 

and the output is 𝑇𝑑𝑠𝑑 at the current time step. The neural network 

was constructed, tuned, and validated with the Matlab Neural 

Network Toolbox against experimental data using the Levenberg-

Marquardt algorithm. Figure 3 depicts the supervisory controller 

mapping at points of equilibrium (previous 𝑇𝑑𝑠𝑑 equal to current 

𝑇𝑑𝑠𝑑). 

 

Figure 3. Equilibrium points plot depicting the neural network approximation 

of the supervisory control model. 

The fitted neural network had a regression coefficient of 0.995, 

indicating a strong fit to the experimental data. However, analysis of 

experimental data shows that there was limited data gathered for APP 

between 50% and 100%. Future work will focus on improving the 

training of the neural network by gathering a more complete 

experimental data set. 

TCM and Power Source Dynamics Subsystem 

For the purposes of the model, the TCM, traction motor dynamics, 

generator dynamics, and engine dynamics were lumped into a single 

subsystem. This choice is due to the interdependent behavior of each 

of these portions of the control system. The high voltage battery is 

used to regulate charge of the vehicle’s low voltage battery, which in 

turn powers onboard electronics, air conditioning, and other vehicle 

systems. Because of these factors, SOC of the high voltage battery 

was found to depend on several factors external to the powertrain 

model. SOC was treated as a random and measurable disturbance 

variable for the TCM and power source dynamics subsystem. 

The TCM of the power-split hybrid powertrain is more complex than 

traditional internal combustion or fully electric vehicles because there 

are multiple modes of operation to consider. Each operating mode 

adjusts how desired torque is distributed to the power sources and 

alters the kinematic constraints of the drivetrain. In the case of the 

Lincoln MKZ’s power-split powertrain, discrete modes of operation 

were identified by observation of experimental data and by 

referencing the model of a previous generation of the powertrain 

described in [2]. The following modes were identified for forward 

driving: 

1. EV mode: This mode is engaged when torque demand is 

sufficiently low and battery SOC is sufficiently high for the 

engine to remain off. In this mode the engine shaft is 

locked in place. 

2. Engine cranking: The TCM has determined that power 

output from the engine is required, and the engine shaft has 

been unlocked. Positive torque is produced by the generator 

to accelerate the engine up to its ignition speed. 

3. Power-split mode: At high speeds or high torque demands 

the engine is running and being used to provide torque to 

the driveshafts. Depending on overall desired torque the 

generator and traction motor may be used to either charge 

the high voltage battery or transmit additional torque to the 

driveshafts. Two sub-modes of power-split mode exist. 

a. Positive-split: If the high voltage battery is below 

a threshold SOC, then torque from the engine 

splits between the path to the driveshaft and the 

path through the generator to charge the high 

voltage battery. 

b. Negative-split: This mode is not preferred but is 

necessary when the high voltage battery is fully 

charged and the vehicle speed is high. The 

generator transmits torque through the planetary 

gear train to drive the vehicle. Due to the 

kinematics of the planetary gear set, torque from 

the generator also regulates the engine speed to 

keep it in the high efficiency operating range. 

Negative-split mode establishes a power 

circulation path where some of the power 

produced by the generator returns to the high-

voltage battery through the traction motor 

(negative motor torque value). Power circulation 

results in negative-split being a less efficient 

mode of operation than positive-split. 

Additional modes of operation exist for when the vehicle is parked or 

driving in reverse, but modeling them is outside of the scope of this 

paper. Figure 4 depicts a sample window of experimental data where 

each operating mode is observed. 
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Figure 4. Plot of a sample window of experimental powertrain performance 

data depicting each of the powertrain operating modes. 

Each of the three operating modes were denoted by indices 1,2, and 

3, respectively (positive and negative-split were not differentiated by 

mode). Each experimental data sample was then categorized into one 

of the operating modes based on measured engine speed, generator 

torque, and operating mode of the previous time step. 

A system of two shallow neural network classifiers was constructed 

and trained with the Matlab Neural Network Toolbox to predict the 

behavior of the TCM switching between operating modes based on 

current states of the powertrain. Both classifiers are two-layer feed-

forward networks with a hidden sigmoid layer and a softmax output 

layer. The first classifier network predicts the conditions for the TCM 

to begin starting the engine (switch from EV mode to engine 

cranking mode). The network predicts if the mode will switch to 

engine cranking mode based on the following inputs: 𝑣𝑥, SOC, and 

𝑇𝑑𝑠𝑑. The best training performance without overfitting the data was 

observed for a network with 3 hidden neurons. After training the 

network using scaled conjugate gradient backpropagation, the 

classification network was found to correctly identify whether or not 

engine cranking would begin in 98.8% of experimental data samples. 

The second classifier network is used to determine the current TCM 

mode if the engine shaft is currently rotating. The network predicts if 

the TCM would select engine cranking mode, power-split mode, or 

EV mode, meaning the engine shaft begins braking, based on the 

following inputs: 𝑣𝑥, SOC, 𝑇𝑑𝑠𝑑, 𝜔𝑒𝑛𝑔, and the operating mode of the 

TCM at the previous sample time. The network was also trained 

using scaled conjugate gradient backpropagation, and optimal 

performance was observed for a network with 3 hidden neurons. The 

trained classification network was found to correctly identify the 

TCM mode in 99.7% of experimental data samples. 

Once the TCM has selected the powertrain operating mode, torque 

demand is distributed to the engine, generator, and traction motor. 

The low-level dynamics of each power source determines their actual 

torque outputs 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, and 𝜏𝑚𝑜𝑡, respectively. Limitations of the 

CANalyzer hardware prevented desired and actual torque signals 

from being measured at a sample rate greater than 10Hz. The sample 

rate was insufficient to differentiate between desired torque and 

actual torques, so the low-level dynamics of each power source were 

neglected. Instead the mapping from 𝑇𝑑𝑠𝑑 to 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, and 𝜏𝑚𝑜𝑡 

was modeled using an individual double-layer perceptron neural 

network. The inputs to the neural network are: 𝑇𝑑𝑠𝑑, 𝜔𝑒𝑛𝑔, 𝜔𝑚𝑜𝑡, 

𝑚𝑜𝑑𝑒, and 𝑆𝑂𝐶. Based on these inputs it is evident that the network 

assumes quasi-static behavior of each power source, so the model 

does not include transient behavior.  

Despite these limitations, the tuned torque mapping neural network 

was found to fit well to experimental data. Optimal performance 

without overfitting data was observed for a network with 5 hidden 

layers. The network was tuned and validated against experimental 

data using the Levenberg-Marquardt algorithm. The fitted network 

was found to have a regression coefficient of 0.972 compared to the 

experimental data. 

Drivetrain and Vehicle Dynamics Subsystem 

The final subsystem to be modeled was the drivetrain and vehicle 

dynamics; however identification of a high-fidelity vehicle dynamics 

model for the Lincoln MKZ is outside the scope of this paper. The 

focus of this section will be on modeling and identification of the 

power-split drivetrain dynamics, and a simplified longitudinal vehicle 

dynamics model introduced for the purpose of controller simulations. 

Drivetrain Model 

The power-split drivetrain configuration used by the Lincoln MKZ 

Hybrid is depicted in figure 5. 

 

Figure 5. Model of the Lincoln MKZ's power-split-powertrain. 

Arrows indicate how positive directions of rotation, 𝜔, and torque, 𝜏, 

are defined. As depicted in figure 5, the system comprises a planetary 

gear set that is used to connect the output shafts of all three power 

sources. The generator is used to drive the sun gear of the planetary 

while the engine is used to drive the planet carrier. The planetary gear 

ratio is defined by equation 1: 

𝜌 =
𝑑𝑠𝑢𝑛

𝑑𝑟𝑖𝑛𝑔
  (1) 

where 𝑑𝑠𝑢𝑛, and 𝑑𝑟𝑖𝑛𝑔 are the pitch diameters of the sun and ring 

gears, respectively. The ring gear is connected through fixed gear 

ratios 𝑅1 and 𝑅2 to the output shaft of the traction motor. Similarly, 
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both the ring gear and traction motor shaft are connected through the 

intermediary shaft and final reduction ratio 𝑅𝑓 to the driveshaft and 

front wheels. For the purposes of this model the differential has been 

neglected, and both driven wheels are assumed to always spin with 

the same speed 𝜔𝑤ℎ. 

Unlike the other two subsystems, sufficient measured drivetrain data 

was available to identify a physics-based model. Based on the 

geometry of the drivetrain depicted in figure 5, the model has only 

two degrees of freedom (DOF). For the purposes of this paper the 

DOF are defined as 𝜔𝑒𝑛𝑔, and 𝜔𝑚𝑜𝑡. The kinematics and dynamics 

of the drivetrain are dependent upon the powertrain operating mode. 

When operating in EV mode 𝜔𝑒𝑛𝑔 is set to zero, and the kinematics 

of the system are defined by equations 2 and 3a: 

𝜔𝑤ℎ =
𝜔𝑚𝑜𝑡

𝑅2𝑅𝑓
  (2) 

𝜔𝑔𝑒𝑛 = −
𝑅1

𝑅2𝜌
𝜔𝑚𝑜𝑡  (3a) 

The gear train efficiency losses are dependent upon direction of 

torque transmission at each gear meshing, but efficiencies were 

assumed to be constant and equal in each direction of torque 

transmission. For forward velocity and acceleration in EV mode, the 

dynamics are defined by equations 4, 5, and 6a: 

𝐼𝑔𝑒𝑛�̇�𝑔𝑒𝑛 = 𝜏𝑔𝑒𝑛 − 𝜏𝑠  (4) 

𝐼𝑚𝑜𝑡�̇�𝑚𝑜𝑡 = 𝜏𝑚𝑜𝑡 −
1

𝑅𝑓𝑅2𝜂𝑓𝜂2
𝜏𝑤ℎ −

𝑅1𝜂𝑟1

𝑅2𝜂𝑓𝜂𝑠𝜌
𝜏𝑠   (5) 

0 = 𝜏𝑒𝑛𝑔 +
1

𝜂𝑠
(1 +

1

𝜌
) 𝜏𝑠  (6a) 

where 𝜏𝑠 is the torque at the sun gear applied by the planets, and 𝐼𝑔𝑒𝑛 

and 𝐼𝑚𝑜𝑡 are the lumped rotational inertias of the generator and the 

motor, respectively. 𝐼𝑔𝑒𝑛 includes the inertias of the generator and 

sun gear. 𝐼𝑚𝑜𝑡 includes the inertias of the motor, ring gear, 

intermediary shaft, gear meshings 𝑅1, 𝑅2 and 𝑅𝑓, the driveshafts, and 

front wheels. The components of 𝐼𝑚𝑜𝑡 are lumped at the motor. Table 

1 summarizes the efficiency terms. 

Table 1. Summary of gear train efficiency terms. 

𝜂𝑟1 Lumped efficiency between the ring gear and the planet 

gears and through gear ratio 𝑅1 

𝜂2 Efficiency through ratio 𝑅2 

𝜂𝑓 Efficiency through ratio 𝑅𝑓 

𝜂𝑠 Efficiency between the sun gear and the planet gears 

 
 

For the kinematics of engine cranking mode or power-split mode, 

equation 3a is replaced by equation 3b: 

𝜔𝑔𝑒𝑛 =
1+𝜌

𝜌
𝜔𝑒𝑛𝑔 −

𝑅1

𝑅2𝜌
𝜔𝑚𝑜𝑡  (3b) 

Similarly, dynamics equation 6a is replaced by equation 6b: 

𝐼𝑒𝑛𝑔�̇�𝑒𝑛𝑔 = 𝜏𝑒𝑛𝑔 +
1

𝜂𝑠
(1 +

1

𝜌
) 𝜏𝑠 (6b) 

where 𝐼𝑒𝑛𝑔 is the lumped rotational inertia of the engine, which 

includes the inertias of the engine, carrier, and planets about the axis 

of the engine shaft. For power-split powertrains the inertia 

components for rotation of the planet gears about their own axes are 

typically considered very small [2], so they are neglected in this 

model. 

Drivetrain Parameter Identification 

Due to limited a priori knowledge of the actual construction of the 

drivetrain, all gear ratios, gear train efficiencies, and lumped inertia 

parameters needed to be identified from experimental data. Gear train 

ratios could be identified from experimental measurements of 𝜔𝑒𝑛𝑔, 

𝜔𝑔𝑒𝑛, 𝜔𝑚𝑜𝑡, and 𝜔𝑤ℎ and equations 2 and 3b. However, without a 

measurement of speed for the intermediary shaft, not all gear ratios 

could be identified individually. Instead of identifying 𝑅1, 𝑅2, and 𝑅𝑓 

directly, lumped gear ratios 𝑅𝑓𝑅1 and 𝑅𝑓𝑅2 were identified. 

Identification of gear ratios was performed by determining the mean 

ratios between measurements of 𝜔𝑒𝑛𝑔, 𝜔𝑔𝑒𝑛, 𝜔𝑚𝑜𝑡, and 𝜔𝑤ℎ from 

multiple acceleration test runs. Each acceleration test was performed 

at constant APP to prevent discontinuous changes in rate of 

acceleration from affecting measurements. Each ratio was determined 

with a standard deviation of less than 1%. Table 2 summarizes the 

mean and standard deviation of each effective gear ratio. 

Table 2. Identified effective drivetrain gear ratios. 

Symbol Mean Value Standard Deviation 

𝜌 0.392 0.001 

𝑅𝑓𝑅1 4.06 0.03 

𝑅𝑓𝑅2 10.3 0.05 

 

Parameter identification of the dynamic parameters, 𝜂2, 𝜂𝑓, 𝜂𝑟1, 𝜂𝑠, 

𝐼𝑚𝑜𝑡, 𝐼𝑔𝑒𝑛, and 𝐼𝑒𝑛𝑔 were complicated by the fact that all seven 

parameters had to be identified for a system with only two DOF. It is 

unlikely that the correct set of parameters could be identified from 

experimental measurements using traditional least-squares 

performance optimization. A sensitivity analysis was performed on 

the drivetrain model to observe how model performance was affected 

by a random variance in each parameter within their range of possible 

values. Time-varying signals for 𝜏𝑚𝑜𝑡, 𝜏𝑔𝑒𝑛, 𝜏𝑒𝑛𝑔, and 𝜏𝑤ℎ were 

pulled from experimental data and used to repeat simulations with 

1000 different randomly distributed sets of parameters. The measured 

outputs 𝜔𝑚𝑜𝑡 and 𝜔𝑒𝑛𝑔 were used to compare simulation 

performances. Figure 6 is a tornado plot summarizing the correlation 

results of the sensitivity analysis. 
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Figure 6: Tornado plot of correlations of variance in drivetrain parameters and 

model performance. 

It is evident from the results of Kendal, Spearman (rank), and linear 

correlation that performance of the drivetrain model is much more 

responsive to variance in inertial parameters than variance in 

individual efficiency values. Based on the results of the sensitivity 

analysis, the model was simplified by setting each gear meshing 

efficiency to a typical constant value 0.98.  

The remaining three parameters, 𝐼𝑚𝑜𝑡, 𝐼𝑔𝑒𝑛, and 𝐼𝑒𝑛𝑔, were identified 

from track testing data using the Matlab Parameter Estimation 

Toolbox. The drivetrain model was iteratively simulated with inputs 

of 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, 𝜏𝑚𝑜𝑡, and 𝜏𝑤ℎ measured from several experimental 

track tests. The outputs of 𝜔𝑒𝑛𝑔 and  𝜔𝑚𝑜𝑡 from the model were 

compared to experimental measurements with a sum-squared error 

cost function. A nonlinear least squares trust-region reflective 

algorithm was used to optimize the cost function. Noise in 

experimental data prevented the parameter estimation algorithm from 

consistently converging on the same values for 𝐼𝑚𝑜𝑡, 𝐼𝑔𝑒𝑛, and 𝐼𝑒𝑛𝑔, 

so final parameter estimates were approximated based on several 

varying optimization results. Table 3 summarizes the approximated 

values of the lumped inertia parameters. 

Table 3. Estimated rotational inertia parameters of the drivetrain. 

Symbol Estimated Rotational Inertia (kg*m2) 

𝐼𝑚𝑜𝑡 0.95 

𝐼𝑔𝑒𝑛 0.024 

𝐼𝑒𝑛𝑔 0.0025 

 

 

Simplified Vehicle Dynamics Model 

Modeling and parameter ID of the vehicle dynamics of the Lincoln 

MKZ was outside the scope of this work. For proof-of-concept of the 

linearized model-predictive longitudinal dynamics controller, only a 

simple longitudinal vehicle model with linear tires was used. Future 

work will integrate a high-fidelity MapleSim multibody vehicle 

dynamics model and combined slip Pacejka [14] tire model of the 

Lincoln MKZ, described in [15], with the hybrid powertrain model 

discussed herein. Figure 7 depicts a diagram of the longitudinal 

dynamics model. 

 

Figure 7. Simplified longitudinal vehicle model. 

The acceleration of the vehicle chassis is determined by the 

longitudinal tire forces 𝐹𝑥𝑓 and 𝐹𝑥𝑟. The equation of motion for the 

chassis’s single DOF, translation in the 𝑥 direction, is defined by 

equation 7: 

𝑚𝑎𝑥 = 𝐹𝑥𝑓 + 𝐹𝑥𝑟 −
1

2
𝐶𝑑𝜌𝑎𝑖𝑟𝐴𝑓𝑣𝑥

2 − 𝑚𝑔(𝐶𝑟𝑣𝑥 + 𝑠𝑖𝑛(𝛼)) (8) 

where the additional terms represent air drag force, rolling resistance 

force, and force due to road slope 𝛼, respectively. For a complete 

table of longitudinal dynamics model variables and their definitions 

refer to the appendix. The longitudinal tire forces are dependent upon 

slip and normal tire forces 𝐹𝑧𝑓 and 𝐹𝑧𝑟. These forces are determined 

by equations 9 and 10: 

𝐹𝑧𝐹 = 𝑚𝑔𝑐𝑜𝑠(𝛼) ∗
𝑙−𝑎

𝑙
−

ℎ

𝑙
(𝑚𝑎𝑥 −

1

2
𝐶𝑑𝜌𝑎𝑖𝑟𝐴𝑓𝑣𝑥

2 −… 

𝑚𝑔(𝐶𝑟𝑣𝑥 + 𝑠𝑖𝑛(𝛼)))  

(9) 

 

𝐹𝑧𝑅 = 𝑚𝑔𝑐𝑜𝑠(𝛼) − 𝐹𝑧𝐹  (10) 

 

The simplified longitudinal vehicle model uses linear tires with 

saturation. For the front and rear axles, the longitudinal tire force is 

determined by equations 11 and 12, respectively: 

𝐹𝑥𝑓 = 𝑚𝑖𝑛(𝐹𝑧𝑓𝜎𝐶𝑙 , 𝐹𝑧𝑓𝜇) (11) 

𝐹𝑥𝑟 = 𝑚𝑖𝑛(𝐹𝑧𝑟𝜎𝐶𝑙 , 𝐹𝑧𝑟𝜇) (12) 

where 𝐶𝑙 is the normalized longitudinal tire stiffness (assumed to be 

the same at each wheel), and 𝜎 is the slip ratio. 𝜎 is defined by 

equation 13: 
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𝜎 =
𝜔𝑤ℎ𝑟𝑤ℎ−𝑣𝑥

max(𝜔𝑤ℎ𝑟𝑤ℎ,𝑣𝑥)
  (13) 

where 𝑟𝑤ℎ is the effective wheel radius. As shown in equations 11 

and 12, the longitudinal tire force will increase linearly with 𝜎 until a 

defined maximum longitudinal coefficient of friction, 𝜇.  

The rotational inertia of the rear axle has been lumped with the mass 

of the chassis, 𝑚, because the model does not consider braking and 

the Lincoln MKZ is front-wheel drive. As a result 𝐹𝑥𝑟 is always zero. 

Lumping the wheel inertia with 𝐼𝑚𝑜𝑡, as indicated in equation 5, has 

also simplified the relationship between longitudinal wheel force and 

wheel torque to equation 14: 

𝜏𝑤ℎ = 𝐹𝑥𝑓𝑟𝑤ℎ (14) 

The combined subsystem model of the drivetrain and longitudinal 

vehicle dynamics was constructed in MapleSim. The acausal 

modeling environment of MapleSim allowed for modeling of the 

power-split drivetrain despite the bi-directional torque transmission 

through many of the gear meshings. An S-function of the model was 

exported from MapleSim for integration with the other subsystem 

models in Simulink. 

 

Model Predictive Longitudinal Dynamics 

Controller 

Controller Design 

Based on the hybrid neural network model of the Lincoln MKZ’s 

power-split powertrain described in this paper, a unique approach to 

linearized MPC for longitudinal dynamics control was devised for a 

proof-of-concept simulation. The proposed controller must follow a 

reference longitudinal velocity trajectory, 𝑣𝑥(𝑘), which is always 

known for a finite prediction horizon. A similar velocity reference 

tracking problem is typical for adaptive cruise control or autonomous 

driving applications. 

Linearized MPC is made possible for this system by taking advantage 

of the neural network formulation of the powertrain model. By 

inverting some neural network portions of the powertrain system 

model and utilizing the quasi-static behavior of other portions of the 

model, the control-oriented model is reformulated. The formulation 

of the control-oriented model allows the model to be controlled using 

a typical linearized MPC approach. Figure 8 depicts a simplified 

block diagram of how the MPC controller connects with the 

powertrain and vehicle dynamics plant model for model in the loop 

(MIL) simulation. 

 

Figure 8: Block diagram depicting the controller in the loop with the 

powertrain and vehicle dynamics plant model. 

The controller has been designed such that it can be used to control 

the plant model without directly measuring diagnostics signals such 

as torques and speeds at the traction motor and generator. Diagnostics 

signals are unlikely to be available for implementation on the actual 

vehicle. As a result, only plant model states 𝑣𝑥, 𝜔𝑒𝑛𝑔, and 𝜔𝑤ℎ as 

well as battery SOC are fed back from the plant as fully measurable 

inputs to the controller. Road slope 𝛼 is also assumed to be 

measurable. 

For the MPC’s control-oriented model, the supervisory controller 

neural network model was inverted such that 𝑣𝑥, previous desired 

𝑇𝑑𝑠𝑑, and current desired 𝑇𝑑𝑠𝑑 are used to select the desired APP 

signal. The inverse model was constructed with the Matlab Neural 

Network Toolbox and tuned with the Levenberg-Marquardt 

algorithm. The same experimental data that was used for the forward 

neural network model was also used for the inverse neural network, 

and three hidden neurons was found to give optimal performance. 

Figure 9 depicts the supervisory controller inverse mapping at points 

of equilibrium (previous 𝑇𝑑𝑠𝑑 equal to current 𝑇𝑑𝑠𝑑). 

 

Figure 9: Equilibrium points plot depicting the neural network approximation 

of the supervisory control model. 
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The supervisory controller inverse neural network was found to have 

a regression coefficient of 0.975. The symbolic computing 

capabilities of Maple were used to extract an optimized nonlinear 

inverse neural network function for determining APP, hereafter 

denoted by 𝐼𝑁𝑁(𝑣𝑥, 𝑇𝑑𝑠𝑑𝑘−1, 𝑇𝑑𝑠𝑑𝑘
). 

The continuously linearizing MPC controller was created by 

combining components of the TCM and power source subsystem 

with the inverse supervisory controller model, and the drivetrain and 

vehicle model subsystem. The controller contains two non-linearized 

continuous time state-space internal models. The models were 

formulated by combining and rearranging and modifying equations 5, 

8, 11, 14 and either 6a (for engine shaft locked) or 6b (for engine 

shaft unlocked).  Equation 15 represents the nonlinear state-space for 

when the engine is locked: 

�̇� = [

�̇�𝑥

�̇�𝑚𝑜𝑡

�̇�𝑒𝑛𝑔

] =

[
 
 
 
 
𝐹𝑧𝑓𝜎𝐶𝑙−

1

2
𝐶𝑑𝜌𝑎𝑖𝑟𝐴𝑓𝑣𝑥

2−𝑚𝑔(𝐶𝑟𝑣𝑥+𝑠𝑖𝑛(𝛼)

𝑚

𝜏𝑚𝑜𝑡−
1

𝑅𝑓𝑅2
𝐹𝑧𝑓𝜎𝐶𝑙𝑟𝑤ℎ−

𝑅1
𝑅2𝜌

𝜏𝑠

𝐼𝑚𝑜𝑡

0 ]
 
 
 
 

 (15) 

and equation 16 represents the nonlinear state-space for when the 

engine is unlocked: 

�̇� = [

�̇�𝑥

�̇�𝑚𝑜𝑡

�̇�𝑒𝑛𝑔

] =

[
 
 
 
 
 
 
𝐹𝑧𝑓𝜎𝐶𝑙−

1

2
𝐶𝑑𝜌𝑎𝑖𝑟𝐴𝑓𝑣𝑥

2−𝑚𝑔(𝐶𝑟𝑣𝑥+𝑠𝑖𝑛(𝛼)

𝑚

𝜏𝑚𝑜𝑡−
1

𝑅𝑓𝑅2
𝐹𝑧𝑓𝜎𝐶𝑙𝑟𝑤ℎ−

𝑅1
𝑅2𝜌

𝜏𝑠

𝐼𝑚𝑜𝑡

𝜏𝑒𝑛𝑔+(1+
1

𝜌
)𝜏𝑠

𝐼𝑒𝑛𝑔 ]
 
 
 
 
 
 

 (16) 

Equations 15 and 16 as they appear in this paper have been 

simplified, for conciseness, by leaving in the terms 𝜎, 𝜏𝑠, and 𝐹𝑧𝑓. 

Once the equations for these terms are substituted into equations 15 

and 16 the dynamics are clearly coupled and highly nonlinear. For 

simplification of the controller, all gear meshing efficiencies have 

been ignored for the control-oriented model. The control-oriented 

model also does not account for the tire friction limit 𝜇 because it is 

assumed that the controller’s response can be tuned to avoid reaching 

the tire saturation region. 

At each time step, 𝑘, the controller uses the measurement of 𝜔𝑒𝑛𝑔 

and the previous desired torque estimate 𝑇𝑑𝑠𝑑 𝑘−1
∗  to estimate the 

current operating TCM mode. This method of estimating the 

operating mode is reactive rather than predictive, and it will normally 

lag the true mode signal by one time step. The controller then uses 

the estimate of TCM mode to determine whether to use equation 15 

or 16 in the MPC at the current time step. 

From the current estimate of TCM mode, 𝑇𝑑𝑠𝑑 𝑘−1
∗  and measurements 

of 𝜔𝑚𝑜𝑡, 𝜔𝑒𝑛𝑔, and SOC, the  controller uses a copy of the torque 

mapping neural network to approximate the partial derivatives 
𝜕𝜏𝑒𝑛𝑔

∗

𝜕𝑇𝑑𝑠𝑑
, 

𝜕𝜏𝑔𝑒𝑛
∗

𝜕𝑇𝑑𝑠𝑑
, and 

𝜕𝜏𝑚𝑜𝑡
∗

𝜕𝑇𝑑𝑠𝑑
. Simultaneously, the torques at the previous time 

step, 𝜏𝑒𝑛𝑔 𝑘−1
∗ , 𝜏𝑔𝑒𝑛 𝑘−1

∗ , and 𝜏𝑚𝑜𝑡 𝑘−1
∗  are estimated by the internal 

neural network approximator. The selected state-space equation is 

then modified by the linearization approximations in equations 17, 

18, and 19: 

𝜏𝑒𝑛𝑔 ≅ 𝜏𝑒𝑛𝑔 𝑘−1
∗ +

𝜕𝜏𝑒𝑛𝑔
∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗ ) (17) 

𝜏𝑔𝑒𝑛 ≅ 𝜏𝑔𝑒𝑛 𝑘−1
∗ +

𝜕𝜏𝑔𝑒𝑛
∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗ ) (18) 

𝜏𝑚𝑜𝑡 ≅ 𝜏𝑚𝑜𝑡 𝑘−1
∗ +

𝜕𝜏𝑚𝑜𝑡
∗

𝜕𝑇𝑑𝑠𝑑
(𝑇𝑑𝑠𝑑

∗ − 𝑇𝑑𝑠𝑑 𝑘−1
∗ ) (19) 

 

where 𝑇𝑑𝑠𝑑
∗  is treated as the generalized control input, 𝑢, for any time 

step 𝑖 such that 𝑘 − 1 < 𝑖 < 𝑘 + 𝑛. 

The state space equation is converted to discrete time by forward 

Euler approximation and then linearized by computing the jacobian 

matrices 𝐴 and 𝐵. To decrease computational cost, these matrices 

were determined symbolically offline using Maple. An estimate of 

the state increment, Δ𝑋𝑘−1, at previous time step  𝑘 − 1 is also 

determined from the unlinearized discrete state-space equations. The 

final set of linearized state-space equations at the nominal operating 

point 𝑘 − 1 is represented by equations 20 and 21: 

𝑋𝑖+1 = 𝑋𝑘−1 + 𝐴(𝑋𝑖 − 𝑋𝑘−1) + 𝐵(𝑢𝑖 − 𝑢𝑘−1) + Δ𝑋𝑘−1 (20) 

𝑦𝑖 = [1 0 0]𝑋𝑖  (21) 

The linear MPC was then defined by cost function in equation 22: 

𝐽 = ∑ (𝑞‖𝑦𝑖 − 𝑣𝑟𝑒𝑓 𝑖‖
2
+ 𝑟‖Δ𝑢𝑖‖

2)𝑘+𝑛
𝑖=𝑘   (22) 

subject to −250𝑁𝑚 < 𝑢 < 2985𝑁𝑚 (corresponds to the limits of 

𝑇𝑑𝑠𝑑), and −5000𝑁𝑚/𝑠 < Δ𝑢 < 5000𝑁𝑚/𝑠. The constraint on Δ𝑢 

was tuned to ensure that an impossible step change in 𝑇𝑑𝑠𝑑 was never 

demanded from the supervisory controller. Relative weighting terms, 

𝑞 and 𝑟, were selected to be 1 and 0.1, respectively. The cost function 

is minimized using quadratic programming at each time step. Tuning 

of the controller resulted in selection of a timestep 𝑇𝑠 = 0.05 𝑠, a 

prediction horizon of 20 steps, and a control horizon of 3 steps. 

Controller Simulation Results 

The velocity tracking performance of the linearized MPC controller 

was tested against several reference trajectories of 𝑣𝑟𝑒𝑓. To assess the 

MPC, it was compared to a tuned PI controller as a performance 

benchmark. Random variation in measured disturbance variables 

SOC and 𝛼 were added to the system to test the robustness of the 

controller. Figure 10 depicts the results from a reference signal 𝑣𝑟𝑒𝑓 

which repeatedly ramps by increments of 5 m/s. This test was used to 

observe the acceleration performance of the controller at various 

speeds. 
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Figure 10: Plot of simulation results from the ramped reference velocity 

tracking test. 

As depicted in figure 10, the MPC’s ability to look ahead to future 

desired values of 𝑣𝑟𝑒𝑓 helps it to respond faster than the PI. The PI is 

also more sensitive to changes in 𝛼 and SOC than the MPC. By 

building the effects of 𝛼 and SOC into the control-oriented model, 

the MPC can better respond to their effects.  The response of the 

MPC is also consistent regardless of current 𝑣𝑥. By comparison the 

PI controller’s response varies considerably with 𝑣𝑥, and in particular 

it has difficulty tracking low speed references. This is likely due to 

the nonlinear change of 𝜏𝑒𝑛𝑔, 𝜏𝑔𝑒𝑛, 𝜏𝑚𝑜𝑡, and drag resistance force as 

a function of 𝑣𝑥. The APP signal from the MPC exhibits a much 

more oscillatory response than the PI controller. However, since the 

APP signal is subjected to a transfer delay through the plant model’s 

supervisory controller, the wheel torque response was found to be 

largely smoothed. The MPC had a smoother velocity tracking 

response. 

Figure 11 depicts the results of a test where 𝑣𝑟𝑒𝑓 oscillates with a 

sinusoidal pattern about a speed of 15 m/s. This test was used to 

imitate the circumstances of the vehicle following another car that is 

making small speed changes over time. 

 

Figure 11: Plot of simulation results from the sinusoidal reference velocity 

tracking test. 

The predictive ability of the MPC allows the controller to adjust to 

continuous changes in 𝑣𝑟𝑒𝑓, and stay on the desired  trajectory. 

Conversely the PI controller’s performance is reactive, and it does 

not track the small changes in 𝑣𝑟𝑒𝑓 as effectively. The MPC also 

continues to respond better to changes in SOC and 𝛼, which inject 

disturbances into the model. Like the previous test, the APP signal 

from the MPC controller is much more oscillatory. Once again the 

highly oscillatory APP input from the MPC results in mostly smooth 

wheel torque signal. 

Conclusions 

The neural network and physics-based modeling approach described 

in this paper has been shown to be an effective method of modeling a 

power-split hybrid powertrain. Despite limited a priori knowledge of 

the Lincoln MKZ Hybrid’s internal powertrain control architecture 

and power source dynamics, modeling of the system using neural 

networks was found to be an effective approximator of real 

performance. Performance of the neural network models can be 

further improved by gathering additional data. More powertrain 

performance data for APP inputs between 50% and 100% will help to 

improve the accuracy of each neural network map. 

By modeling the drivetrain portion of the powertrain with a physics-

based approach, transient inertial behavior is introduced to the model. 

The transient response to the drivetrain helps to calculate a more 

accurate output torque value 𝜏𝑤ℎ. This modeling approach to the 

powertrain is modular, so it can be connected to a tire and vehicle 

dynamics model with any level of complexity. Future work will focus 
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on integrating the model with a high-fidelity MapleSim vehicle 

model and a braking force model for MIL full vehicle simulation. 

The proof-of-concept MPC controller introduced in this paper was 

shown to be an effective approach for longitudinal dynamics control. 

The grey-box power-split powertrain can be reconfigured for control-

oriented implementation. The pseudo-Hammerstein formulation of 

the control-oriented model allowed linearized MPC control to be 

implemented, but nonlinear MPC (NMPC) algorithms could also be 

explored. Future work will investigate NMPC approaches to control 

of shallow neural network based control systems with sigmoid 

activation functions. 
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Appendix 

Table 4: Table summarizes parameters of the simplified longitudinal vehicle dynamics model 

Symbol Description 

Fx Longitudinal tire force 

Fz Vertical tire force 

rwh Tire effective radius 

Cd Coefficient of drag 

Af Frontal vehicle area 

ρ
air

 Air density 

vx Longitudinal vehicle speed 

Cr Rolling resistance coefficient 

ax Longitudinal vehicle acceleration 

m Vehicle mass 

l Vehicle wheelbase 

a Distance from front axle to COM 

h COM height 

α Road slope angle 

g Acceleration due to gravity 

σ Longitudinal wheel slip 

μ Coefficient of friction between the tire and road 

Cl Longitudinal tire stiffness 

 


