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Abstract— Despite many lower-limb exoskeletons requiring
the use of crutches to maintain upright postures, limited re-
search has assessed control of standing balance recovery in these
systems. Using a model-based approach, the current simulation
study investigated the performance of impedance controllers
designed to assist with standing fixed-support balance recovery.
A novel multibody dynamic model of the integrated human-
exoskeleton system was designed to move in the sagittal plane.
Development of the exoskeleton model (Technaid Exo-H3)
was accompanied by parameter identification. The balancing
torques produced by the human in the model were derived from
offline linear control methods and saturated to approximate the
torque-production of a young individual either with or without
incomplete spinal cord injury. Without intervention, the injured
user was not able to recover upright posture following a forward
push of specific magnitude. Thus, three feedback control laws,
inspired by robotics research (exoskeletons and humanoids),
were implemented in the simulated exoskeleton. Each law
assisted with balance recovery via reference tracking within
the joint and/or whole-body center of mass space. Following
optimization of control parameters, all proposed exoskeleton
control laws were successful in assisting the injured user return
to an upright posture. Joint space control yielded the best joint-
level reference tracking during recovery, while center of mass
control better reduced forward center of mass excursions —
albeit at the cost of joint-level tracking accuracy.

I. INTRODUCTION

For many individuals with mobility deficits, such as those
who have experienced a spinal cord injury (SCI), active wear-
able exoskeletons provide an opportunity to regain indepen-
dence. These systems can allow the user to execute various
motor tasks (e.g. sit-to-stand and walking) with a level of
assistance tuned to their specific needs [1], [2]. However, a
major concern in using these robotic systems is the stability
of upright postures [3], [4]. Often, crutches, which limit
a user’s ability to perform activities of daily living stress-
free, are necessary to maintain balance. Additionally, control
methods such as finite-state architectures, often employed in
state-of-the-art exoskeletons [2], can induce balance-loss by
perturbing the system during periods of state transition.

Methods of standing balance control used within wearable
exoskeletons are typically based upon observations from
human experiments. For example, Horak and Nashner [5]
disseminated the use of ankle and hip strategies for bal-
ance recovery following external perturbations. The former
involves inverted pendulum control of posture; the latter
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consists of anti-phase ankle (plantarflexion) and hip (flexion)
rotations. Recently, Rajasekaran et al. [6] proposed a promis-
ing assist-as-needed control method that could aid both ankle
and hip strategies through joint angle-dependent stiffness and
stability limits. Emmens et al. [4] and [7] subsequently intro-
duced exoskeleton control of quiet standing and fixed-support
balance recovery using classical proportional-derivative (PD)
control of whole-body center of mass (COM). Assisted
balance recovery in the COM-task space, as opposed to the
joint space, draws parallels to popular biomechanical models
of feedback stance control in humans [8], [9], [10]. While
Emmens demonstrated the capabilities of their system in
restoring balance control in select individuals with SCI (i.e.
unable to balance unassisted), the exoskeleton output torques
were limited to driving only the ankle and knee joints.

Multibody dynamic modelling of the integrated (or com-
bined) human-exoskeleton system is limited within the lit-
erature. Relatively few models exist of wearable lower-limb
exoskeletons that both span multiple joints and are integrated
with whole-body human dynamics [3], [11], [12]. Modelling
and simulation of the integrated human-exoskeleton system
provides an opportunity to refine device/controller design
(and more) without putting an individual’s health, or the
hardware being tested, at risk, i.e., “model-in-loop” simu-
lation.

The purpose of the current study is twofold: i) design
a symbolic multibody model of the integrated human-
exoskeleton system; ii) assess the performance of exoskele-
ton feedback control in assisting with multi-joint (ankle,
knee, and hip) balance recovery. Specifically, the model was
used to gauge the capabilities of techniques employed in non-
linear tracking control of robotic systems (computed torque
control; CTC), to expand the current body of knowledge
surrounding assisted standing balance control [4], [6], [7].
A separate controller, with no knowledge of the embedded
exoskeleton controller, generated human torques for the case
of an individual with and without (control) incomplete SCI.
The goal was to then have the exoskeleton controller assist
the SCI user from falling (following a push) by driving them
towards the control user’s joint/COM trajectories.

II. INTEGRATED HUMAN-EXOSKELETON
MODEL

Multibody dynamic models of the Technaid R© Exo-H3
wearable exoskeleton (Technaid S.L., Madrid, Spain), and
the human user (Fig. 1), were designed in MapleSim (Maple-
soft, Waterloo, Canada). The dynamics of both models, when
kinematically constrained together, were an integrated system
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Fig. 1. A) Image of an individual wearing the Technaid Exo-H3 and B) schematics of the planar multibody human and exoskeleton model. Red arrows
indicate the two types of perturbations that could be applied to the model; push perturbations Fp (used in the current study) and support-surface accelerations
p̈. Also indicated are the human and exoskeleton ankle, knee, and hip angles ({θ·,a, θ·,k, θ·,h}) and exoskeleton rigid bodies (shown in italics).

of differential-algebraic equations (DAEs):
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where M is the inertia matrix, Γ returns gravitational,
velocity-dependent, and passive joint torques, and τ in is
the concatenation of the input torques from the human
and exoskeleton τ in = {τhm, τ e}T . Additionally, the
function P maps perturbation forces Fp (push to sacrum)
and support-surface accelerations p̈ to torques. The gen-
eralized coordinates q = {qhm,qe}T describe sagittal
plane rotations of the ankle, knee, and hip joints for the
human ({θhm,a, θhm,k, θhm,h}; qhm ∈ R3) and exoskeleton
({θe,a, θe,k, θe,h}; qe ∈ R3).

The human and Exo-H3 models were fixed together using
algebraic constraint equations [13],

Φ =

'
(

)

θhm,a − θe,a
θhm,k − θe,k
θhm,h − θe,h

*
+

, = 0 (2)

which emulate the ideal scenario in which the exoskeleton
and human joint centers are perfectly aligned [14]. This
simplification bypassed the need for additional model ele-
ments and any related parameters [15]. The relevant reac-
tion torques (Lagrange multipliers, λ) that maintained the
constraints (2) were evaluated using the constraint Jacobian
Jq = ∂Φ/∂q with Baumgarte stabilization. This method
uses the coefficients α and β to provide PD-like control of
constraint violations during integration of DAEs.

A. Lower-Limb Exoskeleton Model

The Technaid Exo-H3 consists of two leg modules in
addition to a trunk segment (brace, bracket and battery).
Brushless DC motors actuate the ankle, knee, and hip joint,
within the sagittal plane (3 degrees of freedom per leg; DOF),
over the following ranges of motion: ankle (30◦ of plantar-

and dorsiflexion); knee (105◦ flexion, 5◦ extension); hip
(105◦ flexion, 30◦ extension). Rotary encoders are fixed to
each joint to provide joint angles in real-time, while pressure
sensors in each foot segment provide information regarding
center of pressure movement (COP).

The model of the Exo-H3 consisted of a single point mass
(the battery fixed to the trunk segment) and 8 rigid bodies
(Fig. 1b): 3 motorized joint modules (contain joint, motor and
gearbox); 2 stainless steel links connecting joints in series; 1
foot segment fixed to the support-surface; the brace/orthosis
that secures the user’s trunk in the exoskeleton; and the
bracket/attachment from which the battery is fixed. For
this preliminary version, the legs were assumed to behave
symmetrically and motors acted as ideal torque actuators.

The multibody parameters identified for the Exo-H3 are
listed in Table I. Note the values listed are for a single
component; since the right and left legs were lumped to-
gether, inertial and torque properties were doubled in the
model. The mass of each rigid body was measured using
a scale calibrated to 4 kg. To approximate the moment of
inertia and center of mass location for each rigid body of
interest, a moment of inertia tester was used (MOI-025-004,
Inertia Dynamics, USA). All joint modules were assumed
to have equivalent inertia; the same was assumed for the
inertia of links between joint. Moreover, the inertia of each
joint module was based on measurements from the ankle
segment alone. Position of the battery and trunk brace, in
the trunk reference frame, were based on measurements
following fitting of the exoskeleton to an individual 1.80 m
in height (body mass = 75 kg).

The damping resulting from the exo-actuators and joints
was estimated using a commercial dynamometer (Biodex
System 4 Pro, Biodex, USA). Specifically, the Exo-H3 was
fixed to the dynamometer seat and motion of the knee joint
was isolated and recorded at 100 Hz. The knee was moved at
a constant velocity θ̇e = {2, 4, 10, 20, 45} deg s−1 over the



interval [0,−π/2] rad, where the knee was fully extended at
0 rad (see Fig. 1b). The torques recorded for each velocity
condition were windowed over the periods of constant veloc-
ity and filtered using a zero-lag dual-pass filter (2nd order
low-pass Butterworth, cut-off = 20 Hz). Torques resulting
from gravity were removed from the processed data. The
nonlinear least squares curve fitting function lsqnonlin
(MATLAB, USA) was subsequently used to fit the processed
passive torques, across each velocity, to the affine damping
function

τe,p = y −Deθ̇e (3)

where y was the torque measured at zero speed. The linear
component of Eq. (3) was implemented in the Exo-H3 model.
It was assumed that each joint had identical damping De

and that joint impedance was identical between the two
directions of rotations. To avoid the effects of bias during the
curve-fitting process, each velocity condition was provided
the same number of data points within the tested range of
motion. The results of the curve-fitting procedure are shown
in Fig. 2. Note that due to abnormalities in the passive
torques measured during knee flexion (e.g. large jumps in
torque between neighbouring joint angles), the current study
utilized data collected only during knee extension.

B. Human Biomechanical Model

The human-user model paired with the lower-limb ex-
oskeleton also consisted of three DOF (identical to those
of the exoskeleton). Upper limb rigid bodies were present in
the model but fixed in anatomical position, similar to that
instructed in balance recovery studies [4], [16]. The segment
properties necessary to formulate the model dynamics (mass,
length, moment of inertia, and COM position) were scaled
according to the height and weight of the individual to be
simulated (height = 1.80 m, weight = 75), via the Winter
[8] anthropometric tables. These values are omitted from the
current manuscript due to document length limitations.

To reduce computational costs related to muscle mod-
elling, the dynamics of the human model were entirely
torque-driven. Passive moments resulting from viscoelastic
structures (e.g. muscle connective tissue, joint capsule, etc.)
were included to factor into controller design. Lower limb
joint stiffness was based on the empirically-derived cou-
pled exponential stiffness equations from Riener and Edrich
[17]. These equations consider the effects of biarticular
musculature on the resulting joint impedance. Lastly, a
linear torsional damper with the damping coefficient c =
0.1 Nm rad−1 was fixed to each joint [18].

C. Control-Oriented Dynamics

To design the Exo-H3 balance recovery controllers, the
constraint equations (2) were dropped from (1); the equations
of motion were then rewritten in terms of qe as ordinary
differential equations (i.e. (2) was always true).

For control of the human within the exoskeleton, the intent
was to derive a controller that would not have knowledge of
the exoskeleton’s intent (similar to a novice user), and would
not drastically increase computation times when incorporated
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Fig. 2. Results of fitting Eq. (3) to the passive torques measured in the
Exo-H3 knee joint. Experimental data, shown as the mean torque across the
joint angles spanned for each velocity (◦; error bars indicate ±1 SD), was
analyzed only for the positive/extension direction of knee velocity.

TABLE I
PARAMETERS MEASURED FOR THE TECHNAID EXO-H3 RIGID BODIES.

Parameter Value
Joint Module Param.
De (Nm rad−1) 12.8
Mass (kg) 1.39
M.o.i (kg m2) 1.69E-3

Link Param.
Mass (kg) 9.30E-2
M.o.i (kg m2) 7.22E-4

Miscellaneous Inertia Param.
Foot mass (kg) 0.62
Battery mass (kg) 2.78
Brace mass (kg) 1.39
Brace m.o.i (kg m2) 9.39E-2
Bracket mass (kg) 1.36
Bracket m.o.i (kg m2) 3.36E-2

Segment COM Position∗ [x, y]
Brace COM (m) [-0.22, 0.10]
Battery COM (m) [-0.25, 0.10]
∗Expressed in trunk frame

into an optimization procedure. Thus, the nonlinear dynamics
(1) were written entirely in terms of qhm and linearized in
state-space. The state was x = {qhm, q̇hm}, and for any
desired static configuration xd = {qd, q̇d}, the dynamics of
the human-exoskeleton system could be written as

ẋ = Axer(t) +Bτ er(t) (4)

where xer(t) = x(t)−xd and τ er(t) = τhm(t)−τ d. Given
the nonlinear dynamics ẋ = f(·) from (1),

A =
∂f

∂xer

----x=xd
τ=τd

, B =
∂f

∂τ er

----x=xd
τ=τd

(5)

Note that the desired torques τ d were inputs that fulfilled
static equilibrium: f(xd, τ d) = 0.

III. HUMAN MODEL CONTROL & SIMULATION

A. Feedback Control Law

Control of the human model was based on a linear
quadratic regulator (LQR; Fig. 3). Using the control-oriented
linearized equation (4), an optimal set of gains Khm could
be derived. These gains minimized a cost function that was
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Fig. 3. Block diagram of the integrated human-and-exoskeleton balance recovery system for the SCI user (note the torque saturation blocks). The dashed
grey region shows how the LQR and control-user (Ctrl) saturation limits generate reference trajectories for the exoskeleton balance controller (EXO).The
details of switching between the EXO controllers (JCTC, CCTC, COMB) are highlighted in the dashed red area.

quadratic in both x and τhm. The resulting feedback torques
were,

τhm = Khm(xd − x) + τ d (6)

The matrix Q included in the LQR cost function (not shown)
was based on a first-order Taylor series of the horizontal
COM position, as done previously for the control of a double
pendulum [19]. Additionally, the R matrix required for the
LQR formulation was set to identity.

B. Control User vs. SCI User Simulations

For each simulation, the model was initialized at the
static, zero velocity fixed/desired point qe(0) = qd =
{0.052, 0, 0}T rad. This configuration provided a human
COM equilibrium position similar to that observed during
experimental stance [20]. Simulations spanned a two-second
window to allow for complete balance recovery (return to
xd) [7], [16]. A fixed-step explicit trapezoidal method was
used to integrate the system forward; this method reduced
the time required within the gain optimization procedure (see
IV-D), while minimizing the numerical inaccuracies intrinsic
to lower-order methods. The control user was modelled by
imposing saturation limits on τhm according to the maximal
isometric torques reported in [21] (Table II). To then have a
simple model of a user that behaves like an individual with an
incomplete SCI, control torque saturation limits were scaled
by 40% [22]. Ankle torques were also saturated when the
COP exceeded the base of support boundaries, according to
the linearized COP approximation in [8].

To estimate the performance of the control and SCI users
with no assistance from the exoskeleton, the integrated model
was simulated forward in response to a push perturbation. A
horizontal force was applied superior to the hip joint (5 cm)

using the function,

Fp,x =

%
P sin (πtT ) if t < T

0 else
(7)

which mimicked the force profiles in [7]. Parameters P and
T were the peak magnitude and duration of force applied,
respectively. To determine the threshold at which the SCI
user could not recover (while the control user still could), T
was set to 225 ms, and P was progressively increased from
0. At P = 380 N (Impulse = 54.4 N·sec), the SCI could
no longer recover balance (see Fig. 4). Thus, the exoskele-
ton controllers described in the following section aimed to
stabilize the SCI user for this magnitude of perturbation by
tracking the stable control-user trajectories as reference.

IV. EXOSKELETON CONTROLLER DESIGN &
SIMULATION

A. Computed Torque Control: Joint Space (JCTC)
In the exoskeleton joint space, it’s feasible to derive a

nonlinear control law to stabilize certain configurations and
trajectories using CTC (i.e. JCTC). In the current study,
the intent was to assist the SCI user in tracking what was
considered their desired/reference motor plans (based on the
performance of the control user).

Control about the reference (control user) balance recovery
trajectory took the form,

τ e = M(Kjqer +Dj q̇er)− Γ(qe, q̇e)− τhm (8)

where qer = qref − qe, q̇er = q̇ref − q̇e, and Kj and
Dj are coupled stiffness and damping matrices respectively.
Inherently, this control method provides both a feedforward
torque, to compensate for quadratic velocity effects and
gravitational toppling, and feedback torque to correct for any
deviations from the referenced LQR states. Additionally, it
is assumed that the controller can reasonably estimate τhm

via the interaction torque sensors shipped with the Exo-H3.



TABLE II
OUTPUT TORQUE SATURATION LIMITS FOR THE LUMPED LOWER-LIMBS.

Joint Torque [Lower Limit, Upper Limit]
τhm,a (Nm) [-252, 88]
τhm,k (Nm) [-230, 431]
τhm,h (Nm) [-426, 300]
τei (Nm) [-290, 290]
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Fig. 4. Balance recovery COM trajectories (∆COM w.r.t. COM equilibrium
point) following a push perturbation (P = 380 N) using the control (blue)
and SCI (orange; right y-axis) torque saturation limits. The reduced torque
limits provided to the SCI user prevented the LQR controller from stabilizing
the fixed-point resulting in divergence.

B. Computed Torque Control: COM Space (CCTC)

As human balance recovery is typically framed within the
context of the COM task-space, it is of interest to formulate
a nonlinear feedback law within that space (CCTC). For a k
rigid-body system, the COM position is evaluated as

COM ≡ c =
1

M

k.

i=1

mics,i(q) (9)

where M is the system’s total mass; mi and cs,i are the ith

segment mass and COM position. To create better synergy
between the exoskeleton and human controllers, the COM
was evaluated for only the human (chm) (see III-A) [7], [4].

By using the Jacobian Jc = ∂chm/∂qe, such that,

q̇e = J−1
c ċhm (10)

q̈e = J−1
c (c̈hm − J̇cq̇e) (11)

where J−1
c is the damped least-squares pseudoinverse, the

open-chain equations of motion can be written in COM-
space:

JT
c Fc = MJ−1

c (c̈hm − J̇cq̇e)− Γ(q, q̇)− τhm (12)

Fc = J−T
c [MJ−1

c (c̈hm − J̇cq̇e)− Γ(q, q̇)− τhm] (13)

where J−T
c ≡ (JT

c )
−1. From this result, an impedance-like

force applied to the COM (F∗
c ) can be derived:

F∗
c = J−T

c [MJ−1
c (Kccer +Dcċer − J̇cq̇e)]

− J−T
c [Γ(q, q̇) + τhm]

(14)

where cer = cref − chm, ċer = ċref − ċhm, and Kc and Dc

are now gain matrices in COM space. Once evaluated, F∗
c

can then be mapped back to τ e.

C. Computed Torque Control: Combined (COMB)

Alternatively, the controller implemented in the exoskele-
ton can combine both the JCTC and CCTC feedback laws
through summation (COMB). This method is similar to
that employed in a humanoid COM control architecture
[23]. Here, the authors combined joint-space LQR with a
CTCC controller (controlled only horizontal COM position)
to stabilize a static upright posture following a push. The
joint-space torques provide restoration to a specific postural
configuration, while the COM torques can generate human-
like counterbalance strategies, e.g. the hip strategy [5], [19],
[23]. Note that feedforward terms are included only once
within the combined system.

D. Controller Optimization

The control systems JCTC and CCTC should be theoret-
ically stable assuming the gains are set appropriately. For
the current paper, an optimization-based approach was used
to select these for the SCI user specifically. The system
was simulated again over a two-second span, in which the
exoskeleton controller was not active until t = 250 ms; this
was approximately where the SCI and control trajectories
diverged (Fig. 4). This allowed the SCI user-model to handle
the initial feedback response. At each joint, boundaries were
imposed on τ e to keep it below the motors’ momentary peak
torque, as specified by the Exo-H3 manufacturer (Table II).
If the COP exceeded the base of support boundaries during
simulation, the ankle motor would try to generate a counter-
torque to maintain the COP at the corresponding boundary.

The gains that minimized the cost function,

J =
w1

Π1
(δXf ·δXf )+

/ 2

0

0w2

Π2
(cx−ceq)

2+
w3

Π3

...
c 2
x

1
dt (15)

were determined via a shooting method. The cost function
(15), inspired by previous research [16], [19], consisted
of a terminal cost dependent on the final state, δXf =
xd − {q, q̇}|t=2, and an integral component that measured
the displacement of the horizontal COM position from its
equilibrium point (i.e. ∆COM; ceq = 0.05 m, [20]) in
addition to COM jerk

...
c x (for smooth trajectories). Each

term was normalized using a factor Πi; its value was based
on evaluations of each term when using the control-user LQR
alone. The following set of weights were used: w1 = 2; w2

= 1; w3 = 1.
The optimal control problem was initially solved using

particle swarm optimization. Multiple iterations were ex-
ecuted to increase the likelihood of converging upon a
global optimum within the search space. The solutions from
particle swarm were then fine-tuned using gradient-based
optimization (fmincon in MATLAB). Controllers were
quantitatively assessed according to the peak ∆COM [7], as
well as the root mean square error between the control and
assisted COM (RMSC; horizontal component only) and joint
angle trajectories (RMSJ) . The latter (RMSJ) was averaged
across the ankle, knee, and hip joints. Based on the LQR
feedback gains, as well as trial-and-error, elements in the
gain matrices were bounded between -2000 and 2×104. All



TABLE III
OUTCOME MEASURES FOR THE PROPOSED EXO-H3 CONTROLLERS.

Outcome JCTC CCTC COMB

Peak ∆COM (m) 0.121 0.118 0.121
RMSC (m) 0.034 0.019 0.031
RMSJ (rad) 0.129 0.162 0.141

computations were performed using an Intel Core i7 CPU
(3.60 GHz) and 16.0 GB of memory.

V. RESULTS AND DISCUSSION

Using LQR to control the human in the exoskeleton
yielded a combined hip/knee strategy rather than a strict
double pendulum-like strategy (locked-knee); however, the
results were reasonably human-like regardless [24] (Fig. 5).
Displacements of the COM were still acceptable relative
to human experiments (∆COM ≈ 8 cm in [16]; ∆COM
= 9.5 cm in the current study, Fig. 5) and were always
within the base of support boundaries. The impulse required
to destabilize the SCI user in the current study was much
larger than the tolerance of the individuals with SCI in [7],
where the fall-threshold was 30 N·sec. The result was a larger
∆COM (>10 cm) for assisted balance recovery relative
to reported outcomes from the exoskeleton literature [4],
[7]; however, the two-second window of recovery was very
similar to [7]. Despite these differences, the limits imposed
on the SCI user in the current study were successful in
differentiating it from the control user, such that assistive
control was necessary for balance recovery. Improved model
predictions will require refinement of the details surrounding
the effects of SCI on motor control.

Fig. 5 and Table III highlight the performance of each
controller following the push perturbation. On average, each
two-second simulation required 0.66 CPU seconds. All con-
trollers were successful in assisting the SCI user recover
balance and return towards their desired static posture. Using
JCTC yielded the best joint level tracking (lowest RMSJ)
in addition to smooth recovery kinematics. However, using
CCTC reduced the peak ∆COM experienced by the simu-
lated user, yielded better tracking of the control COM (lowest
RMSC), and brought the COM closer to the equilibrium
point after 2 seconds (relative to JCTC). Some non-ideal
oscillations were evident in the CCTC joint trajectories and
the hip experienced a greater deal of hip flexion (reflected
by the large RMSJ), which remained after 2 seconds. These
issues may have been due to inaccuracies in the mapping by
the damped pseudoinverse Jacobian, which should be refined
in the future. Lastly, using COMB produced similar results
to the JCTC — both qualitatively and quantitatively. With
that said, at the end of the simulated horizon, the COMB
controller appeared to drive the COM past its equilibrium
point. This overshoot can be observed in the joint angles as
well (ankle and knee). Hypothetically, this underdamped be-
haviour may be the result of the JCTC and CCTC competing
to stabilize the same configuration. This strategy may bring
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Fig. 5. Performance of the three exoskeleton balance recovery controller
variations (JCTC, CCTC, COMB) in assisting the SCI user following push
onset (at t = 0). The instant at which the exoskeleton controller is turned
on is labelled “Exo-On”. Note: positive ankle angle is dorsiflexion; positive
knee angle is extension; positive hip angle is flexion.

the COM towards its equilibrium point quicker than JCTC
alone (while avoiding the abrupt changes in direction seen
with CCTC), but does not allow one to infer stability without
setting longer simulation times.

In the current study, a fixed time determined the onset
of exoskeleton assistance to limit the number of variables
that could determine each controller’s success. Realistically,
some variable(s) that reflects stability of the system could
be substituted [6], [10], [9]. Ideally, the exoskeleton balance
controller should be capable of transitioning between dif-
ferent recovery strategies (e.g. transition from ankle to hip
strategy) to improve robustness against a multitude of pertur-
bation modalities [5]. This may require definition of various
control laws, according to movements within joint, COM
and COP space, and validation against multiple perturbation
types, e.g. support-surface accelerations.

Given the nature of this simulation-based research, it is
important to identify the limitations and areas upon which
to improve. Foremost, validation of the current motion
predictions was limited to outcomes reported within the
literature; experimental validation of controllers will be
necessary within future work. The human model will be



given additional details including musculoskeletal elements
that impose biological constraints (e.g. muscles [21]), and
more adept controllers that reflect characteristics of the
central nervous system, e.g. process delays, tracking subject-
specific reference trajectories. Furthermore, the human LQR
implemented in the current study was not able to recognize
and adjust its control strategy with knowledge of limits in
COP position, torque limits [19], and the torques applied
by the exoskeleton. These would be features of learned
responses by the nervous system; the latter would come with
practice using the exoskeleton [25].

The exoskeleton model will also be improved upon in
the future. This will primarily involve the inclusion of ac-
tuator dynamics and characterization of the aforementioned
joint module impedance nonlinearities ignored in the current
study. Additionally, rather than assuming ideal conditions
(i.e. Eq. (2)), the effects of human-exoskeleton interface
compliance on force transmission, for which there seems to
be limited simulation research [15], [14], should be identi-
fied. Lastly, for the foot-ground interactions, we assumed no
slipping and used a simple COP approximation [8]; therefore,
a stricter domain of admissible motions should be prescribed
for the integrated human-exoskeleton model in the future.

VI. CONCLUSION

The current study provided a preliminary simulation anal-
ysis in which variations of computed torque control (CTC)
laws were shown to assist a model of an exoskeleton end user
(with SCI) in executing balance recovery. To the authors’
knowledge, this is the first demonstration of exoskeleton
standing balance recovery via CTC; thus, this limited area of
the literature has been expanded [4], [6], [7]. How dynamic
simulations can benefit researchers in the design of assistive
devices and controllers was also highlighted, i.e. testing
scenarios in which falls can occur without worry of harm
to the user/participant. In the future, the aim is to utilize the
perturbation labs at the University of Waterloo [26], to assess
performance of the proposed exoskeleton balance recovery
systems in both healthy and clinical/rehabilitation users.
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