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Abstract (word count 250) (250 max) 29 

Many baseball pitching studies have used inverse dynamics to assess throwing arm kinetics as high and repetitive 30 

kinetics are thought to be linked to pitching injuries. However, prior studies have not used participant-specific body 31 

segment inertial parameters (BSIPs) which are thought to improve analysis of high-acceleration motions and 32 

overweight participants. This study’s objectives were to 1) calculate participant-specific BSIPs using DXA 33 

measures, 2) compare inverse dynamic calculations of kinetics determined by DXA-calculated BSIPs (full DXA-34 

driven inverse dynamics) against kinetics using the standard inverse dynamics approach with scaled BSIPs (scaled 35 

inverse dynamics), and 3) examine associations between full DXA-driven kinetics and overweight indices: body 36 

mass index (BMI) and segment mass index (SMI). Eighteen participants (10-11 years old) threw 10 fastballs that 37 

were recorded for motion analysis. DXA scans were used to calculate participant-specific BSIPs (mass, center of 38 

mass, radii of gyration) for each pitching arm segment (upper arm, forearm, hand), BMI, and SMI. The hypotheses 39 

were addressed with t-tests and linear regression analyses. The major results were that 1) DXA-calculated BSIPs 40 

differed from scaled BSIPs for each pitching arm segment; 2) calculations for shoulder, but not elbow, kinetics 41 

differed between the full DXA-driven and scaled inverse dynamics analyses; and 3) full DXA-driven inverse 42 

dynamics calculations for shoulder kinetics were more often associated with SMI than BMI. Results suggest that 43 

using participant-specific BSIPs and pitching arm SMIs may improve evidence-based injury prevention guidelines 44 

for youth pitchers. 45 

 46 

Keywords: baseball, biomechanics, pitching, motion analysis, body mass index. 47 

 48 

1 Introduction 49 

Over the past few decades, pitching-related injury and surgery rates increased dramatically for youth baseball players 50 

[1-2]. Although youth baseball organizations have recently implemented pitch count recommendations and other 51 

injury prevention guidelines, injury rates for youth baseball players are not decreasing [3]. Pitching arm injuries are 52 

thought to begin during youth play and result from overuse as high and repetitive shoulder and elbow joint kinetics 53 

lead to progressive soft tissue damage [2, 4-5]. Common shoulder pitching injuries, for pitchers of all ages, include 54 

labrum and rotator cuff strains and tears where higher shoulder internal rotation torque, horizontal abduction torque, 55 

and compression force likely lead to increased risk for these injuries [6–8]. Another common shoulder injury found 56 
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primarily in youth pitchers is proximal humeral epiphysiolysis (also known as little leaguer’s shoulder) which has 57 

been linked to shoulder internal rotation torque [4]. An increasingly common elbow injury in youth pitchers is ulnar 58 

collateral ligament strain in the elbow joint; high and repetitive elbow varus torques likely lead to increased UCL 59 

strain and increased injury risk [9-10]. Thus, improving calculations of injury-related pitching arm kinetic calculations 60 

may benefit the continued development of evidence-based injury prevention strategies. 61 

 62 

Pitching arm kinetics are commonly calculated using a two-step process. First, kinematic data is collected using 63 

motion capture cameras. Second, inverse dynamics is used to calculate elbow and shoulder joint kinetics during the 64 

throwing motion. For the inverse dynamics analysis, researchers must provide body segment inertial parameters 65 

(BSIPs) for each pitching arm segment (upper arm, forearm, and hand) including masses, centers of mass, and radii 66 

of gyration. Prior youth and adult pitching analyses [7-8] used scaled inverse dynamics with BSIPs scaled from total 67 

body mass and arm lengths with parameters based on studies of adults with normal physiques [11].  However, prior 68 

studies using scaled BSIPs for youth pitchers likely have two major sources of error in their calculated kinetics. First, 69 

BSIPs have been shown to differ, on average, between adults and youths (e.g. see [12]). Second, since the pitching 70 

arm experiences relatively high accelerations, inverse dynamics calculations of pitching arm kinetics are likely more 71 

sensitive to BSIPs than has been found in gait analysis where the legs experience relatively low accelerations. Indeed, 72 

prior gait studies reported that participant-specific BSIPs become more important to use when calculating kinetics 73 

during the swing phase of gait [13] and running [14] as compared to the stance phase of gait. Therefore, use of BSIPs 74 

scaled from adults may introduce considerable errors in inverse dynamics calculations of youth pitching arm kinetics, 75 

especially in a participant-specific manner.  76 

 77 

A promising tool for obtaining participant-specific BSIPs is Dual energy X-ray absorptiometry (DXA). Indeed, DXA 78 

scans have been used in two prior pitching studies. In one study with pitchers aged 10-16 years, DXA-calculated 79 

composition measures of the total pitching arm were associated with injury-related pitching kinetics; however, that 80 

study appeared to use scaled BSIPs to calculate kinetics [15]. In a second study with pitchers aged 10-11 years, inverse 81 

dynamics analyses using DXA-calculated pitching arm segment masses ratios calculated significant increases in 82 

shoulder kinetics (up to 15%) when compared to scaled inverse dynamics analyses [16]. However, no prior study of 83 



 

 4 

youth baseball pitching kinetics has attempted to calculate a full set of participant-specific BSIPs, which is an objective 84 

of this study. 85 

 86 

The use of participant-specific BSIPs may be especially important for overweight pitchers, as one study suggested 87 

that participant-specific BSIPs are more important to consider for overweight participants [14]. One-third of youths 88 

in the United States are overweight or obese [17], and similar trends have been observed in youth baseball players 89 

[18]. According to Pitch Smart guidelines [19], overweight measures including body mass and body mass index (BMI) 90 

have not been identified as risk factors for pitching injuries. However, there is evidence that being overweight 91 

increases injury risk for youth baseball players [20] and other youth athletes [21-22]. Thus, improving our 92 

understanding of how overweight or obesity affect pitching arm kinetics through use of participant-specific BSIPs 93 

may also benefit the continued development of evidence-based injury prevention strategies. 94 

 95 

In a recent study with pitchers aged 10-11 years, pitching arm kinetics were correlated with BMI and total body mass 96 

[16]. In earlier studies with pitchers aged  9-16 years, pitching arm kinetics were correlated with total body mass, BMI, 97 

and/or total fat and lean arm masses [4, 15, 23]. An advantage to considering BMI is that it is relatively easy to 98 

calculate and, thus, highly accessible to players, parents, and coaches. However, BMI may not be the most accurate 99 

overweight measure to use because it is the masses (including both lean and fat masses) of only the pitching arm 100 

segments that inverse dynamics uses to calculate kinetics. To address that concern, this study introduces a novel 101 

overweight measure termed segment mass index (SMI) for investigating relations between body mass and pitching 102 

arm kinetics. SMI is defined by the segment mass divided by segment length (kg/m), and thus only depends on the 103 

arm segment mass (as opposed to BMI which depends on total body mass). 104 

 105 

Thus, this study’s objectives were to 1) calculate participant-specific BSIPs using DXA measures; 2) compare inverse 106 

dynamic calculations of joint kinetics determined by those DXA-calculated BSIPs (full DXA-driven inverse 107 

dynamics) against kinetics using the standard inverse dynamics approach with scaled BSIPs (scaled inverse 108 

dynamics); and 3) examine associations between full DXA-driven kinetics and two overweight indices: body mass 109 

index (BMI) and a novel segment mass index (SMI).  110 

 111 
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The hypotheses were that, for baseball pitchers aged 10-11 years, (1) DXA- calculated and scaled pitching arm BSIPs 112 

would differ, on average; (2) injury-related pitching arm kinetics (shoulder compressive force, shoulder internal 113 

rotation torque, shoulder horizontal adduction torque, elbow varus torque) calculated by full DXA-driven inverse 114 

dynamics and scaled inverse dynamics would, on average, differ; and (3) injury-related pitching arm kinetics 115 

calculated by full DXA-driven inverse dynamics would be significantly associated with BMI and/or SMI. 116 

 117 

2 Methods 118 

Protocols were approved by our Institutional Review Board and were designed to minimize risks. Youth participants 119 

and a parent came to the motion analysis lab on the day of the experiment. Informed consent and participant assent 120 

were obtained from the parent and youth participant, respectively. DXA scans and motion analysis data were obtained 121 

in conjunction with a prior study [1] and are briefly summarized below. 122 

 123 

Participants. Eighteen male participants (age: 10.6 ± 0.5 years, height: 147.8 ± 7.4 cm, body mass: 39.6 ± 7.3 kg, BMI: 124 

18.0 ± 2.2 kg/m2) with no recent history of pitching-related injuries participated. Only participants who self-reported 125 

regular pitching experience in the preceding Little League season were included in the study. Twelve participants 126 

were normal weight, five participants were overweight, and one participant was obese (as determined from age-127 

specific BMI charts [24] where 5th percentile to 85th percentile is normal weight, 85th to 95th percentile is overweight, 128 

and above 95th percentile is obese). Thus, 33% of participants were overweight which is representative of the target 129 

population [18]. Four of the participants were left-handed pitchers. 130 

 131 

DXA scans and experiments. After obtaining informed consent and participant assent, each participant completed 132 

measurements of body weight and height followed by a DXA scan using a Lunar iDXA scanner (GE Healthcare, 133 

Madison, WI, USA).  Then, the participant went through a warm-up regimen (including jogging and stretching) and 134 

played catch (~25 non-pitching throws) for ~20 minutes in an outdoor area adjacent to the motion analysis lab. In the 135 

motion analysis lab, 38 retroreflective markers were placed on the participant based on the Cortex/PitchTrak software 136 

marker set (Version 7.4.6, Motion Analysis, Santa Rosa, CA, USA). The markers were separated into two groups: 137 

anatomical markers that were placed on specific landmarks and tracking markers that were arbitrarily placed on a 138 

segment. For a right handed pitcher the marker set consisted of the following anatomical markers: left acromium, right 139 



 

 6 

acromium, right medial scapula, right inferior scapula, left medial scapula, left inferior scapula, left lateral humeral 140 

epicondyle, left medial humeral epicondyle, left radial styloid process, left ulnar styloid process, right lateral humeral 141 

epicondyle, right medial humeral epicondyle, right radial styloid process, right ulnar styloid process, right asis, sacral, 142 

left asis, right lateral femoral epicondyle, right lateral malleolus, right calcaneus, left lateral femoral epicondyle, left 143 

lateral malleolus, left calcaneus, right medial femoral epicondyle, right medial malleolus, left medial femoral 144 

epicondyle, and left medial malleolus. The tracking markers were the top head, front head, back head, right clavicle, 145 

right hand, right thigh, right shank, right toe, left thigh, left shank, and left toe. 146 

 147 

Participants pitched off a portable mound (height = 6 in) in the room’s center and into a net 23 feet away with a scaled 148 

strike zone. Each participant threw 10 fastball warm up pitches followed by 10 fastball pitches at maximum effort that 149 

were recorded. Marker trajectories were captured using a motion analysis system (Fig. 1) with 12 cameras and 150 

recorded in Cortex analysis software (Motion Analysis) at 200 Hz, interpolated (third-order spline), and filtered (4th 151 

order Butterworth filter, cutoff frequency 12 Hz) [25].  Markers fell off the participants during ~15% of the pitches; 152 

those pitches were repeated after re-attaching the markers and not counted in the required 10 pitches. 153 

 154 

Scaled BSIPs. Scaled inverse dynamics analyses were conducted with PitchTrak’s default values for scaled mass 155 

ratios, centers of mass, and radii of gyration. Those default parameters were based on values for young adult males 156 

from a prior study [11], and which are similar to most prior pitching studies.  157 

 158 

DXA-calculated BSIPs. DXA software (GE Healthcare) adds pixel composition measures over a default segmented 159 

region (e.g., the total arm) and reports total segment composition parameters (bone mineral content, adipose mass, 160 

lean mass). DXA images were manually segmented into the pitching upper arm, forearm, and hand segments with 161 

segment boundaries defined as in a previous youth anthropometry study [12] (Fig. 2). The upper arm segment was 162 

defined from the shoulder joint center at the humeral head with its surrounding tissue to the elbow joint center at the 163 

humeral epicondyle. The forearm segment was defined from the humeral epicondyle to the styloid process. The hand 164 

segment was defined from the styloid process to the third metacarpal. 165 

 166 
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The DXA software’s pixel information was exported for further analysis in MATLAB (MathWorks, Natick, MA, 167 

USA). DXA scan files contained an array of pixels (0.24 by 0.32 mm) for both bone mineral density and soft tissue 168 

content. For this study, a custom MATLAB code was written to calculate arm segment lengths (as distances between 169 

the joint centers defined above), mass, center of mass, and radii of gyration for each arm segment. The coordinate 170 

system was defined with X as the mediolateral axis, Y as the longitudinal axis, and Z as the anteroposterior axis. The 171 

custom code is outlined below for the upper arm (Fig. 3).  172 

1) Each pixel 𝑃𝑖 was modeled as a point mass and its mass 𝑚𝑃𝑖
 was calculated using raw DXA values and packing 173 

factors [26]. The packing factors describe the needed conversions to give a two-dimensional pixel density 𝜌𝑝𝑖
 for each 174 

pixel in the array. Using the pixel width and height (𝑃𝑤 , 𝑃ℎ), the pixel mass was calculated using 175 

  𝑚𝑝𝑖 =  𝜌𝑝𝑖 ∗ (𝑃𝑤 ∗ 𝑃ℎ).  (1) 176 

2) The segment mass 𝑀 was calculated by summing all pixel masses in the segment using 177 

𝑀 =  ∑ 𝑚𝑝𝑖.  (2) 178 

3) The coordinates (𝑥𝑝𝑖/0
, 𝑦𝑝𝑖/0

) of each pixel  𝑃𝑖 relative to the pixel array origin O (which defaults to the upper left 179 

of the array at the first non-zero value) were used to calculate coordinates (𝑥𝐺 , 𝑦𝐺) of the center of mass (𝐺) relative 180 

to O using 181 

𝑥𝐺 = ∑(𝑚𝑃𝑖 ∗ 𝑥𝑃𝑖/𝑜
) /𝑀 , 𝑦𝐺 = ∑(𝑚𝑃𝑖 ∗ 𝑦𝑝𝑖/0

) /𝑀.  (3) 182 

The center of mass was assumed to lie in the X-Y plane (𝑧𝐺 = 0) due to the DXA scans 2-D array output. These 183 

(𝑥𝐺 , 𝑦𝐺) coordinates defined the origin 𝐺 of a segment coordinate system with XYZ axes (Fig. 3).   184 

4) The moment of inertia with respect to 𝐺 about the anteroposterior Z axis (𝐼𝑧) was calculated using 185 

𝐼𝑍 =  ∑(𝑚𝑃𝑖 ∗ 𝑑
𝑃𝑖/𝐺

2
),  (4) 186 

where 𝑑𝑝𝑖/𝐺
 was the distance of each pixel from 𝐺.  187 

5) The anteroposterior axis radius of gyration (𝑘𝑧 ) was calculated using 188 

 𝑘𝑍 =  (𝐼𝑍/𝑀)1/2.  (5) 189 

The mediolateral axis radius of gyration (𝑘𝑥) was assumed from symmetry about the Y-axis to be 𝑘𝑥 = 𝑘𝑧.  190 

6) The longitudinal axis radius of gyration about the Y axis (𝑘𝑦) for each segment was assumed from previously 191 

reported scaling ratios [27] using the relations 192 
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𝑘𝑦 = 0.55 ∗ 𝑘𝑧  (upper arm), 𝑘𝑦 = 0.47 ∗ 𝑘𝑧 (forearm), 𝑘𝑦 = 0.63 ∗ 𝑘𝑧 (hand).  (6) 193 

7) The custom code’s output variables were formatted per PitchTrak specifications [11]. Segment masses were 194 

converted to mass ratios by dividing by total body mass. The mass of the ball (147 grams) was accounted for in the 195 

hand mass ratio. Centers of mass were calculated relative to the proximal joint center, and radii of gyration were 196 

converted to ratios by dividing by segment length. 197 

 198 

Code verification. The custom MATLAB code was verified using an alternative code developed independently by 199 

another research group (represented as co-authors on this study). That research group had previously developed a 200 

similar pixelated 2-D MATLAB approach to post-process raw iDXA data to calculate one moment of inertia of a body 201 

segment for a study published on BSIPs of Paralympic athletes [28]. For code verification, the other research group 202 

used both their alternative code and the code developed for this study to obtain upper arm segment BSIPs for four of 203 

their participants. 204 

 205 

Kinetics. The range of motion analyzed was from front foot contact to ball release. Foot contact and ball release were 206 

determined from visual inspection of the video frames to be the time points when the heel stops moving in an anterior 207 

direction and when the throwing arm wrist initiates a sudden and large pronation, respectively. Those methods were 208 

validated for a prior study [16] using pilot experiments with a force plate (to identify foot contact) and a reflective ball 209 

(to identify ball release). All kinetics were calculated in PitchTrak, with the pitching arm BSIPs dependent on the 210 

specific inverse dynamics analysis. Since processing the kinematic data is very time consuming, only the last 3 pitches 211 

with usable data were analyzed independently to obtain averaged kinetic values. Analyzed kinetic parameters included 212 

maximum values of shoulder compressive force, shoulder internal rotation torque, shoulder horizontal adduction 213 

torque, and elbow varus torque (Fig. 4). Kinetic parameters were expressed as internal joint loads (e.g., an external 214 

elbow valgus torque produces an internal varus torque generated by tissues including the ulnar collateral ligament 215 

[29]). 216 

 217 

Statistics. All statistical analysis was performed in MiniTab 19.2 (Minitab, United Kingdom). To assess differences 218 

between DXA-calculated and scaled BSIPs, one-sample t-tests were performed after investigating normality 219 

assumptions using the Shapiro-Wilks test. The full DXA-driven longitudinal radius of gyration for the forearm and 220 
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the full DXA hand mass ratios were found to be non-normal distributions and were analyzed using Wilcoxon Signed 221 

Rank Tests with a significance level of 0.05.  Since there were six parameters (one mass, two center of mass 222 

coordinates, three radii of gyration) for each of the three arm segments, resulting in 18 separate tests, a Bonferroni 223 

adjusted significance level of 0.0028 was used for each one sample t-test. To assess differences between upper arm 224 

BSIPs calculated from the alternative code and the code developed for this study, paired t-tests were performed with 225 

a significance level of 0.05.  226 

 227 

All kinetic data normality assumptions were investigated using Shapiro-Wilks tests and found to be normal. Thus, to 228 

assess differences between kinetics calculated by the full DXA-driven and scaled ID analyses, paired t-tests were 229 

performed for each kinetic parameter. Since there were four kinetic parameters, resulting in four separate tests, a 230 

Bonferroni adjusted significance level of 0.0125 was used for each paired t-test.  231 

 232 

Linear regression models were performed to examine the associations between each of three shoulder kinetic 233 

parameters calculated by full DXA-driven inverse dynamics and BMI (three models) and Total Arm SMI (three 234 

models). Total arm SMI was defined by total arm mass divided by total arm length (kg/m). Several other SMI formulae 235 

were considered (see Discussion for more details). Also, linear regression models were performed to examine 236 

associations between elbow varus torque calculated by full DXA-driven inverse dynamics and BMI (one model) and 237 

Lower Arm SMI (one model). Lower Arm SMI was defined similarly to Total Arm SMI but using only lower arm 238 

plus hand mass and length. 8 total linear regressions were run, and regression model significance was determined if 239 

the F-test p-value was less than 0.006. 240 

 241 

3 Results 242 

Code verification found averaged upper arm masses calculated by the alternative code to be 2.980 ± 0.430 kg while 243 

masses calculated from the code developed for this study were 2.975 ± 0.452 kg. Also, upper arm moments of inertia 244 

about the anteroposterior axis were 0.022 ± 0.004 N-m as calculated by the alternative code and 0.020 ± 0.005 N-m 245 

by the code developed for this study. Paired t-tests indicated that the two codes did not calculate different upper arm 246 

masses (p=0.73) or moments of inertia (p=0.16). 247 

 248 
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DXA and scaled BSIP ratios differed for each arm segment (Table 1). For the upper arm, DXA mass (p<0.001), 249 

longitudinal and sagittal center of mass coordinates (p<0.001), and transverse, longitudinal, and sagittal radii of 250 

gyration (p<0.001) were greater than their respective scaled parameters. For the forearm, DXA mass (p<0.001) and 251 

sagittal center of mass coordinate (p<0.001) were greater than their respective scaled values. For the hand, DXA mass 252 

(p<0.001), longitudinal and sagittal center of mass coordinates (p<0.001), and sagittal and longitudinal radii of 253 

gyration were less than their respective scaled parameters (p<0.001).  254 

 255 

Shoulder kinetic parameters (Table 2) varied between full DXA-driven inverse dynamics and scaled inverse dynamics 256 

for compressive force (p<0.001), internal rotation torque (p<0.001), and horizontal adduction torque (p<0.001). For all 257 

three shoulder kinetic parameters, full DXA-driven inverse dynamics calculated higher mean values as compared to 258 

scaled inverse dynamics: 14% higher for shoulder compressive force, 31% higher for shoulder internal rotation torque, 259 

and 47% higher for horizontal adduction torque. Elbow varus torque calculations did not differ between the inverse 260 

dynamics models. 261 

 262 

For the four kinetic parameters, only shoulder internal rotation torque (p=0.005) was positively associated with BMI 263 

(Table 3). Also, only shoulder compressive force (p=0.002) and internal rotation torque (p=0.004) were positively 264 

associated with total arm SMI. For all four kinetic parameters, the correlations (represented by the R2 values) were 265 

higher in models with SMI than with BMI. 266 

 267 

4 Discussion 268 

There were several novel features of this study. First, DXA scan data were used to calculate a complete set of 269 

participant-specific pitching arm BSIPs. Second, those BSIPs were used with a full DXA-driven inverse dynamics 270 

analysis to calculate pitching arm kinetics. Third, the inverse dynamics results were used to analyze associations 271 

between injury-related pitching arm kinetics and a novel overweight measure, SMI, which was proposed as a new 272 

overweight-related measure for investigating relations between body mass and pitching arm kinetics.  273 

 274 

The results supported the first hypothesis as DXA-calculated BSIPs differed from standard scaled BSIPs. One 275 

explanation for that result is that scaled values were based on adults and it has been previously reported that child and 276 
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adult anthropometric parameters differ [16]. Upper-arm BSIPs presented the greatest differences, presumably due to 277 

the DXA segment definition of the upper arm, which agrees with some previous studies [12, 16]  (but not others [11, 278 

27]) that included upper arm mass proximal to a transverse plane through the shoulder joint center. Including the 279 

additional upper arm mass resulted in several changes relative to scaled BSIPs. First, the upper arm’s DXA mass was 280 

higher than its scaled mass. Second, the DXA center of mass shifted toward the proximal endpoint and was likely the 281 

cause of the lower longitudinal center of mass ratio. Third, the DXA center of mass shifted off the longitudinal axis 282 

in a medial direction. Fourth, the DXA upper arm radii of gyration were higher than scaled values, due to the fact that 283 

the additional upper arm mass shifts the mass concentration away from the origin. For the forearm, the mediolateral 284 

center of mass locations differed as the DXA calculations did not assume they lie along the longitudinal axis. For the 285 

hand, the DXA mediolateral and longitudinal center of mass locations and mediolateral and longitudinal radii of 286 

gyration were less than their respective scaled values.  287 

 288 

The results supported the second hypothesis as full DXA-driven inverse dynamics and scaled inverse dynamics 289 

calculated different shoulder, but not elbow, kinetics. In particular, shoulder kinetic parameters were higher when 290 

using full DXA-driven inverse dynamics.  An explanation for that finding is that the scaled inverse dynamics analyses 291 

of this and previous studies [11, 26-27] used upper arm mass and radii of gyration that were lower than values used 292 

in the full DXA-driven analysis. The inverse dynamic analysis that PitchTrak uses calculates joint loads and torques 293 

by going from the distal to the proximal joint centers, where the calculated kinetics at each joint center (elbow and 294 

shoulder) are then dependent only on the BSIPs for the segments distal to that joint. Thus, the upper arm BSIPs 295 

contribute to only the shoulder joint kinetics. The additional upper arm mass included tissues surrounding the shoulder 296 

that appear to rotate around the shoulder joint center during the pitching motion. Since including that mass in the 297 

definition of the upper arm segment increased calculated shoulder kinetics values, future pitching studies of shoulder 298 

kinetics should carefully consider how the upper arm segment is defined.  299 

 300 

The results supported the third hypothesis as shoulder, but not elbow, kinetics were associated with BMI and SMI. 301 

The positive associations between shoulder compressive force and internal rotation torque with BMI and/or SMI 302 

generally agreed with previous studies that have reported relations between kinetics and BMI [16, 30]. However, 303 

a novel feature of this study was the introduction of SMI as an overweight measure for pitching analyses. Interestingly, 304 
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shoulder compressive force was significantly associated with SMI but not BMI (after Bonferroni adjustment for 305 

multiple tests).  This is likely because the SMI definitions only considered the pitching arm segment masses, which 306 

are the only mass parameters used for inverse dynamics analyses. Intuitively, this finding agrees with the observation 307 

that, in the inverse dynamics approach, shoulder kinetics depend directly on upper arm, forearm, and hand masses and 308 

not total body mass. Thus, a measure of whether the arm is “overweight” such as SMI should produce stronger 309 

associations with kinetics than with BMI, especially when one considers that BMI is largely determined from other 310 

segment masses (e.g. trunk and legs) that account for ~90% of total body mass [11]. However, a higher BMI due to 311 

excessive adiposity in the trunk and legs may have altered injury-related kinematics and is currently being examined 312 

in a follow-up study. Further, it is important to note that correlations between kinetics and body fat percentage were 313 

also considered in preliminary statistical analyses for this study. No such correlations were detected and, thus, were 314 

not reported here. Those results reinforce the idea that measures based on total mass, and not lean or fat mass separately, 315 

appear to be best for predicting pitching arm kinetics – which agrees with several previous studies that have also 316 

considered relations between total, fat, and/or lean masses and pitching arm kinetics [15, 16]. 317 

 318 

This study provides several implications for youth baseball players. Common pitching injuries include shoulder rotator 319 

cuff and labrum injuries, which have been linked to high shoulder horizontal abduction torque, internal rotation torque, 320 

and compression force [6, 31–33]. Thus, a clinically relevant result was that the full DXA-driven inverse dynamics 321 

method calculated higher shoulder kinetics when compared to scaled inverse dynamics. The use of participant-specific 322 

BSIPs likely leads to more accurate calculations of injury-related pitching arm kinetics and, thus, may lead to an 323 

improved understanding of injury risk factors. Moreover, when participant-specific accuracy is the focus of a pitching 324 

biomechanics study, full DXA-driven inverse dynamics becomes more imperative as differences between full DXA-325 

driven and scaled inverse dynamics kinetics on a participant-specific basis were as high as 76% for shoulder internal 326 

rotation torque and 25% for elbow varus torque. 327 

 328 

Another clinically relevant result was that, for pitchers aged 10-11 years, shoulder compressive force and internal 329 

rotation torque were significantly associated with BMI and/or SMI. During the past three decades, prevalence rates of 330 

childhood and adolescent obesity have more than doubled in the United States [34]. Overweight and obesity 331 

prevalence in youth baseball is similar to the general youth population [18, 35-36], but that prevalence is higher than 332 
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most other youth sports [20, 37-38] likely due to the sport containing relatively low vigorous activity and caloric 333 

expenditures [35, 39] and an unhealthy food culture [40]. While BMI appears to be a reliable predictor of injury-334 

related kinetics in youth pitchers [15, 30], a recent study found that shoulder kinetics were much more strongly 335 

correlated with arm mass than total body mass [16]. Accordingly, SMI, which considers just the total arm mass, 336 

appears to be an overweight measure that is an even better predictor of injury-related pitching arm kinetics than BMI. 337 

Thus, pitchers with higher SMI, whether due to excessive fat or muscle mass, may be at more risk for shoulder injury.  338 

 339 

One limitation of the current study is that DXA data provides 3-D mass data within a 2-D image of the coronal plane 340 

by condensing the density data along the anterior-posterior axis (Fig. 3) to an average density for that specific pixel, 341 

𝑃𝑖 . Therefore, this study had to make assumptions about the 3-D mass distribution in the sagittal and transverse planes. 342 

However, it is likely that the DXA-calculated BSIPs were more accurate than the scaled values due to the use of 343 

participant-specific DXA data and the fact that scaled values were based on other limiting assumptions [11]. A second 344 

limitation was uncertainty regarding the exponent of the length term used in the definition of SMI. SMI was defined 345 

in a manner analogous to BMI and, thus, quantified whether the pitching arm segment was “overweight.” More 346 

specifically, SMI was defined by total segment mass divided by total segment length. For BMI (body mass divided 347 

by height squared), the exponent on height is two and was chosen so that BMI is an index for excessive adiposity of 348 

the total body. In contrast, here the SMI parameter was defined to be an overweight measure of the pitching arm, 349 

including both lean and fat mass, that correlates with pitching arm kinetics. For this study, we examined three other 350 

choices of exponents, and found that an exponent of 1 was best correlated (due to lowest p-values) of pitching arm 351 

kinetics. 352 

 353 

A third limitation is that calculating BSIPs using DXA data is challenging, time consuming, and requires a DXA scan 354 

of each participant. There are two other approaches that might be attractive for future studies with youth pitchers. One 355 

approach (referred to as DXA scaled inverse dynamics below) would be to use the new mean BSIPs reported here as 356 

scaling ratios in a standard scaled inverse dynamics approach. Another approach (referred to as DXA mass inverse 357 

dynamics below) would be to use the DXA approach, but to only calculate segment masses after the custom 358 

segmentation step while continuing to use other published values for the other BSIPs. For this study, obtaining the 359 

segment masses was relatively straightforward as the only additional step was to manually perform the custom 360 
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segmentation in the DXA software; then, the DXA software automatically calculated and displayed those segment 361 

masses. 362 

 363 

To assess those alternative approaches, we calculated the kinetic parameters using DXA scaled and DXA mass inverse 364 

dynamics analyses, and then performed paired t-tests to investigate for differences between those kinetics and the 365 

kinetics calculated using the full DXA-driven inverse dynamics approach (Table 2). Using DXA scaled inverse 366 

dynamics, the results (mean ± standard deviation) for shoulder compressive force, shoulder internal rotation torque, 367 

shoulder horizontal adduction torque, and elbow varus torque were (276 ± 82 N-m), (18.2 ± 6.5 N-m), (40.8 ± 23 N-368 

m), and (11.7 ± 2.7N-m), respectively, and the corresponding t-test p-values were 0.976, 0.795, 1.000, and 0.619, 369 

respectively. Thus, there were no differences detected between the DXA scaled and full DXA-driven inverse dynamics 370 

analyses. Using DXA mass inverse dynamics, the results (mean ± standard deviation) for shoulder compressive force, 371 

shoulder internal rotation torque, shoulder horizontal adduction torque, and elbow varus torque were (258± 63 N-m), 372 

(15.2± 4.6 N-m), (29.1± 12 N-m), and (11.8± 2.5 N-m), respectively, and the corresponding t-test p-values were 0.004, 373 

<0.001, <0.001, and 0.794, respectively. Thus, there were differences detected between the DXA scaled and full DXA-374 

driven inverse dynamics analyses for the shoulder, but not elbow, kinetics. 375 

 376 

Thus, these additional analyses suggest that for studies involving groups of youth pitchers, future studies may consider 377 

utilizing the average BSIPs from Table 1 or an alternate set of BSIPs that are both age-specific and that include the 378 

shoulder joint mass in the definition of the upper arm segment.  However, it is emphasized that if the focus is on 379 

individual participants, full DXA-driven inverse dynamics likely leads to greater accuracy as differences between full 380 

DXA-driven and DXA scaled inverse dynamics ranged from -30 to 89 percent depending on kinetic parameter and 381 

participant. 382 

 383 

In summary, this study was the first to investigate youth pitching arm kinetics calculated with a complete set of 3-D 384 

participant-specific and DXA-calculated BSIPs for the pitching arm. Novel results for youth pitchers were that (1) 385 

DXA-calculated BSIPs were different from scaled BSIPS, (2) full DXA driven inverse dynamics calculated higher 386 

shoulder kinetic parameters than scaled inverse dynamics, and (3) full DXA-driven inverse dynamics calculations for 387 

shoulder kinetics were more often associated with SMI than BMI. These novel results suggest that full DXA-driven 388 
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inverse dynamics more accurately calculates shoulder kinetics than scaled inverse dynamics for youth baseball 389 

pitchers. Furthermore, this study introduced a new parameter, SMI, that appears to be an overweight measure that 390 

better correlates with injury-related pitching arm kinetics than total body BMI.  391 
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Tables 497 

Table 1 - Scaled and DXA upper arm, forearm, and hand segment inertial parameter ratios; mean ± 1 SD values 498 

shown. One sample t-tests were run to compare the scaled and DXA inertial values. 499 

  
Mass 

(%) 

Mediolateral Center of Mass 

(%) 
  

  Scaled DXA Scaled DXA   

 Upper Arm 2.71 3.34 ± 0.26* 0 7.65 ± 1.49*   

 Forearm 1.62 1.51 ± 0.11* 0 4.32 ± 1.97*   

 Hand 0.61 0.66 ± 0.05* 0 6.22 ± 4.14*   

  
Longitudinal Center of Mass 

(%) 

Mediolateral Radius of Gyration 

(%) 
 

 

 Segment Scaled DXA Scaled DXA   

 Upper Arm 57.7 41.3 ± 2.10* 28.5 33.8 ± 1.58*   

 Forearm 45.7 46.0 ± 2.51 27.6 27.1 ± 1.39 
 

 

 

Hand 79.0 70.6 ± 6.17* 62.8 53.9 ± 4.87*  

 

Longitudinal Radius of 

Gyration 

(%) 

Anteroposterior Radius of 

Gyration 

(%) 

 

 

Segment Scaled DXA Scaled DXAb   

 Upper Arm 15.8 18.7 ± 0.68* 26.9 33.8 ± 1.23*  
 

 Forearm 12.1 12.6 ± 0.96 26.5 27.1 ± 1.39   

Hand 40.1 33.8 ± 4.39* 51.3 53.9 ± 4.87   

Note. Segment masses are relative to body mass. Center of mass locations and radii of gyration are relative to 500 
segment length. Anteroposterior center of mass location assumed on the longitudinal axis through the center 501 
of mass. b Scaled from McConville et al.[27]  *= significant difference compared against scaled value, 502 
p<0.001  503 
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Table 2 - Shoulder and elbow kinetics calculated using scaled and full DXA-driven inverse dynamics; mean ± 1 SD 504 
values shown. Paired t-tests were used to compare the kinetics calculations. 505 

 
Scaled ID 

Full DXA-

driven ID Shoulder 

   Compressive force (N) 245± 56 279± 74* 

   Internal rotation torque (N-m) 14.4± 4.1 18.9± 6.3* 

   Horizontal adduction torque (N-m) 27.8± 11 40.9± 22* 

Elbow   

   Varus torque (N-m) 11.6±2.4 11.8± 2.8 

Note. *=significant difference when compared to the scaled ID value, p<0.001.  506 
   507 
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Table 3 - Simple linear regression results of full DXA-driven inverse dynamics shoulder and elbow kinetics vs. 508 
BMI and SMI; R2 and p-values shown. Total Arm SMI was used for shoulder kinetics and Lower Arm SMI 509 
was used for elbow kinetics. 510 

 BMI SMI 

Shoulder R2 p-value R2 p-value 

   Compressive force (N) 0.39  0.040 0.46  0.002* 

   Internal rotation torque (N-m) 0.24  0.005* 0.41 0.004* 

   Horizontal adduction torque (N-m) 0.27 0.028 0.29  0.020 

Elbow     

   Varus torque (N-m) 0.05  0.375 0.10  0.191 

Note. *=significant correlation; p<0.006 defined significance.  511 
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Figures  512 

Figure 1 - Participant pitching off portable pitching mound with retroreflective markers to capture kinematic data 513 

and 1 of 12 motion analysis cameras shown. 514 

Figure 2 - (Left) bone mineral density (BMD) and (right) soft tissue image of a youth participant. BMD scan: higher 515 

grayscale intensity indicated higher bone density. Soft tissue scan: higher grayscale intensity indicated lower body 516 

fat percentage. Regions 1 and 4 represent hands, regions 2 and 5 represent forearms, and regions 3 and 6 represent 517 

upper arms. 518 

Figure 3 – Axes and distances used for inertial parameter calculations of the upper arm. (Left) Axes centered at 519 

mass center (𝐺): longitudinal Y-axis through elbow (EJC) and shoulder (SJC) joint centers, medial X-axis directed 520 

through elbow epicondyles but located at 𝐺, anterior Z-axis (not shown). 𝑂 = pixel array origin, 𝑃𝑖  = arbitrary pixel. 521 

(Right) Coordinates (𝑥𝑝𝑖/0
, 𝑦𝑝𝑖/0

) of 𝑃𝑖   relative to 𝑂 and distance 𝑑𝑝𝑖/𝐺
 of 𝑃𝑖   relative to 𝐺. 522 

Figure 4 - Schematic of PitchTrak angle definitions used for torque directions for a right-handed pitcher. Angles of 523 

0 degrees correspond to the neutral position. Angles of +90 degrees correspond to upper arm internal and horizontal 524 

adduction rotations and forearm varus rotation. For shoulder internal rotation and horizontal adduction torques, the 525 

circular arrows represent the directions of internal torques applied to the upper arm segment at the shoulder joint. 526 

For elbow varus torque, the circular arrow represents the direction of internal torque applied to the forearm segment 527 

at the elbow joint. 528 


