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Abstract 16 

The purpose of this preliminary study was to examine age-sensitive High Density surface 17 

Electromyogram (HD-sEMG) features by Core Shape Modelling (CSM) method. Fatiguing low 18 

force isometric contractions of the biceps brachii was performed by eight young (age, 24.40 ± 2.42 19 

years) and five elderly (72.90 ± 2.21 years) males, while HD-sEMG recorded signals from the 20 

biceps brachii. The task was performed at 20% maximal voluntary contraction (MVC). From the 21 

recorded HD-sEMG signals, three Probability Density Function (PDF) shape distances (SD) 22 

measures the departure from Gaussianity, i.e. Left (LSD), Right (RSD), and Central (CSD), were 23 

derived by the CSM method from non-overlapping five-second windows until task failure. A linear 24 

regression analysis was then used to quantify the change of these shape parameters throughout the 25 

contraction. The resultant slopes revealed that the elderly group showed a decreasing trend in PDF 26 

shape parameters as the contraction approached task failure. In contrast, the young showed an 27 
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increasing trend. Statistical differences between the two groups were found for LSD (p=0.006) and 28 

RSD (p=0.001). No such age-sensitivity was detected using conventional sEMG fatigue features. 29 

These results suggest that the proposed CSM method can be used to obtain fatigue-related features 30 

from HD-sEMG that are age-sensitive and possibly related to different motor unit recruitment and 31 

synchronization schemes.  32 

1. Introduction  33 

Understanding physical limitations of the human body has been one of the primary focuses 34 

in the fields of sport, exercise, rehabilitation and ergonomics (Mori et al., 2016, Gu et al., 2018). 35 

Information about the underlying mechanisms responsible for these limitations are critical in the 36 

improvement of performance and/or prevention of musculoskeletal injury. One of the most 37 

prevalent mechanisms that results in a decrease in performance and increase in likelihood of injury 38 

is muscular fatigue, which can be defined as a decrease in maximum voluntary contraction force 39 

(MVC) or power production in response to contractile activity (Gandevia, 2001). Muscle fatigue 40 

is influenced by two systems and as such is typically split into the following categories: central 41 

fatigue and peripheral fatigue. Central fatigue stems from the central nervous system, which affects 42 

the neural drive to the motor neuron pool in a muscle leading to a reduction of force (Wan et al., 43 

2017), whereas peripheral fatigue refers to the reduction of force generation capacity caused by 44 

skeletal muscle neurophysiological change (Cè et al., 2020). 45 

It is accepted that advanced aging causes modifications to the neuromuscular system which 46 

can result in changes in the skeletal muscles such as their size, shape and fiber composition 47 

(Faulkner et al., 1995; Lexell, 1995). The abnormal age-associated loss of muscle mass and 48 

strength (force generation) is commonly referred to as sarcopenia. This condition typically results 49 
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in a loss of muscle fibers and an increase in fat infiltration at these sites (Santilli et al., 2014). 50 

Epidemiological studies show that the prevalence of sarcopenia increases from 5% from those 51 

aged 65-70 years old to 50% of those aged older than 80. Studies have shown that the prevalence 52 

of sarcopenia is expected to rise from 600 million in 2000 to 1.2 billion by 2025, costing upwards 53 

of 23.2 billion USD  Although the relationship between changes in muscle mass and strength due 54 

to sarcopenia is well established (Brach & VanSwearingen, 2002; Faulkner et al., 1995), it is still 55 

not obvious how these factors affect the muscle resistance to fatigue.  56 

To accurately model muscle fatigue using electrophysiological data, it is important to 57 

understand its underlying mechanisms. Typically, these mechanisms develop in the central and 58 

peripheral nervous system causing variations in motor unit (MU) recruitment strategies, 59 

conduction velocity or firing rate (McManus et al., 2016). Currently, Surface Electromyography 60 

(sEMG) is one of the most widely accepted non-invasive modalities used in capturing these 61 

variations (Cifrek et al., 2009). The sEMG signal typically depicts these changes in neuromuscular 62 

and morphological properties through modifications in its time-domain or spectral parameters and 63 

as such, these parameters are typically used to quantify muscle fatigue (Cifrek et al., 2009).  64 

The robustness of these parameters in capturing age-related differences in fatigue development has 65 

been in question as of late. Although some studies exist that have found differences in these 66 

parameters with age (Yamada et al., 2000), several studies have not (da Silva et al., 2015; 67 

Habenicht et al., 2020; Yassierli et al., 2007) .The discrepancies in these results potentially 68 

indicates that age-related differences in fatigue development  vary with contraction type, intensity 69 

and/or with muscle. 70 
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Apart from these well-established properties, motor unit synchronization has become 71 

progressively more relevant in recent literature concerning muscle fatigue. MU synchronization 72 

refers to the tendency of two MUs to fire within a fixed time interval with respect to each other, 73 

more frequently than chance (De Luca et al., 1993). In fact, recent studies have shown evidence 74 

that muscle fatigue had caused an increase in MU synchronization during sustained contraction 75 

(Beretta-Piccoli et al., 2015). A study that investigated the synchronization of MU activity during 76 

voluntary contraction revealed that the amount of synchronization reveals itself on a probabilistic 77 

level and is not apparent on visual inspection of the sEMG signal (Datta & Stephens, 1990). 78 

Considering this, a functional methodology, core shape modelling (CSM), explored by (S 79 

Boudaoud et al., 2010) investigated the modifications of the probability density function (PDF) 80 

shape during contraction due to MU synchronization.  This methodology provided interesting 81 

results in classifying different levels of synchronicity and contraction intensity (Ayachi et al. 2014) 82 

on simulated sEMG signals. If synchronicity occurs during a fatiguing exercise, it induces 83 

modifications in the probability density shape: the more the MUs are synchronized the more likely 84 

for peaks and troughs to appear in the signals, leading to the modifications of the probability 85 

density function (S Boudaoud et al., 2010).  86 

The primary aim of this study was to determine age-specific differences in measures 87 

derived from the CSM methodology between young and elderly males during fatiguing isometric 88 

contractions of the biceps brachii. Specifically, the effect of muscle fatigue on the shape of the 89 

HD-sEMG PDF was determined using Left (LSD), Right (RSD), and Central (CSD) shape distance 90 

measures derived from the CSM methodology. A secondary aim of this study was to compare this 91 

novel methodology to measures widely used in the literature such as time and frequency measures 92 
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from the sEMG signal, and torque variability measures extracted from force signals obtained from 93 

the dynamometer system (Al-Mulla et al., 2011; Tracy & Enoka, 2002). The HD-sEMG technique 94 

was used to record 64 sEMG signals from the biceps during contraction such that a Laplacian filter 95 

can be applied, to reduce the effect of crosstalk between the electrodes and to increase PDF shape 96 

modification contrast as observed in (Ayachi et al., 2014). 97 

  98 
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2. Methods 99 

2.1. Participants 100 

Twenty able-bodied male subjects were recruited from the University of Waterloo to 101 

participate in this study. Subjects were assigned to two groups based on their age; the young group 102 

consisted of 10 individuals between the ages of 22 and 30 years old (24.40 ± 2.42 years) and the 103 

elderly group had 8 males between the ages 68 and 75 years old (72.90 ± 2.21 years). All subjects 104 

were right-handed, and no one reported suffering from myopathy, abnormal pathologies, and 105 

musculoskeletal injury within the past six months. None of the participants required assistance for 106 

typical daily activities or had any cognitive impairments. Using the body mass index (BMI), no 107 

subject in either the young group (22.34±1.66) or the elderly group (25.55±3.06) was reported as 108 

underweight (BMI ≤ 18.5) or obese (BMI ≥ 30). Informed consent was obtained from each 109 

participant before the experiment and procedures were in accordance with the Declaration of 110 

Helsinki. 111 

2.2. Experimental Protocol 112 

A HD-sEMG electrode system (EMG-USB2+, OT Bioelettronica, Italy), was used to 113 

acquire sEMG data in monopolar montage. An 8x8 flexible electrode grid (10mm inter-electrode 114 

distance, 4mm electrode diameter) was placed on top of the biceps brachii (approximately placed 115 

between 20% and 61% of the upper limb length; Figure 1), with the reference electrode placed on 116 

the wrist after skin preparation. The signals recorded by the device were sampled at a rate of 2048 117 

Hz, with a gain of 500. 118 
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A Dynamometer system (System 4 Pro, Biodex, USA) was used to acquire torque 119 

generated from the subject during exercise. This system ensured a fully isometric contraction as 120 

zero velocity is maintained in all possible range of motions, allowing no significant variations in 121 

muscle length or joint angle during contraction. According to guidelines set by the manufacturer, 122 

the participants were seated in the dynamometer with 85° hip flexion from the anatomical position. 123 

The dynamometer arm was oriented 30° toward the participant which caused the forearm angle to 124 

be 30° from the horizontal prior to elbow flexion. Following calibration, the user was seated with 125 

their right elbow resting against a support. The forearm was placed in supination position firmly 126 

holding the fixed handle on the dynamometer arm. Due to the electrodes placed on the arm, it was 127 

not possible to immobilize the arm completely. 128 

Before the experiment, the subject performed test contractions to get familiar with the 129 

experimental setup. During the experiment, both HD-sEMG and torque signals were recording 130 

continuously until the experiment was over. The subjects were first instructed to elicit a maximal 131 

voluntary contraction (MVC) by pulling the dynamometer handle towards them at maximal effort 132 

and maintaining it for five seconds. This was repeated three times to get an accurate reading of the 133 

 

Figure 1: High Density sEMG (HD-sEMG) electrode grid placement on subject and numerical reference of the electrodes 
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MVC value. To minimize the effect of fatigue on the MVC recordings, two-minute breaks were 134 

provided between the MVC contractions. Following the MVC contractions, subjects would rest 135 

for another two minutes. Then subjects were instructed to perform three brisk contractions to allow 136 

for realignment between the sEMG and torque data in offline analysis. Next, subjects were asked 137 

to maintain 20% MVC contraction until a subjectively determined endurance limit, which was 138 

defined as “task failure”. Subjects were able to see their torque output overlaid with the 20% MVC 139 

target on a monitor, allowing them to constantly maintain a force above the 20% MVC torque 140 

objective. 141 

2.3. Data Processing 142 

The HD-sEMG signals recorded were filtered with a 4th order Butterworth bandpass filter between 143 

10 and 450Hz and then segmented into non-overlapping 5-second analysis windows. Power-line 144 

interference was rejected through a feedback circuit located on the amplifier within the HD-sEMG 145 

electrode system. An expert inspected the raw HD-sEMG data for quality assurance, identifying 146 

channels that either have no signal or excessive noise (<1% of the channels recorded, only found 147 

in five subjects). The data of these channels were substituted by the average value of surrounding 148 

channels. As task failure was subjectively determined by each participant, the presence of fatigue 149 

was confirmed through an increase rate in average rectified value (ARV) throughout the 150 

contraction. Participants that did not exhibit an increasing trend were excluded.  The signal-to-151 

noise ratio (SNR) for each subject was calculated to eliminate participants that had noisy EMG 152 

signals. This metric represents the ratio of the EMG signal during a contraction over the 153 

background noise during the resting periods. The SNR for each recording was calculated using a 154 

one second non-overlapping moving window and translating it over the duration of the entire 155 

signal. The noise was then determined by taking a one second window of the two-minute rest 156 
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periods in-between MVC contractions at the beginning of the protocol. Signals with excessive 157 

noise (mean SNR<12dB over the 64 channels) were excluded from the study. This resulted in 8 158 

young and 5 elderly subjects to remain for further analysis.  159 

 Signals that are recorded using the monopolar configuration are highly susceptible to 160 

crosstalk contamination. To mitigate the effects of this, spatial filters such as the Laplacian filter 161 

are introduced, as explained in the 2.6 subsection. Following the segmentation of the signal into 162 

nonoverlapping 5 second windows, the sEMG features, including average rectified value (ARV), 163 

mean frequency (MNF), and median frequency (MDF) were extracted. In addition, PDF shape 164 

analysis features, including left shape distance (LSD), right shape distance (RSD) and central 165 

shape distance (CSD), were extracted as well. The details of these shape analysis features are 166 

presented below in subsection 2.5. Using the data from the three brisk contractions taken before 167 

the fatiguing contractions, an alignment procedure was employed to realign the EMG and torque 168 

signals. First, the cross-correlation function between the HD-sEMG signals and the torque signal 169 

of the three brisk contractions was calculated. Next, the position of the peak values of the cross-170 

correlation function was identified, which is subsequently used to realign the HD-sEMG signals 171 

and the torque properly. 172 

2.4. Torque Analysis 173 

The ability to produce consistent torque while performing a task is known to decline with 174 

age (Tracy & Enoka, 2002). As such, the coefficient of variation (CV) was selected to quantify the 175 

consistency of the torque throughout the fatiguing contraction for both groups. This was performed 176 

by segmenting the acquired torque signal, from the start of the contraction to failure, into non-177 

overlapping 5-second segments. The CV was then calculated for each of these segments for the 178 

entire length of the torque signal. 179 
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2.5. Shape Analysis 180 

Core shape modelling (CSM) is a shape analysis technique that provides an average shape 181 

curve and distance measure of shapes that can be used to describe shape dispersion among a set of 182 

signals. For the polynomial degree of k=1, the average shape curve (formally known as core shape) 183 

is invariant to any linear time transforms, which allows for the conservation of shape (S. Boudaoud 184 

et al., 2010). The CSM approach has been successfully used to measure the distance of simulated 185 

sEMG with non-Gaussian PDF shapes (S. Boudaoud et al., 2014, Ayachi et al., 2014) and in 186 

monitoring P-wave modifications with sleep apnea (Boudaoud et al., 2007). These metrics were 187 

used as an evaluation criterion in the current study. To generate a core shape (CS) model, a set of 188 

N time series si positive on their time support and linked in the normalized integral domain F is 189 

considered and expressed as: 190 

 𝑆𝑖 =  Γcs ∘φ𝑖 (1) 

where Si is the normalized integral of the si time series, Γcs is the normalized integral of the CS 191 

curve and the φi function represents the shape and time variability. 𝑆𝑖 =  Γcs ∘φ𝑖 is shorthand 192 

notation for the composition function 𝑆𝑖 =  Γcs(φ𝑖(𝑥)).  Suppose that p(x) and g(x) are probability 193 

density functions (PDFs) that depict a random sEMG PDF and a Gaussian PDF, respectively. The 194 

normalized integrals p(x) and g(x) can be represented using the following equations (S. Boudaoud 195 

et al., 2014):  196 

 𝑃(𝑥) =
∫ 𝑝(𝑢)𝑑𝑢

𝑥
𝑎𝑝

∫ 𝑝(𝑢)𝑑𝑢
𝑏𝑝

𝑎𝑝

 , 𝐺(𝑥) =
∫ 𝑔(𝑢)𝑑𝑢

𝑥
𝑎𝑔

∫ 𝑔(𝑢)𝑑𝑢
𝑏𝑔

𝑎𝑔

 (2) 

where [ap,bp] ⊂ [-1,1] , [ag,bg] ⊂ [-1,1] are the nonzero supports of p(x) and g(x), respectively. 197 

Using the relationship stated in (1) the distribution functions P(x) and G(x) can be connected using 198 

a warping function, φ or ψ: 199 
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 𝑃(𝑥) =  G(𝑥)∘𝜑𝑖  , 𝐺(𝑥) =  𝑃(𝑥)∘𝜓𝑖   (3) 

where the time warping function ψ= φ-1 links both distribution functions and represents the 200 

fluctuations of the CS curve in both shape and abscissa support (S. Boudaoud et al., 2010). For an 201 

accurate PDF analysis, it is important to isolate intrinsic shape variations from variations caused 202 

by first or second order moments. To do this, the warping function is proposed in the following 203 

way: 204 

 𝜑𝑖 =  𝑣 ∘𝐴(𝑥),   𝜓𝑖 = 𝐴−1(𝑥) ∘  𝑤 ,   𝑤 = 𝑣−1   (4) 

where A is defined as affine polynomial function that accounts the for mean and variance of p(x) 205 

and is represented by the function A(x)= αx + β. Using this relationship, (4) can be written as 206 

follows in the F and F-1 respectively (Sofiane Boudaoud et al., 2007). 207 

 𝑃(𝑥) =  𝐺(𝑥)∘v ∘𝐴(𝑥) ,   G(𝑥) =  𝑃(𝑥)∘𝐴−1(x) ∘  𝑤     

 𝑃−1(𝑥) =  𝐺−1(𝑥)∘ 𝑤 ∘𝐴−1(𝑥)  , A(𝑥) ∘ 𝑃−1(𝑥) = 𝐺−1(x) ∘  𝑤 (5) 

 In this context, w, and v, are increasing nonlinear functions that characterize shape fluctuation 208 

present on the same time support in the CS and can be written as: 209 

 𝑤𝑖(𝑦) =  𝑛𝑖(𝑦) + 𝑦 ,   𝑣𝑖(𝑦) =  𝑚𝑖(𝑦) + 𝑦     (6) 

The functions ni(y) and mi(y) characterize the amount of intrinsic shape fluctuations present in the 210 

set of curves. Therefore, by rewriting (5) and substituting this equation into the rewritten form, a 211 

function can be derived and simplified as: 212 

 α𝑃−1(𝑦) + β = 𝐺−1(𝑦) + 𝑛𝑖(𝐺−1(𝑦)),   𝑦 ∈ [0,1]     (7) 

where ni (G
-1(y)) is the shape difference between the realigned function Â(P-1(y)) and G-1(y). The 213 

α and β values are approximated using a constrained linear regression between P-1(x) and G-1(x). 214 

Using this, three distances, the Center Shape Distance (CSD), that evaluates PDF peakedness, the 215 

Left Shape Distance (LSD) and the Right Shape Distance (RSD), that both evaluate PDF 216 
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assymetry, are proposed to quantify the shape differences between the realigned function and Â(P-217 

1(y)) and G-1(y).  These distances exhibited robustness against noise and small sample effect 218 

compared to classical high order statistics (S. Boudaoud et al. 2014). They are defined as follows 219 

for two PDFs  𝑝, 𝑞 in the continuous domain (numerical expression are available): 220 

 𝐶𝑆𝐷(𝑝,𝑞) = √∫ (α𝑃−1(𝑦) + β − 𝐺−1(𝑦))
2
d𝑦 

0.6

0.4

  (8) 

 𝐿𝑆𝐷(𝑝,𝑞) = √∫ (α𝑃−1(𝑦) + β − 𝐺−1(𝑦))
2
d𝑦 

0.25

0

 (9) 

 𝑅𝑆𝐷(𝑝,𝑞) = √∫ (α𝑃−1(𝑦) + β − 𝐺−1(𝑦))
2
d𝑦 

1

0.75

 (10) 

2.6. EMG Spatial Filtering 221 

The 64-channel electrode grid allowed spatial filtering to allow better spatial resolution. In 222 

this study, a classic Laplacian spatial filter was used. It is a spatially high-pass filter and is more 223 

sensitive to the activities of the superficial motor units of the muscle directly below the 224 

measurement site (Fukuoka et al., 2013). As such, it is also less susceptible to surface EMG 225 

crosstalk (Fukuoka et al., 2013). It has been also observed that Laplacian filtering increases PDF 226 

shape changes in sEMG signals related to MU control scheme modifications (Ayachi et al. 2014). 227 

 

Figure 2: Laplacian Configuration of Electrodes in HD-sEMG 
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The Laplacian filter is set up by assigning fixed weighting factors (see Figure 2) to one electrode 228 

and other electrodes surrounding it, and the output of the filter is the weighted summation of all 229 

the channels, i.e.  one virtual sEMG signal. In the current study, a Laplacian configuration was 230 

used and moved over the grid. Thus, 36 Laplacian channels were obtained from the 64 monopolar 231 

ones. 232 

2.7. HD-sEMG Feature Extraction 233 

For assessing muscular fatigue, three widely used features were extracted from the HD-234 

sEMG signal after Laplacian filtering. In the time domain, the average rectified value (ARV) was 235 

used to characterize the amplitude, which helped give insight into the muscle activities under 236 

fatiguing conditions (Al-Mulla et al., 2011). The ARV was calculated by using the following 237 

discrete equation: 238 

 ARV =
1

𝑁𝑡𝑜𝑡
  ∑|𝑥𝑖|

𝑁𝑡𝑜𝑡

𝑖=1

 (11) 

where Ntot is the number of samples chosen in the time window, and xi is the i th sample of the 239 

analyzed sEMG signal. In the frequency domain, the mean frequency (MNF) and median 240 

frequency (MDF), from power spectral density (PSD) estimated by Welch method, was used to 241 

represent the sEMG spectral component during fatiguing contractions. Indeed, they are known to 242 

reflect the muscle fiber conduction velocity (Merletti et al., 1990a). For both spectral indices, every 243 

five second window of the sEMG signal throughout the fatiguing contraction was further split into 244 

five smaller time-windows. For each window within the five sub-windows the periodogram has 245 

been estimated and then averaged over the five sub-windows. The following discrete expressions 246 

were used to calculate the mean frequency and median frequencies: 247 
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 𝑀𝑁𝐹 =
∑ 𝑓𝑘

𝐹𝑡𝑜𝑡
𝑘=1 𝑆𝑘

∑ 𝑆𝑘
𝐹𝑡𝑜𝑡
𝑘=1

 (12) 

 ∑ 𝑆𝑘

𝑀𝐷𝐹

𝑘=1

= ∑ 𝑆𝑘

𝐹𝑡𝑜𝑡

𝑘=𝑀𝐷𝐹

       (13) 

where FTot is the total frequency bins and Sk is the magnitude of the power spectrum at the kth bin.  248 

Using the CSM approach presented in section 2.5, the effect of muscular fatigue was 249 

analyzed by generating a PDF of the spatially filtered sEMG signal. For this, the Gaussian curve 250 

is used as a reference and the PDF of the sEMG signal was estimated by a kernel density estimator. 251 

The LSD, RSD and CSD shape parameters extracted from the CSM were charted throughout the 252 

protocol and the trend of each parameter was investigated throughout the entire time course of the 253 

signal. Similarly, the time/spectral parameters were tracked throughout the protocol to observe 254 

how to accumulation of fatigue affects each parameter, as commonly seen in the literature  (Cifrek 255 

et al., 2009; Georgakis et al., 2003). 256 

2.8. Statistical Analysis 257 

For each of the young and elderly groups, the trend of the ARV, MDF and MNF parameters 258 

were calculated using a linear regression to observe any differences in the trend of each parameter. 259 

Mann-Whitney U tests were employed to investigate whether they varied significantly across both 260 

age groups in the study. The shape distances extracted through shape analysis were calculated from 261 

Laplacian HD-sEMG signals and averaged over the 36 channels. To compare the effect each state 262 

had on the three shape distances, a linear regression was performed to investigate the change of 263 

each shape parameter during the fatigue protocol. The slopes derived from the regression analysis 264 

was then averaged for each group and a Mann-Whitney U test was used to test for significance. 265 

For all analyses, the level of significance was set to 0.05.  266 



 

 
 * Indicates the corresponding author: jiangning21@wchscu.cn 
 

15 
 

  267 



 

 
 * Indicates the corresponding author: jiangning21@wchscu.cn 
 

16 
 

3. Results 268 

3.1. Torque Analysis 269 

The coefficient of variation (CV) of the torque was charted in 5 second bins throughout the 270 

entirety of the recorded signal for both young and elderly groups, as seen in Figure 3A and 271 

3C.Within each group, a linear regression revealed that the CV generally increased as the 272 

contraction approached fatigue, which is consistent with the literature (Hunter et al., 2005; Ng et 273 

al., 2003). However, the observed change was not significant within either group when comparing 274 

CV at the start of the contraction and just before task failure, as seen in Figure 3D. The Mann-275 

Whitney U test revealed that there was no significant difference in CV between the beginning of 276 

the contraction and just before failure in the young (p=0.1949) and elderly (p=0.4206) groups. 277 

Comparison of the average CV between both groups at the beginning (p=0.0655) and before failure 278 

 

Figure 3: Coefficient of Variation (CV) values calculated in 5 second bins along a normalized time axis for each subject, 

with (A) being the young group and (C) being the elderly group. (B) Violin plot depicting the distribution of CV slopes 

derived from Linear Regression analysis of subjects throughout the length of the contraction. (D) Fluctuations in torque 

quantified as the coefficient of variation (CV) for the torque exerted by the biceps. Mean (±SD) CV of the torque is shown for 

young and elderly men for 5-s intervals at the start, 25,50,75 and 100% of the time the sustained contraction reached task 

failure. 
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(p=0.3054) also revealed no significant difference. The slopes of the trend lines calculated using 279 

linear regression, are shown using violin plots in Figure 3B (Bechtold, 2016). This revealed that 280 

the young group had a higher average slope of 0.007 ± 0.007 when compared to the elderly group 281 

which had a slope of 0.001 ± 0.013. Although the young group was higher, there was no significant 282 

difference between the CV slopes of both groups (p=0.2844).  283 

3.2. Time and Frequency Analysis 284 

The Figure 4 shows the rate of change of the ARV, MNF, and MDF parameters throughout 285 

the contraction. In general, ARV parameter increased in the fatiguing conditions, while MNF and 286 

MDF parameters decreased, which is expected and in agreement with other reports in the literature 287 

(Cifrek et al., 2009; Daanen et al., 1990; Merletti et al., 1990b).  288 

More interestingly, the two frequency domain indices (MNF and MDF) showed slightly 289 

larger changes in young population than in the elderly group. The median MNF and MDF of the 290 

young population decreased at a rate of -0.101Hz/Win and -0.176Hz/Win respectively as the 291 

 

Figure 4: Boxplot of the slopes extracted from the linear regression of the conventional sEMG features, i.e., ARV, MDF and 

MNF and non-overlapping 5 windows (Win) throughout the fatiguing contraction for young (white) and elderly (grey) 

subjects. The mean of each group is shown through the ‘x’ marker. 
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contraction reached mechanical failure. The elderly population only decreased -0.063Hz/Win and 292 

-0.086Hz/Win for the same indices. No meaningful difference was found in ARV, with the ARV 293 

increasing -0.757μV/Win  for the young group and the elderly group increasing at a lesser rate of 294 

-0.422μV/Win .However, due to large variability in the data, Mann-Whitney U tests between both 295 

groups reported non-significant changes for the time domain feature ARV (p=0.127) as well as 296 

frequency domain features MDF (p=0.435) and MNF (p=0.354). 297 

3.3. Shape Analysis 298 

  The PDF shape distances throughout the contraction, between the different populations (young 299 

and elderly) were quantified using the LSD, RSD and CSD shape parameters. Shape parameter 300 

analysis revealed that the elderly group exhibited different changes in average shape parameter 301 

values during sustained contraction when compared to the young group. This was quantified using 302 

a linear regression which computed the average shape parameter, for each subject with respect to 303 

 

Figure 5: Average slope value (derived from linear regression) of each shape parameter (LSD, RSD, CSD) calculated from 

the start of the contraction to task failure. This is shown for both young (white) and elderly (black) groups. * Indicates 

significant differences (p<0.05) between both groups.  
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the time axis normalized to the length of the sustained contraction, as shown in Figure 5Error! 304 

Reference source not found. and Figure 6.  305 

Interestingly, within the young group, all shape parameters displayed positive slope values, with 306 

the LSD shape parameter increasing the most with an average slope of 0.268 ± 0.256. The RSD 307 

and CSD shape parameters increased at a slightly slower rate with average slopes of 0.176± 0.154 308 

and 0.053± 0.074, respectively. In contrast, the elderly group results showed that the shape 309 

parameters generally decreased as the contraction went on. The RSD parameter decreased at the 310 

most rapid rate with a slope of -0.185± 0.171, while LSD and CSD parameters decreased 311 

moderately with slopes of -0.162± 0.115 and -0.028± 0.024, respectively. Mann-Whitney U test 312 

revealed that there was a significant difference for the LSD (p=0.006) and RSD (p=0.001) shape 313 
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parameter slopes between both groups and non-significant differences in CSD (p=0.065). This 314 

change in shape parameters as subjects approach failure in both young and elderly groups are 315 

depicted in Figure 6.  316 

4. Discussion 317 

The primary goal of this preliminary study was to compare differences in muscle fatigue 318 

development of the biceps brachii for young and elderly males during sustained low effort (20% 319 

MVC) contractions. Widely used torque and sEMG parameters in the detection of muscle fatigue 320 

 

Figure 6: Shape parameters extracted from experimental data recorded using Laplacian configuration during sustained 

fatiguing contraction. Column A, Shape parameters, from top to bottom, left shape distance (LSD); right shape distance 

(RSD); center shape distance (CSD) calculated from the beginning of the contraction (0) to failure (1) for the young group. 

Column C, from top to bottom: Shape parameters calculated for the elderly group. Column B depicts the average slopes of 

each shape parameter derived from linear regression analysis of subjects throughout the length of the contraction. 
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were employed, discovering no difference in fatigue development between young and elderly 321 

groups. As a result, one can conclude that these parameters may not be robust enough to capture 322 

these age-related differences. Using the described CSM formalism, shape distance parameters 323 

(LSD, RSD and CSD) were able to distinguish between the age groups. The new findings indicate 324 

that there was an increase in the LSD and RSD parameters in the young group as the contraction 325 

reached failure. In contrast, the elderly group displayed a decreasing trend for the same parameters. 326 

Thus, it appears that contribution of MU synchronization, as characterized by increasing shape 327 

parameter values, related to a departure from Gaussianity, was increased in the young group as 328 

muscle fatigue developed (see next section for details).  329 

A section of this study was designed to investigate the variability of torque throughout the 330 

entire length of the bicep sustained contraction task in both young and elderly males. Linear 331 

regression analysis revealed that torque variability was not significantly different between both 332 

groups (Figure 3). Many studies have investigated the effect that age has on the variability of 333 

torque while producing consistent, submaximal isometric torques (Galganski et al., 1993; Laidlaw 334 

et al., 2000; Tracy & Enoka, 2002). These studies typically evaluate the torque variability using 335 

either the coefficient of variation or standard deviation of the torque signal. The results found in 336 

this study are generally consistent with the literature, with the elderly group having higher force 337 

fluctuations throughout the sustained contraction. At the start of the contraction, the elderly group 338 

had higher magnitudes of fluctuations, which has also been seen in other studies. This behavior 339 

could stem from a more variable discharge rate resulting from aged active motor units (Hunter et 340 

al., 2005; Laidlaw et al., 2000; Tracy et al., 2005). Linear regression analysis revealed that the 341 

young group had a more rapid increase in torque fluctuations as the contraction continues toward 342 
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fatigue when compared to the elderly group. This is likely due to a more rapid rate of recruitment 343 

of motor units that have increased discharge rate variability during the fatiguing task (Hunter et 344 

al., 2005; Moritz et al., 2005). Though these changes were consistent with the literature, the 345 

changes were not statistically significant between both groups, suggesting that this metric is not 346 

sensitive enough to capture age-related differences in fatigue development.  347 

4.1. PDF Shape Parameter Slope Differences between Young and Elderly groups 348 

To find a more robust methodology to assess age-related differences in muscle fatigue 349 

development, the CSM approach was adopted, and shape parameters were extracted from the HD-350 

sEMG amplitude PDF after Laplacian filtering. The analysis results revealed that all shape 351 

parameters in the young group increased as the contraction approached mechanical failure. On the 352 

contrary, all shape parameters in the old group decreased, with LSD and RSD parameters being 353 

significantly different from the young group. This behavior suggested that the elderly group relied 354 

less on MU synchronization as the PDFs of the Laplacian HD-sEMG signal became more Gaussian 355 

as the contraction approached mechanical failure. Conversely, the increasing shape parameters for 356 

the young population suggest that there is likely an increase in MU synchronization. This behavior 357 

in young subjects is also consistent with another study that investigated MU synchronization and 358 

muscle fatigue at low (20-30% MVC) contraction levels (Holtermann et al., 2009).  359 

The differences in the MU synchronization between both groups contrasts with a previous 360 

study, which adopted much higher levels of contraction (70% MVC). It was shown that the elderly 361 

group displayed more MU synchronization than the young group (Boccia et al., 2015).  The 362 

discrepancies in the results could be attributed to how the neuromuscular physiology of the aged 363 

muscle reacts to differing contraction levels. With aging, it is well known that the number and size 364 

of type II (fast) MUs are reduced and remaining MUs have higher innervation ratios (Wu et al., 365 
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2020). This can potentially result in aged muscle reacting differently during sustained contractions 366 

of varying intensities. This is evidenced by the fact that higher contraction forces typically use a 367 

considerable amount of type II MUs in order to sustain the contraction (Sale, 1987). Considering 368 

this, it can be postulated that the remaining type II MUs increase in synchrony to sustain the higher 369 

contraction forces. Aged MUs are known to innervate more muscle fibers of the slow twitch type 370 

(Campbell et al., 1973), potentially making it more efficient at sustaining lower force contractions 371 

thus causing a reduction in MU synchronization. However, this has yet to be validated in the 372 

literature thus warranting additional studies on the effect of contraction intensity on MU 373 

synchronization in the elderly. 374 

The differences in MU synchronization and recruitment between both age groups can be 375 

attributed to different MU type distributions within the muscle anatomy of young and elderly 376 

subjects. When comparing the MU distribution in the Biceps Brachii of both groups, the elderly 377 

exhibited a lower number and size of type II MUs (Klein C.S et al. 2003). This can lead to modified 378 

synchronization and recruitment strategy during fatigue development. This suggests that the aged 379 

muscle can rely more on resistant type I (slow) MUs when compared to young muscle that has 380 

more type II MUs that are more fatigable and perhaps more solicited during long sustained 381 

contractions even at low-level isometric contraction level explaining increased torque CV slopes 382 

for young subjects compared to elder ones (see Figure 6 ). This should have a strong impact on the 383 

MU recruitment and synchronization scheme during fatigue and can explain the significant 384 

differences observed in this study. In fact, increasing recruitment of type II (rapid) superficial 385 

MUs, combined with specific synchronization strategies and better Laplacian detection, can 386 

explain the positive slope observed in the young category due to increased non-Gaussianity 387 
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behavior. In contrary, older subjects seem to recruit deeper type I (slow) MUs and less type II 388 

(rapid) MUs, as supposed before, with less synchronization and different recruitment scheme that 389 

can explain a return to Gaussianity toward task failure, and the observed negative slope.  390 

A recent simulation study has demonstrated the impact of MU type distribution on the PDF 391 

shape distance trends from HD-sEMG signals with varying contraction level but with not varying 392 

synchronization using a multiscale neuromuscular model (M. Al Harrach et al. 2017). However, a 393 

direct link has been demonstrated, in simulation, between the level of MU synchronization and 394 

PDF shape modifications (departure from Gaussianity) of sEMG signals using CSM formalism (S. 395 

Boudaoud et al., 2010). Thus, specific fatigue simulation scenario, using recent neuromuscular 396 

modelling (Carriou et al 2018), are definitively needed to test the proposed hypotheses, namely, 397 

type dependent MU recruitment scheme and synchronization, occurring during fatigue in future 398 

studies. 399 

4.2. Implications 400 

The results from the current study agreed with the existing evidence that MU 401 

synchronization is a significant factor in the development of muscle fatigue (Dartnall et al., 2008). 402 

This experiment also provides new insight into the difference of MU synchronization and 403 

recruitment in the fatigue development between young and elderly age groups. Thus, shape 404 

parameters revealed that the younger group seems to exhibit increasing level of MU 405 

synchronization as the low-level contraction approached failure, while the elderly group showed 406 

decreasing level. This antagonist behavior with aging cannot be related to simple well-known 407 

conduction velocity decrease with fatigue. This showcases that the proposed PDF shape analysis 408 

methodology is more sensitive to fatigue-related functional changes in elderly people when 409 

compared to conventional approaches, such as torque analysis and conventional sEMG features in 410 
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time and frequency domain. As such, the proposed methodology provides insight into 411 

neuromuscular changes such as motor unit synchronization and distinguishes between different 412 

age groups during fatiguing contractions. In this study, indices averaging over the grid has been 413 

favored. This choice is justified for providing simple, robust and comprehensive metrics for the 414 

next clinical studies with larger cohorts. Thus, the proposed scalar indices simplify the statistical 415 

comparative study to measure aging effect on muscle fatigue. Naturally, further studies are planned 416 

to better assess the spatial repartition of PDF deformations over the HD-sEMG grid, measured by 417 

shape CSM formalism, with fatigue and aging in a near future. 418 

4.3. Limitations 419 

A key limitation to this study is the relatively small size of the studied cohort. Multiple 420 

reasons exist for the excess exclusion of elderly males such as increased subcutaneous fat in the 421 

arm regions, adversely affecting the sEMG signal quality. Another limitation is that we were 422 

unable to distinguish if the elderly participants were undergoing fatiguing contractions. As the user 423 

was told to go until failure, there is some uncertainty in how each user perceives failure. This is 424 

especially noticed in elderly participants as spectral analysis revealed positive trends in their MDF 425 

meaning that they perceive failure before their muscles fatigue. Future studies will focus on the 426 

recruitment of larger cohorts and will develop procedures to ensure that they truly exhibit muscle 427 

fatigue. The gender effect and possible relationship with muscle atrophy was also not investigated 428 

in the study and should be included in future studies. 429 

  430 
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Figure Captions 582 

Figure 1: High Density sEMG (HD-sEMG) electrode grid placement on subject and numerical 583 

reference of the electrodes .............................................................................................................. 2 584 

Figure 2: Laplacian Configuration of Electrodes in HD-sEMG ..................................................... 2 585 

Figure 3: Coefficient of Variation (CV) values calculated in 5 second bins along a normalized 586 

time axis for each subject, with (A) being the young group and (C) being the elderly group. (B) 587 

Violin plot depicting the distribution of CV slopes derived from Linear Regression analysis of 588 

subjects throughout the length of the contraction. (D) Fluctuations in torque quantified as the 589 

coefficient of variation (CV) for the torque exerted by the biceps. Mean (±SD) CV of the torque 590 

is shown for young and elderly men for 5-s intervals at the start, 25,50,75 and 100% of the time 591 

the sustained contraction reached task failure. ............................................................................... 2 592 

Figure 4: Boxplot of the slopes extracted from the linear regression of the conventional sEMG 593 

features, i.e., ARV, MDF and MNF and non-overlapping 5 windows (Win) throughout the 594 

fatiguing contraction for young (white) and elderly (grey) subjects. The mean of each group is 595 

shown through the ‘x’ marker. ........................................................................................................ 2 596 

Figure 5: Average slope value (derived from linear regression) of each shape parameter (LSD, 597 

RSD, CSD) calculated from the start of the contraction to task failure. This is shown for both 598 

young (white) and elderly (black) groups. * Indicates significant differences (p<0.05) between 599 

both groups...................................................................................................................................... 2 600 

Figure 6: Shape parameters extracted from experimental data recorded using Laplacian 601 

configuration during sustained fatiguing contraction. Column A, Shape parameters, from top to 602 

bottom, left shape distance (LSD); right shape distance (RSD); center shape distance (CSD) 603 
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calculated from the beginning of the contraction (0) to failure (1) for the young group. Column 604 

C, from top to bottom: Shape parameters calculated for the elderly group. Column B depicts the 605 

average slopes of each shape parameter derived from linear regression analysis of subjects 606 

throughout the length of the contraction. ........................................................................................ 2 607 

 608 
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