
Sports Engineering (2018) 
 

 

Optimization-Based Motor Control of a Paralympic 

Wheelchair Athlete 

 

 

Brock Laschowski,1 Naser Mehrabi,2 John McPhee1,2 

 

1Department of Mechanical & Mechatronics Engineering, University of Waterloo, Canada 

2Department of Systems Design Engineering, University of Waterloo, Canada 

 

 

 

 

 

 

 

 

 

Acknowledgments 

The authors thank the Paralympian for participating in this research. The authors also 

recognize the Canadian Sport Institute Ontario and Curling Canada for their support. 

This research was funded by Dr. John McPhee’s Tier I Canada Research Chair in 

Biomechatronic System Dynamics. 

Correspondence Address 

Brock Laschowski, Department of Mechanical and Mechatronics Engineering, University 

of Waterloo, Ontario N2L 3G1, Canada. Email: blaschow@uwaterloo.ca. Telephone: 

519-884-4567 ext. 33825 

mailto:blaschow@uwaterloo.ca


Sports Engineering (2018) 
 

 

Abstract 

The following research approximated how the central nervous system of spinal cord 

injured Paralympic athletes resolve kinematic redundancies during upper-limb 

movements. A multibody biomechanical model of a tetraplegic Paralympic athlete was 

developed using subject-specific body segment parameters. The angular joint 

kinematics throughout a specified Paralympic sport movement (i.e., wheelchair curling) 

were experimentally measured using inertial measurement units. The motor control 

system of the Paralympian was mathematically modelled and simulated using forward 

dynamics optimization. The predicted kinematics from different optimization objective 

functions (i.e., minimizing resultant joint moments, mechanical joint power, and angular 

joint velocities and accelerations) were compared with those experimentally measured 

throughout the wheelchair curling movement. Of the optimization objective functions 

under consideration, minimizing angular joint accelerations produced the most accurate 

predictions of the kinematic trajectories (i.e., characterized with the lowest overall root 

mean square deviations) and the shortest optimization computation time. The 

implications of these control findings are discussed with regards to optimal wheelchair 

design through predictive dynamic simulations. 
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1 Introduction 

Motor control is the process through which the central nervous system coordinates 

multibody movements. Human motor control is exceptionally complex considering the 

skeletal system is kinematically redundant (i.e., there are more degrees of freedom 

than required to execute a particular movement). The human skeletal system has 244 

degrees of freedom [1]. To position the hand in three-dimensional space, the central 

nervous system must specify 244 variables, of which 238 are redundant [1]. Dr. Nikolai 

Bernstein originally identified the inherent kinematic redundancies of multibody human 

movements in the late 1960s [2]. Nonetheless, biomechanists are still attempting to 

understand how the central nervous system controls the body’s numerous degrees of 

freedom despite the considerable number of potential solutions. 

 An emerging area of human movement science involves examining the motor 

control system of individuals with spinal cord injuries. The spinal cord is a conduit 

through which motor and sensory information travels between the musculoskeletal and 

central nervous systems [3]. A spinal cord injury affects the conduction of motor and 

sensory signals across the sites of lesion, whereby key pathways necessary for signal 

transmission are disrupted [4]. Typical motor control pathologies following an 

incomplete spinal cord injury include: tonic physiological responses, spasticity, muscular 

co-contraction, and inefficient timing of movements [4]. Information regarding how 

individuals with spinal cord injuries execute multibody movements could provide 

valuable insights into how the musculoskeletal and central nervous systems interact to 

control the body. 

 Biomechanists have used optimization methods to mathematically model and 

simulate how the central nervous system resolves kinematic redundancies [5-15]. In 

particular, forward dynamics optimization involves solving the same problem confronted 

by the central nervous system (i.e., determining the neural excitations that drive 

multibody movements). The motor control system is represented using a mathematical 

optimization model, whereby a specified objective function is minimized (or maximized) 
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subject to constraints. The advantage of this method lies in its predictive capability 

since it has the potential to mimic the underlying control system. The central nervous 

system utilizes an unknown algorithm that controls the human body [6, 11-15]. One of 

the main challenges for biomechanists is choosing a representative objective function 

for a particular motor task. In situations where the objective is not apparent, forward 

dynamics optimization could be used to evaluate different objectives to assess which 

function brings about multibody movements that resemble experimental measurements.  

 To the best of the authors' knowledge, there has been no previously published 

research quantifying the underlying motor control system of spinal cord injured 

Paralympic athletes. Accordingly, the purpose of the following research was to 

mathematically model and simulate the motor control system of a tetraplegic 

Paralympic athlete using forward dynamics optimization. The predicted kinematics from 

different optimization objective functions were compared with those experimentally 

measured throughout a specified Paralympic sport movement (i.e., wheelchair curling).  

2 Methods 

2.1 Paralympic Athlete 

A single wheelchair curler (sex = male, age = 39 years) was recruited from the 

Canadian Paralympic Team. The athlete was a gold medalist at the 2014 Winter 

Paralympic Games and 2013 World Wheelchair Curling Championships. In 2007, the 

athlete sustained a traumatic incomplete spinal cord injury between the 5th and 6th 

cervical vertebrae and was diagnosed with tetraplegia. An incomplete spinal cord injury 

involves preservation of motor and/or sensory function below the neurological level of 

injury [3]. The athlete was diagnosed with a level “C” impairment on the American 

Spinal Injury Association Impairment Scale (i.e., an internationally recognized method 

of categorizing motor and sensory impairments in individuals with spinal cord injuries). 

The scores range between “A” and “E”, wherein A represents a complete spinal cord 

injury and E represents habitual motor and sensory function. The Paralympian has 
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significant neuromuscular paralysis in his right hand. Informed written consent from the 

athlete was obtained and the University of Waterloo Office of Research Ethics approved 

this research. 

2.2 Experimental Kinematics 

Angular joint kinematics throughout the wheelchair curling movement were 

experimentally measured using an inertial measurement unit (IMU) system (MVN, Xsens 

Technologies, Netherlands). The system consists of 17 IMUs, which were attached to 

the Paralympian’s head, torso, upper arms, forearms, hands, thighs, shanks, and feet. 

Each IMU contains a triaxial linear accelerometer, rate gyroscope, and magnetometer 

[16]. The linear accelerometers measure accelerations including the gravitational 

acceleration, the magnetometers measure the geomagnetic field, and the rate 

gyroscopes measure angular velocities. The IMU system utilizes a 23-segment 

biomechanical model and proprietary algorithms to calculate the angular joint 

kinematics [16]. Previous research has demonstrated the test-retest reliability [17] and 

convergent validity [18] of the IMU system in computing angular joint kinematics 

compared with optical motion capture. Following a standard calibration of the IMU 

system, the Paralympian performed 14 “deliveries” of the curling stone interspersed 

with 2 minutes of rest between deliveries. Data were sampled at 120 Hz. The goal in 

wheelchair curling is to push the curling stone with a delivery stick such that the stone 

rectilinearly translates along the ice over 28 meters and lands within a targeted area. 

High-frequency noise in the joint kinematic measurements was minimized during post-

processing using smoothing splines with MATLAB’s default values (MathWorks, USA).  

 Movement of the curling stone was recorded with a digital camera (Nikon D3100, 

Nikon Corporation, Japan) that was positioned perpendicular to the Paralympian’s plane 

of motion. The camera sampled at 29 frames per second. The translational stone 

kinematics (i.e., displacements and velocities) throughout the delivery were determined 

relative to an inertial reference frame using markerless feature tracking software 

(ProAnalyst, Xcitex Incorporation, USA). The delivery was defined as the time duration 
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between the initial displacement of the curling stone and its moment of release from 

the delivery stick. High frequency noise in the stone kinematic measurements was 

minimized using smoothing splines with MATLAB’s default values (MathWorks, USA). 

2.3 Multibody Biomechanical Model 

A novel biomechanical model of the wheelchair curling movement was developed using 

MapleSim software (Maplesoft, Canada). The model consisted of a two-dimensional 

multibody slider mechanism with a closed kinematic chain (Figure 1). The model 

included a representative torso, head-and-neck, right upper arm, right forearm, right 

hand, delivery stick, and curling stone (Figure 1a). The wheelchair was fixed to an 

inertial reference frame. The mechanical parameters of each biological body segment 

(i.e., mass, length, center of mass position, and moment of inertia) were experimentally 

measured using dual-energy x-ray absorptiometry (Table 1) [19-20]. It was assumed 

that the sagittal plane inertial parameters are comparable with those in the frontal 

plane, which were experimentally measured using medical imaging [19-20]. From 

measurements of the Paralympian’s equipment configuration, the delivery stick body 

segment was set to 1.96 m in length, 0.18 kg in mass, and the moment of inertia was 

calculated using 𝐼𝑧𝑧 =
1

12
𝑚𝐿2. The curling stone body segment was given a mass of 

19.96 kg and a height of 0.19 m [21]. Non-inertial reference frames were fixed to each 

rigid body segment.  

 The model included a representative hip, shoulder, elbow, and wrist, all of which 

were modelled as revolute kinematic pairs (Figure 1b). The hip, shoulder, and elbow 

joints permitted flexion-extension while the wrist joint allowed for radial-ulnar deviation, 

assuming a neutral hand position. The hip joint was set to 0.62 m above the inertial 

reference frame (i.e., simulating the height of the wheelchair seat). The revolute joints 

contained angular viscous damping, the quantities of which were obtained from 

previous research [22-23]. The wrist was modelled as an energetically passive joint to 

simulate the limited hand functionality of the Paralympic athlete. A prismatic kinematic 

pair was used to model the contact between the curling stone and ice; rotations about 
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the vertical axis were omitted. The contact model also included an opposing force 

vector representative of dry Coulomb friction (i.e., the product of the coefficient of 

dynamic friction and the normal force) wherein μ = 0.01 [21]; this assumes a constant 

friction coefficient. The multibody biomechanical model had 3 degrees of freedom and 

was mathematically represented by 4 ordinary differential equations and 1 algebraic 

equation (i.e., indicative of the models closed-chain kinematic constraints). The 

experimental kinematics were mathematically optimized to satisfy the holonomic 

kinematic constraints of the multibody biomechanical model using a nonlinear 

constrained optimization algorithm [24]. 

2.4 Forward Dynamics Optimization  

Forward dynamics optimization of the wheelchair curling movement was computed with 

GPOPS II software, which utilizes direct collocation [25]. Direct collocation converts the 

model’s differential algebraic equations into algebraic constraints by evaluating the 

system equations of motion at collocation points (i.e., nonlinear programming). Both 

the “control” and “state” variables were simultaneously approximated with an unknown 

series of polynomial functions over the total time duration. Following an initial guess, 

both the order and number of polynomials were iteratively updated through different 

mesh refinement methods (e.g., increasing the number of polynomials) until the 

objective function was optimized and the constraints were satisfied [25]. Accordingly, 

no mathematical integration was required. Previous investigations have used direct 

collocation to simulate multibody human movements [5, 9, 11-12, 15, 26-27]. The 

trajectories of both the control variables (i.e., resultant joint moments) and state 

variables (i.e., kinematics) throughout the wheelchair curling movement were predicted 

through minimizing each of the following objective functions 

[τ(𝑡)
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ϯ

, 𝜓̇(𝑡)
ϯ

] = Arg min [∫ ∑ 𝜏𝑖(𝑡)
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subject to 

𝜓𝑚𝑖𝑛
𝑚 < 𝜓(𝑡) < 𝜓𝑚𝑎𝑥

𝑚                                                                                              (5) 

𝜓(𝑡=0) = 𝜓𝑡𝐼                                                                                                       (6) 

𝜓𝑡𝐹
𝑙𝑜𝑤𝑒𝑟 < 𝜓(𝑡=𝑡𝐹) < 𝜓𝑡𝐹

𝑢𝑝𝑝𝑒𝑟
                                                                                    (7) 

{
𝜓̇(𝑡) = 𝑓(𝜓(𝑡), τ(𝑡), λ(𝑡))

𝑔(𝜓(𝑡), λ(𝑡)) = 0
                                                                                       (8) 

where τ represented the controls (i.e., resultant joint moments), ψ represented the 

states (i.e., ψ = [θ1 θ2 θ3 θ4 x]T), x was the modelled displacement of the curling stone, 

𝜓̇ were the time derivatives of ψ, ψm were the experimentally measured ψ variables, tF 

was the mean final time (i.e., 0.65 seconds), θ̇ were the angular joint velocities, θ̈ were 

the angular joint accelerations, λ was the Lagrange Multiplier, and ψtI and ψtF were the 

state variables at the initial and final times, respectively. The optimization objective 

functions (i.e., Equations 1-4) were taken from [1, 28-29]. Equation (1) minimized the 

resultant joint moments, Equation (2) minimized the angular joint velocities, Equation 

(3) minimized the angular joint accelerations, and Equation (4) minimized the 

mechanical joint power. Equation (5) specified the minimum and maximum kinematic 

bounds on each ψ variable. The Paralympian’s maximum joint range of motion about 

the hip (θ1), shoulder (θ2), elbow (θ3), and wrist (θ4) were experimentally measured 

using a digital goniometer. Equation (8) represented the multibody system dynamics, 

which consisted of 4 ordinary differential equations and 1 algebraic equation. The 

nonlinear programming was solved using an interior point optimizer [30]. The predicted 

kinematics from the different optimization objective functions were compared with 
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those experimentally measured throughout the wheelchair curling movement. 

Examinations of the resultant joint moments are described in [24]. 

3 Results 

Regarding the hip, shoulder, and elbow joints, all the optimization objective functions 

produced angular displacement trajectories that were in moderate qualitative 

agreement with the experimental kinematics (Figure 2). Minimizing angular joint 

accelerations was the only optimization objective function to accurately predict the 

angular displacements of the wrist joint. As expected, minimizing angular joint velocities 

produced straight-line angular displacement trajectories between the specified initial 

and final conditions (Figure 2). 

 The root mean square deviation (RMSD) of each objective function was 

calculated to quantitatively assess the agreement between the experimental and 

predicted joint angles (Table 2). RMSDs are the square roots of the mean squared 

deviations between the experimental and predicted kinematics; a RMSD of zero denotes 

perfect agreement. Independent of the objective function being evaluated, the hip joint 

had the lowest RMSDs, indicating that the forward dynamics optimization consistently 

and accurately predicted the hip joint angular displacements. Minimizing angular joint 

accelerations resulted in the lowest overall RMSDs relative to the other optimization 

objective functions (Table 2). 

 None of the objective functions predicted angular joint velocities that had 

sufficient qualitative agreement with the experimental kinematics (Figure 3). 

Nonetheless, minimizing angular joint accelerations resulted in the smoothest angular 

velocity trajectories. Minimizing angular joint velocities produced straight-line horizontal 

kinematic trajectories between the specified initial and final conditions (Figure 3). 

Minimizing angular joint accelerations resulted in the lowest overall RMSDs relative to 

the other optimization objective functions (Table 3). Independent of the objective 

function being evaluated, the forward dynamics optimization was less accurate in 
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predicting the angular joint velocities compared to the angular displacements. For 

instance, regarding the elbow joint, the mean percent error of the predicted angular 

displacements was 13.8 ± 6.5 % whereas the mean percent error of the angular 

velocities was 27.7 ± 7.8 %; the other joints displayed similar trends. 

 Aside from minimizing the angular joint velocities, all the optimization objective 

functions predicted translational stone displacements that were in good qualitative 

agreement with the experimental kinematics (Figure 4). These findings were 

quantitatively illustrated through the corresponding RMSDs (Table 4). Though the initial 

and final conditions of the states (i.e., kinematics) were specified in accordance with 

the experimental measurements, the final conditions were allocated a range of 

quantities, which characterized the Paralympian’s inter-delivery inconsistencies. 

Consequently, the predicted translational stone velocities at the moment of release 

slightly differed from the experimental kinematics (Figure 4). Minimizing angular joint 

accelerations resulted in the shortest optimization computation time (i.e., 61 CPU 

seconds), followed sequentially by mechanical joint power (i.e., 269 CPU seconds), 

resultant joint moments (i.e., 361 CPU seconds), and angular joint velocities (i.e., 1283 

CPU seconds). 

4 Discussion 

The purpose of the present research was to mathematically model and simulate the 

motor control system of a tetraplegic Paralympic athlete using forward dynamics 

optimization. The predicted kinematics from different optimization objective functions 

were compared with those experimentally measured throughout a specified Paralympic 

sport movement (i.e., wheelchair curling). Although various objective functions could 

have been utilized in the forward dynamics optimization, the objective functions under 

consideration (i.e., minimizing resultant joint moments, mechanical joint power, and 

angular joint velocities and accelerations) have been previously demonstrated to 

adequately control non-ambulatory multibody movements [1, 28-29]. Minimizing 

angular joint accelerations produced the most accurate predictions of the kinematic 
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trajectories (i.e., characterized through the lowest overall root mean square deviations), 

and the shortest optimization computation time. None of the objective functions 

precisely simulated the experimental kinematics, and therefore motor control system, of 

the Paralympic athlete. Recent research of able-bodied individuals reported that multi-

objective optimizations, compared to single-objective functions, produced more 

accurate predictions of the kinematic trajectories during upper-limb reaching 

movements [7]. Prospective biomechanists should consider investigating multi-objective 

optimizations to better understand how the central nervous system of Paralympic 

athletes resolve kinematic redundancies during multibody movements. Considering this 

research was limited to one participant, additional work is needed to investigate the 

optimal control objectives of other Paralympic wheelchair athletes to derive non-

subject-specific conclusions.  

 Possessing redundant degrees of freedom might be essential from a human 

evolutionary perspective. Bernstein [2] suggested that the redundancy of the human 

musculoskeletal system allows for motor learning to occur, wherein the central nervous 

system explores the search space of potential solutions before selecting an optimum. 

Redundant degrees of freedom might enable individuals with spinal cord injuries to 

retain movement despite neuromuscular paralyses, which correspond with reduced 

numbers of dynamic degrees of freedom. Computational models of the human motor 

control system generally include either open-loop or closed-loop control. Open-loop 

control postulates that the selection of joint kinematic trajectories is pre-planned by the 

central nervous system prior to movement execution (i.e., feedforward control). Closed-

loop control involves online sensorimotor feedback, like visual, proprioceptive, 

vestibular, and auditory [5, 14-15]. A potential limitation of the present research is the 

feedforward nature of the motor control model (Equations 1-8). While such a control 

system can be used to quantitatively evaluate an optimal solution, it cannot infer how 

the solution is learned. Additional limitations of the computational design include i) 

assuming two-dimensionality of the wheelchair curling movement (e.g., omitting torso 

rotations about the vertical axis) and ii) modelling the dynamics of individual biological 
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elements (e.g., skeletal muscles, tendons, ligaments, and bursae) using resultant joint 

moments; the implications of these limitations are discussed in [19, 24]. 

 The motor control system of the Paralympic wheelchair athlete was 

mathematically modelled and simulated using forward dynamics optimization. Forward 

dynamics optimization also possesses the distinct capability of i) predicting the effects 

of model parameters on performance outcomes (i.e., sensitivity analyses) and ii) 

optimizing equipment designs in silico to improve performance and/or minimize the risk 

of musculoskeletal injuries [31]. This approach allows for predictive “what if” 

simulations, such as “what if the mechanical parameters of the delivery stick (e.g., 

mass or length) were altered” and “what if the height of the wheelchair seat was 

changed”. At present, the configurations of the delivery stick and wheelchair are 

generally selected based on the athlete’s subjective preferences rather than quantitative 

analysis. Suppose a biomechanist wanted to maximize the translational stone velocity at 

the moment of release through optimizing the height of the wheelchair seat. 

Experimentally, a variety of different seat heights would have to be investigated, and 

numerous trials per height to account for intra-athlete inconsistencies. Repetitive trials 

could bring about neuromuscular fatigue, therefore affecting the validity of the 

experimental findings. Such trial-and-error methods have been recently documented in 

Paralympic wheelchair rugby [32] and wheelchair basketball [33]. Forward dynamics 

optimization, by contrast, does not require expensive and time-consuming experiments 

to attain a solution. Accordingly, the presented multibody biomechanical model (i.e., 

comprising subject-specific body segments parameters, multibody kinematics, and 

optimal motor control) could be used to predict the effects of model parameters on 

Paralympic sport performance and/or optimize equipment designs prior to prototyping.  

5. Conclusion 

The motor control system of a tetraplegic Paralympic athlete was mathematically 

approximated using subject-specific biomechanical modelling and forward dynamics 

optimization. The predicted upper-limb kinematics from different optimization objective 
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functions were compared with those experimentally measured throughout a specified 

Paralympic sport movement to determine the objective function most representative of 

the underlying motor control. It was found that minimizing angular joint accelerations 

produced the most accurate predictions of the kinematic trajectories and the shortest 

optimization computation time. Such subject-specific control algorithms can be utilized 

in predictive dynamic simulations for wheelchair design optimization, reducing the need 

for numerous time-consuming and expensive experiments by minimizing the search 

space of potential wheelchair designs.   
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Table 1. Body segment parameters of the Paralympian as experimentally measured 
using dual-energy x-ray absorptiometry [18-19]. The quantities are presented as 
arithmetic means ± 1 standard deviation across multiple scans. Segments in the upper-
limb are of the right side. The moments of inertia are represented about the center of 
mass positions, which were determined relative to the proximal endpoint.  

 
Parameter 

 
Head and 
Neck 

 
Torso 

 
Upper Arm 

 
Forearm 

 
Hand 

 
Length (m) 

 
0.265 ± 
0.005 

 
0.588 ± 
0.008 

 
0.291 ± 
0.005 

 
0.276 ± 
0.002 

 
0.123 ± 
0.002 

Mass (kg) 6.967 ± 
0.085 

44.616 ± 
0.677 

3.099 ± 
0.192 

1.371 ± 
0.009 

0.396 ± 
0.011 

Center of Mass 
(m) 

0.1231 ± 
0.0025 

0.2237 ± 
0.0031 

0.149 ± 
0.002 

0.108 ± 
0.001 

0.022 ± 
0.001 

Moment of 
Inertia (kg∙m2) 

0.1963 ± 
0.0102 

2.8508 ± 
0.0349 

0.0238 ± 
0.0022 

0.0106 ± 
0.0002 

0.0022 ± 
0.0001 
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Table 2. Root mean square deviations of the predicted joint angles (°) relative to the 
experimental kinematics. The quantities were presented as arithmetic means over 
multiple trials with uncertainties expressed as ± 1 standard deviation.  

Joint Joint 
Moments 

Angular 
Velocities 

Mechanical 
Power 

Angular 
Accelerations 

Hip 2.0 ± 0.6 2.4 ± 0.6 2.8 ± 0.7 3.6 ± 0.7 

Shoulder 5.8 ± 1.6 28.3 ± 3.0 12.6 ± 2.9 7.6 ± 2.4 

Elbow 17.4 ± 3.9 19.9 ± 3.4 6.6 ± 2.0 9.9 ± 3.3 

Wrist 23.0 ± 1.6 8.6 ± 1.6 14.9 ± 1.6 2.4 ± 0.8 
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Table 3. Root mean square deviations of the predicted angular joint velocities (°/s) 
relative to the experimental kinematics. The quantities were presented as arithmetic 
means over multiple trials with uncertainties expressed as ± 1 standard deviation. 

Joint Joint 
Moments 

Angular 
Velocities 

Mechanical 
Power 

Angular 
Accelerations 

Hip 19.2 ± 2.8 28.7 ± 4.8 23.0 ± 3.0 26.5 ± 3.4 

Shoulder 57.7 ± 4.6 146.5 ± 9.3 77.8 ± 7.7 50.5 ± 5.6 

Elbow 108.6 ± 11.6 111.6 ± 8.8 69.8 ± 10.1 64.2 ± 9.9 

Wrist 130.0 ± 6.0 44.4 ± 5.7 81.6 ± 4.5 26.1 ± 6.0 
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Table 4. Root mean square deviations of the predicted translational stone kinematics 
relative to the experimental measurements. The quantities are presented as arithmetic 
means over multiple trials with uncertainties expressed as ± 1 standard deviation. 

Stone 
Kinematics 

Joint 
Moments 

Angular 
Velocities 

Mechanical 
Power 

Angular 
Accelerations 

Displacement 
(m) 

0.019 ± 
0.008 

0.148 ± 0.012 0.054 ± 0.012 0.018 ± 0.008 

Velocity (m/s) 0.154 ± 
0.024 

0.809 ± 0.022 0.319 ± 0.023 0.109 ± 0.026 
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Fig. 1 Schematic of the multibody biomechanical model. The rigid body segments and 

lower kinematic pairs are presented in (a) and (b), respectively. 

Fig. 2 Experimental and predicted joint angles of the hip, shoulder, elbow, and wrist 

throughout the wheelchair curling movement. The experimental quantities are 

presented as arithmetic means over multiple trials with uncertainties expressed as ± 1 

standard deviation. 

Fig. 3 Experimental and predicted angular joint velocities of the hip, shoulder, elbow, 

and wrist throughout the wheelchair curling movement. The experimental quantities are 

presented as arithmetic means over multiple trials with uncertainties expressed as ± 1 

standard deviation. 

Fig. 4 Experimental and predicted translational stone kinematics (i.e., displacements 

and velocities) throughout the wheelchair curling movement. The experimental 

quantities are presented as arithmetic means over multiple trials with uncertainties 

expressed as ± 1 standard deviation.  
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