
  

  

Abstract - Drawing inspiration from autonomous vehicles, 

using future environment information could improve the control 

of wearable biomechatronic devices for assisting human 

locomotion. To the authors knowledge, this research represents 

the first documented investigation using machine vision and 

deep convolutional neural networks for environment recognition 

to support the predictive control of robotic lower-limb 

prostheses and exoskeletons. One participant was instrumented 

with a battery-powered, chest-mounted RGB camera system. 

Approximately 10 hours of video footage were experimentally 

collected while ambulating throughout unknown outdoor and 

indoor environments. The sampled images were preprocessed 

and individually labelled. A deep convolutional neural network 

was developed and trained to automatically recognize three 

walking environments: level-ground, incline staircases, and 

decline staircases. The environment recognition system achieved 

94.85% overall image classification accuracy. Extending these 

preliminary findings, future research should incorporate other 

environment classes (e.g., incline ramps) and integrate the 

environment recognition system with electromechanical sensors 

and/or surface electromyography for automated locomotion 

mode recognition. The challenges associated with implementing 

deep learning on wearable biomechatronic devices are discussed. 

I. INTRODUCTION 

Designing effective control systems represents a leading 
challenge for roboticists and engineers working on wearable 
biomechatronic devices for assisting human locomotion. 
Robotic lower-limb prostheses and exoskeletons can enable 
geriatrics and rehabilitation patients to perform dynamic 
movements (e.g., staircase ascent) comparable to able-bodied 
individuals, which necessitate significant amounts of positive 
mechanical work about the lower-limb joints [1]-[6]. Most 
robotic lower-limb prostheses and exoskeletons have included 
hierarchical control systems, featuring high, medium, and low-
level controllers [1], [3], [5], [7]-[9]. The high-level controller 
recognizes the patient’s locomotion mode (and intent) by 
analyzing data from wearable sensors, and subsequently 
selects the corresponding finite state machine. The medium-
level controller converts the estimated locomotion mode into 
desired device mechanics like robotic joint kinematics or 
mechanical impedances. The low-level controller computes 
the error between the device’s current and desired mechanics 
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and drives the onboard actuators to minimize the error through 
feedforward and feedback controls [1], [3], [6]-[7]. 

Transitioning between different locomotion modes (e.g., 
level-ground walking to staircase ascent) remains a significant 
challenge. For instance, the Össur Power Knee (Iceland), the 
only commercially-available powered lower-limb prosthesis, 
and Indego lower-limb exoskeleton (Parker Hannifin, USA) 
both require compensatory movements to manually switch 
between different locomotion modes [4]. In recent literature, 
automated pattern recognition algorithms using experimental 
measurements from various sensors have demonstrated more 
accurate and quicker locomotion mode recognition, the most 
prevalent algorithm being linear discriminant analyses [10]-
[17]. Other related investigations have used support vector 
machines [7], [9], [13], [17], Gaussian mixture models [8], and 
dynamic Bayesian networks [4], [18]-[20].  
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Fig. 1 Robotic lower-limb prosthesis and exoskeleton with onboard 

electromechanical sensors. Photographs courtesy of Dr. Michael 

Goldfarb (Vanderbilt University, USA).  

 



  

Different electromechanical sensors have been embedded 
into robotic lower-limb prostheses and exoskeletons and used 
for automated locomotion mode recognition, including rotary 
encoders [1], [3]-[6], [20], potentiometers [4], [8], strain gauge 
load cells [4], [8], [18]-[20], and inertial measurement units 
[3]-[6], [17], [19]-[20] (Fig. 1). Although electromechanical 
sensors allow for fully-integrated systems, these sensors 
merely respond to the patient’s movements. In contrast, the 
electrical potentials of biological muscles, as experimentally 
recorded using surface electromyography (EMG), precede 
movement initiation and therefore could predict locomotion 
mode transitions [3], [11], [13]. Many recent investigations, 
especially those involving robotic lower-limb prostheses, have 
considered combining electromechanical sensors with surface 
EMG, aptly termed neuromuscular-mechanical data fusion 
[10], [12]-[16], [19]. Neuromuscular-mechanical data fusion 
for continuous locomotion mode recognition originated from 
Huang’s group [13]. Combining electromechanical sensors 
with surface EMG has demonstrated improved locomotion 
mode recognition accuracies and computation times compared 
to implementing either system individually [10], [12], [19]. 

Despite the promising initial performances in automated 
locomotion mode recognition with neuromuscular-mechanical 
data fusion, further improvements are warranted since even 
occasional misclassifications can cause injuries, particularly 
when involving staircases [7], [12]-[13], [21]-[22]. Moreover, 
neuromuscular-mechanical data measurements are i) patient-
dependent, therefore requiring time-consuming experiments to 
amass individual databases, ii) subject to intra-mode and inter-
day differences, and iii) have limited prediction horizons [3], 
[7], [11], [21], [23]. Drawing inspiration from autonomous 
vehicles and robotics [24]-[25], augmenting neuromuscular-
mechanical data with future environment information could 
improve the predictive control and obstacle avoidance of 
robotic lower-limb prostheses and exoskeletons (see Fig. 2) 
[1], [10], [15], [21], [26]. Such information would precede 

modulation of the patient’s muscle activations and/or walking 
biomechanics, therein enabling more accurate and quicker 
locomotion mode recognition [12], [15], [22]. 

Preliminary research simulating oncoming environments 
via adaptive prior probabilities in linear discriminant analyses 
showed that including environment information improved the 
locomotion mode recognition accuracies when compared to 
excluding such information [10], [12]. Huang’s research group 
originally developed a wearable environment recognition 
system, encompassing an inertial measurement unit and laser 
distance sensor, to approximate the geometry of the oncoming 
environment and provide supplementary information to the 
locomotion mode recognition system [14]-[16], [22]. Several 
researchers have recently explored vision-based systems for 
environment recognition to control biomechatronic devices, 
including Hargrove’s group [17], [21], [23] and Varol’s group 
[7], [9]. Compared to laser distance sensors, vision systems 
can provide information about the complete field-of-view and 
recognize physical obstacles and topography changes within 
peripheral locations [21]. The system from Hargrove’s group 
included a wearable camera (Microsoft Kinect, USA) and used 
standard image preprocessing algorithms [21], [23]. Although 
their system performance was satisfactory, the computations 
were time-consuming (i.e., average 8 seconds/frame) and was 
evaluated using only five sampled images [21], [23]. 

The system from Varol encompassed a leg-mounted depth 
sensing camera (Softkinetic, Belgium) and used support vector 
machines for classifying different environments using hand-
engineered features from depth-difference images [7], [9]. 
Their system achieved 94.1 % overall classification accuracy 
[7]. The authors acknowledged that deep learning algorithms 
like convolutional neural networks often outperform support 
vector machines for image classification [7] and therefore have 
become the standard in computer vision [27]. Moreover, depth 
cameras have limited capture volumes [28]. Building upon 
these previous investigations, the following research involved 
the preliminary design of an environment recognition system, 
using machine vision and deep convolutional neural networks, 
for augmenting the predictive control of robotic lower-limb 
prostheses and exoskeletons. 

II. METHODS 

An environment recognition system was developed with 
the intention of supporting the automated locomotion mode 
recognition systems of lower-limb biomechatronic devices 
(see Fig. 2). Since accurate locomotion mode recognition and 
transitioning is especially important for staircase ambulation, 
this research focused on recognizing staircase environments. 
A deep convolutional neural network was trained to recognize 
three walking environments: level-ground, incline staircases, 
and decline staircases. Contrasting previous investigations that 
used hand-engineered features [7], [9], [21], [23], the current 
data-driven method automatically learned the optimal image 
features from the training dataset.  

A. Experimental Data Collection 

Comparable to previous research [26], one participant was 
instrumented with a battery-powered, chest-mounted RGB 
camera system (GoPro Hero4 Session); photograph shown in 

 
 

Fig. 2 Example of an automated locomotion mode recognition system 
(high-level controller) for robotic lower-limb prostheses and 

exoskeletons. 
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Fig. 3. Chest-mounting provides less relative body movement 
than head or lower-limb mounting and, unlike limb-mounted 
systems [7], [9], [17], facilitates the wearing of pants without 
obstructing the field-of-view. Note that 3D information could 
have been attained using multiple synchronized RGB cameras 
[28]. Whereas previous studies of environment recognition 
systems have been limited to known laboratory environments 
[10], [14]-[15], [22], the current participant walked around the 
University of Waterloo campus [video link]1 while collecting 
RGB images of unknown outdoor and indoor environments 
with variable lighting, occlusions, signal noise, and intraclass 
variations. Data were collected at various times throughout the 
day, therein accounting for different lighting conditions. The 
sampled field-of-view was approximately 3 meters ahead of 
the participant. The images were collected at 60 frames/second 
with a 1280×720-pixel resolution and stored on a 64-GB 
microSD memory card. The wearable camera system weighs 
around 0.3 kg and includes a rechargeable lithium-ion battery. 
Approximately 10 hours of video footage (i.e., amounting to 
2,055,240 sampled images) were collected during ten, 1-hour 
walking sessions. The RGB image dataset can be downloaded 
from IEEE DataPort [click link]2.  

Since there were minimal differences between consecutive 
images at 60 frames/second, the dataset was downsampled to 
1 frame/second for training the convolutional neural network. 
However, for real-time control and implementation on robotic 
lower-limb prostheses and exoskeletons, higher sampling rates 
would be more advantageous for effective locomotion mode 
transitioning. Similar to previous research [29], the images 
were cropped to 1:1 aspect ratios and resized to 224x224 pixel 
resolutions via bilinear interpolation. Overall, 34,254 sampled 
images were individually labelled and preprocessed, including 
27,030 for level-ground, 3,943 for incline staircases, and 3,281 
for decline staircases. There was subjectivity associated with 
manually labelling the environment classes, particularly near 
transitions. For transitioning from staircases to level-ground 
environments, the images were labelled as staircases whenever 
the staircase was visible inside the sampled field-of-view. For 
transitioning from level-ground to staircase environments, the 
images were labelled as staircases provided that the participant 
was within 1-2 steps and forward-facing the staircase. Images 
were labelled by one designated researcher for consistency.  

 
1https://www.youtube.com/watch?v=ulOLpRmw6so&feature=youtu.be  

B. Deep Convolutional Neural Network 

The deep convolutional neural network was developed in 
TensorFlow 1.10 software (Google Brain, USA). Given that 
the classification problem was relatively small (i.e., involving 
three environment classes), a 10-layer convolutional neural 
network architecture was implemented (see Fig. 4). Shortcut 
connections and batch normalization were not incorporated 
since such design features are generally intended for extremely 
deep networks [29]. The convolutional neural network mainly 
used 3x3 filters. Besides the maximum and average pooling 
layers, downsampling was performed using convolutional 
layers with strides of two. Though absent from Fig. 4, rectified 
linear units (ReLu) followed each convolutional layer [27]. 
The neural network concluded with one fully-connected layer, 
wherein softmax regression computed the probabilities of the 
different walking environments (i.e., classes). 

2https://ieee-dataport.org/documents/wearable-rgb-camera-images-

human-locomotion-environments 

 
 

Fig. 3 Photograph of the wearable camera system used for experimental 

data collection and environment recognition. 

 

 
 

Fig. 4 Schematic of the deep convolutional neural network including 
convolutional layers, maximum and average pooling layers, and a fully 

connected layer. 
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Five-fold cross-validation was implemented, whereby the 
image dataset was separated into five individual folds (i.e., 
including two data-collection sessions apiece) and each fold 
was trialed for validation. Each data-collection session was 
therefore used for both training and validation. Since there 
were class imbalances among the dataset, the level-ground and 
staircase environments were undersampled and oversampled 
in accordance with the class priors of each fold during training, 
respectively, to obtain uniform distributions. The images were 
normalized by subtracting the average pixel intensities from 
each fold. Weights were initialized with Xavier initialization 
[30]. The neural network underwent 2000 training iterations 
using a batch size of 256 (i.e., approximately 19 epochs), 
Adam first-order optimization, and a learning rate of 0.001, 
which was halved after 1000 training iterations [31]. The 
authors experimented with dropout regularization in the fully-
connected layer but determined that this technique was largely 
ineffective for the current application. The RGB images were 
randomly flipped horizontally during training with rates of 
50% to introduce stochasticity and prevent overfitting. This 
method of data augmentation indirectly considered changes in 
camera orientation. Training was performed on a TITAN Xp 
graphics card (NVIDIA, USA) with 3840 core processors and 
12-GB memory. Training took approximately 20 minutes/fold. 
The computational cost of the convolutional neural network 
was 1.75-G floating point operations. 

III. RESULTS 

Fig. 5 presents the resulting multiclass confusion matrix, 
which displays the overall classification performance of the 
convolutional neural network. The horizontal and vertical axes 
characterize the predicted and actual classes, respectively. The 
diagonal elements represent the accuracy percentages of the 
individual environment predictions, also termed true positives. 
Nondiagonal elements are the misclassification percentages. 
The environment recognition system achieved 94.85% overall 
classification accuracy, that being the ratio of true positives 
(32,491) over total number of images (34,254). The precisions 
of level-ground, incline staircases, and decline staircases were 
95.9%, 92.5%, and 87.3%, respectively. Precision denotes the 
proportion of true positives from the combined true positives 
and false positives. False positives for a given class were the 
values in the equivalent matrix column (i.e., excluding the true 
positive).  

The corresponding class sensitivities were 97.7%, 88.7%, 
and 78.6%. Sensitivity denotes the proportion of true positives 
from the combined true positives and false negatives. The false 
negatives for a given class were located in the corresponding 
row, excluding the true positive. The environment recognition 
system best predicted level-ground environments followed 
sequentially by incline staircases and decline staircases. These 
results are likely attributed to the class imbalances among the 
training dataset (i.e., there were many more images of level-
ground environments). There were few misclassifications 
between incline staircases and decline staircases. Fig. 6 shows 
several examples of misclassifications from the environment 
recognition system. The photographs in the left and right 
columns were misclassified as level-ground and staircase 
environments, respectively. 

IV. DISCUSSION AND CONCLUSION 

The preliminary design and evaluation of an environment 
recognition system, using deep convolutional neural networks 
and machine vision, to supplement the predictive control of 
robotic lower-limb prostheses and exoskeletons was 
presented. Most biomechatronic devices have used individual 
finite state machine controls for different locomotion modes 
[5]-[6]. Automated locomotion mode recognition systems that 
facilitate more accurate and quicker transitioning between 
different locomotion modes are needed since inaccurate and/or 
delayed transitions could cause injuries [2]-[3], [22]. Most 
robotic lower-limb prostheses and exoskeletons have used 
electromechanical sensors and/or surface EMG for locomotion 
mode recognition [2], [4]-[6], [8], [11], [13], [16], [18]-[20]. 
Such measurements are patient-dependent, have limited 
prediction horizons, and are prone to intra-mode and inter-day 
differences. 

Analogous to autonomous vehicles and robotics [24]-[25], 
few researchers have proposed supplementing neuromuscular-
mechanical data measurements with knowledge about future 
walking environments [7], [9]-[10], [12], [14]-[16], [21]-[23]. 
The environment recognition system from Varol’s research 
group achieved 94.1% overall classification accuracy using 
depth sensing images and support vector machines [7], [9]. In 
comparison, the environment recognition system presented 
here achieved 94.85% overall classification accuracy using 
RGB images and deep convolutional neural networks. Note 
that the class imbalances among the training dataset should be 
considered when evaluating the classification accuracy.  

To the authors knowledge, this research represents the first 
documented investigation using deep learning for environment 
recognition to improve the predictive control of robotic lower-
limb prostheses and exoskeletons. The convolutional neural 
network was trained to recognize three walking environments: 
level-ground, incline staircases, and decline staircases. Given 
that inaccurate and/or delayed locomotion mode transitions 
can cause serious injuries, particularly involving staircases, 
this research focused on recognizing staircase environments. 
Future research will incorporate other environment classes. 
For example, previous locomotion mode recognition systems 
have included: level-ground walking [2], [4], [7], [9]-[14], 
[16], [18]-[20], [22], ramp ascent [4], [10], [13]-[14], [18]-
[20], [22], [26], ramp descent [4], [10], [13]-[14], [18]-[20], 
[22], [26], staircase ascent [2], [4], [7], [9]-[14], [16], [18]-
[20], [22], [26], staircase descent [2], [4], [7], [9]-[14], [16], 

 
 
Fig. 5 The resulting multiclass confusion matrix of the environment 

recognition system. 
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[18]-[20], [22], [26], standing [7], [9], [11], [15]-[16], [18], 
running [7], [9], and stepping over obstacles [11]-[13], [22].   

Future environment information should be combined with 
electromechanical sensors and/or surface EMG for automated 
locomotion mode recognition. The environment recognition 
system updates the probabilities of selecting an individual 
locomotion mode [10], [15], [21]. For instance, when walking 
towards an incline staircase, the probabilities of selecting 
staircase ascent would progressively increase while the 
probabilities of selecting other locomotion modes would 
likewise decrease [15]. To further minimize the search space 
of potential solutions, locomotion modes with similar walking 
biomechanics (e.g., level-ground and slope descent) could be 
lumped together and uncommon locomotion mode transitions 
could be disregarded (e.g., slope descent to staircase ascent) 
[18], [20]. Therefore, future environment information would 
supplement, rather than replace, the locomotion mode control 
decisions from neuromuscular-mechanical data measurements 
[12], [14]-[15]. To date, no previous environment recognition 
system has been integrated into the physical control hardware 
of robotic lower-limb prostheses and exoskeletons while 
assisting geriatrics and rehabilitation patients.   

Although convolutional neural networks are becoming the 
state-of-the-science in computer vision, the current embedded 
systems of robotic lower-limb prostheses and exoskeletons 
cannot effectively support the computational requirements 
associated with deep learning [7]. Compared to conventional 
microcontrollers with central processing units, the newly-
developed graphics processing units have many more core 
processors, which permit faster computations through parallel 
computing and have higher memory bandwidths [27]. Several 
companies like NVIDIA and Intel Corporation are developing 
advanced microcontrollers for machine vision applications in 
autonomous vehicles and robotics [7], [27]. For instance, the 
Jetson Xavier microchip from NVIDIA can execute 30 trillion 
operations/second under 30 W. Nevertheless, most embedded 
systems for deep learning applications require significant 
amounts of computing power [7], [27], [32] and consequently 
would quickly deplete the onboard batteries of lower-limb 
biomechatronic devices. Furthermore, the lithium-ion batteries 
powering the current camera system provided only 1-2 hours 
of maximum operation, therein making systems integration 
with physical control hardware challenging.   

Apart from technological advances in embedded systems, 
utilizing more efficient network architectures and/or optimal 
biomechatronic system dynamics might alleviate some of the 
large power requirements commonly associated with machine 
vision and deep learning. The authors are currently exploring 
more efficient deep convolutional neural networks for mobile 
vision applications, alike the architectures recently proposed 
by Google researchers [32]. Besides supplementing automated 
locomotion mode transitions, the environment recognition 
system could be used for improving overall energy-efficiency 
through optimal biomechatronic system dynamics. Analogous 
to eco-driving in autonomous and connected vehicles, future 
environment information could be used to optimally control 
the biomechatronic system dynamics to maintain more steady 
gait speeds, therein improving energy-efficiency by avoiding 
unnecessary power consumption from recurrent deceleration 
and acceleration periods [33]. Future investigations with the 
environment recognition system will be directed towards more 
energy-efficient control of robotic lower-limb prostheses and 
exoskeletons [34].   

 
 

Fig. 6 Examples of misclassifications from the environment 

recognition system. The photographs in the left and right columns were 

misclassified as level-ground and staircase environments, respectively. 
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