
  

 
 

Abstract – Environment recognition systems can facilitate the 

predictive control of lower-limb exoskeletons and prostheses by 

recognizing the oncoming walking environment prior to physical 

interactions. While many environment recognition systems have 

been developed using different wearable technology and classifi-

cation algorithms, their relative operational performances have 

not been evaluated. Motivated to determine the state-of-the-sci-

ence and propose future directions for research innovation, we 

conducted an extensive comparative analysis of the wearable 

technology, training datasets, and classification algorithms used 

for vision-based environment recognition. The advantages and 

drawbacks of different wearable cameras and training datasets 

were reviewed. Environment recognition systems using pattern 

recognition, machine learning, and convolutional neural net-

works for image classification were compared. We evaluated the 

performances of different deep learning networks using a novel 

balanced metric called “NetScore”, which considers the image 

classification accuracy, and computational and memory storage 

requirements. Based on our analysis, future research in environ-

ment recognition systems for lower-limb exoskeletons and pros-

theses should consider developing 1) efficient deep convolutional 

neural networks for onboard classification, and 2) large-scale 

open-source datasets for training and comparing image classifi-

cation algorithms from different researchers.  

I. INTRODUCTION 

Most lower-limb exoskeletons and prostheses for assistive 
technology and movement rehabilitation have used biomecha-
tronic control systems with hierarchical architectures [1]–[5]. 
The high-level controllers predict the upcoming locomotion 
mode (patient intention) using real-time sensor measurements 
and machine learning algorithms to automatically switch be-
tween locomotion modes. The mid-level controllers translate 
the predicted locomotion modes into mode-specific reference 
trajectories using finite-state machines with discrete position 
or mechanical impedance control parameters. The low-level 
controllers use conventional algorithms like proportional-inte-
gral-derivative (PID) control to calculate the error between the 
current and desired state trajectories and drive the onboard ac-
tuators to minimize the error using reference tracking and 
closed-loop feedback control [1]–[5]. 
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Drawing inspiration from human motor control, augment-
ing neuromuscular-mechanical data with information about 
the surrounding environment could improve the high-level 
control performance (Fig. 1). During locomotion, supraspinal 
levels of the central nervous system acquire state information 
via ascending pathways from biological sensors (e.g., visual 
system) and optimize/control the musculoskeletal system and 
human biomechanics through feedforward efferent commands 
[3]. However, these control loops are compromised in patients 
using lower-limb exoskeletons and prostheses owing to defi-
ciencies in human-machine interfaces. Environment sensing 
using computer vision artificially restores these control loops 
between the walking mechanics and environment state, therein 
enabling more accurate and responsive locomotion mode tran-
sitioning. Environment recognition could also be used to mod-
ulate the actuator reference dynamics (e.g., increasing power 
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Fig 1. Schematic of an automated locomotion mode recognition system 

(high-level controller) for lower-limb exoskeletons and prostheses. 
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to assist with steeper ramps) and optimal path planning (e.g., 
detecting opportunities for energy regeneration) [6-7].  

Huang’s research group originally combined environment 
information with neuromuscular-mechanical data to improve 
locomotion mode recognition [8]–[12]. Their environments 
were modelled as prior probabilities using maximum entropy 
and incorporated into the discriminant functions of linear dis-
criminate analyses (LDA). Equal prior probabilities are typi-
cally used for locomotion mode recognition with LDA classi-
fication. Huang simulated different walking environments by 
adjusting the prior probabilities of each class, therein allowing 
their locomotion mode recognition system to adapt to different 
environments. Using adaptive prior probabilities significantly 
outperformed (i.e., 95.5% classification accuracy) the locomo-
tion mode recognition system without environment data (i.e., 
90.6% accuracy) [10]. These seminal contributions have since 
given rise to environment recognition systems using different 
wearable technology and artificial intelligence algorithms for 
image classification. However, their relative performances 
across operational metrics for onboard control have not been 
evaluated. To determine the state-of-the-science and propose 
future directions for research advancement, we compared the 
practical advantages and disadvantages of different wearable 
technology, training datasets, and image classification algo-
rithms used for recognizing human walking environments.   

II. ENVIRONMENT RECOGNITION SYSTEMS 

A. Experimental Data Collection  

Different wearable sensors have been implemented for en-
vironment recognition in robotic lower-limb exoskeletons and 
protheses, including radar and laser rangefinders [10]-[13], 
RGB cameras [14]–[21], and 3D depth-sensing cameras [22]–
[29]. Radar detectors can uniquely measure distances through 
non-conducting materials and are invariant to lighting condi-
tions and surface texture. Huang prototyped a wearable terrain 
recognition system using a laser rangefinder and inertial sensor 
to approximate the geometry of the oncoming walking envi-
ronment [10]-[12]. Compared to radar and laser rangefinders, 
camera-based systems provide information about the complete 
field-of-view and can recognize physical obstacles and terrain 
changes in peripheral locations. For these reasons, this analysis 
focused on camera-based environment recognition systems 
(examples shown in Fig 2). 

Most researchers have used RGB cameras for environment 
recognition [14]–[21]. Each RGB pixel contains light intensity 
information. Unless multiple cameras are used at different an-
gles, RGB cameras cannot provide distance measurements. 
Conversely, depth cameras can provide 3D information about 
the sampled field-of-view. Depth pixels contain both distance 
measurements and light intensity information. The environ-
ment recognition systems from Hargrove [22], [29], Fu [26]–
[28], and Varol [23], [24] used depth cameras, which calculate 
distances by measuring the infrared light time-of-flight. Depth 
measurement accuracies typically degrade with increasing dis-
tance. Consequently, environment recognition systems using 
depth cameras have had limited capture volumes (i.e., ~1-2 m 
of maximum range imaging) [22]–[24], [29]. Implementation 
of depth cameras would also require lower-limb exoskeletons 
and prostheses to have high computing power microcomputers 
with low power consumption. The current embedded systems 

would need significant modifications to support onboard mi-
crocomputers capable of processing depth images [24].  

Table 1 summarizes the experimental data collection of vi-
sion-based environment recognition systems. Most wearable 
cameras have been mounted on the chest [16], [17], [19], [20], 
[22], waist [18], [28], [29], and lower-limbs [21], [23], [24], 
[27]. Limited studies have adopted head-mounted cameras for 
biomimicry [14], [15]. Unlike lower-limb systems, chest and 

 

Fig 2. Examples of wearable camera systems used for environment 

sensing. The top and bottom photographs were provided by Dan Simon 
(Cleveland State University, USA) and Huseyin Atakan Varol 

(Nazarbayev University, Kazakhstan), respectively. 



  

waist-mounted cameras provide more stable image capturing 
and allow patients to wear pants and dresses without obstruct-
ing the sampled field-of-view. Future research should consider 
investigating different camera positions for optimal system de-
sign. To date, the largest dataset has contained ~940,000 RGB 
images [17], followed by 402,000 depth images from Varol’s 

 
1https://ieee-dataport.org/open-access/exonet-database-wearable-camera-

images-human-locomotion-environments  

research group [24]. Interestingly, the research from Villarreal 
[15] simultaneously sampled and labelled environment images 
using a portable keyboard during data collection. Environment 
recognition systems have focused on classifying level-ground 
environments [8]–[12], [15], [16], [18]–[20], [23], [24], [26]–
[30], incline stairs [8]–[12], [15]–[20], [23], [24], [26]–[30], 
and decline stairs [8]–[12], [15]–[20], [23], [24], [26]–[30]. 
Several investigations [11], [17] have incorporated an “others” 
class to improve classification accuracy when confronted with 
obscure environments. Classification accuracy (Ca) is defined 
as the percentage of correct classifications from the total num-
ber of classifications: 

Ca =
Correct Classifications

Total Classifications
× 100%                                     (1) 

Whereas most environment recognition systems have been 
limited to controlled indoor environments and/or prearranged 
walking circuits [10]–[13], [18], [26]–[28], [30], Laschowski 
and colleagues [16], [17] had participants walk about unknown 
outdoor and indoor real-world environments; the images were 
collected throughout the summer, fall, and winter seasons to 
capture different weathered surfaces like snow, multicolored 
leaves, and grass. Apart from these studies [16], [17]1, none of 
the aforementioned datasets were made open-source, making 
comparisons between different wearable technology and clas-
sification algorithms challenging, as subsequently discussed. 

B. Image Classification Algorithms 

Environment recognition systems for lower-limb exoskel-
etons and prostheses have traditionally used statistical pattern 
recognition and machine learning for image classification [14], 
[21]–[25], [29] (Table 2). These algorithms require meticulous 
hand-engineering to develop feature extractors (e.g., edge de-
tectors) that transform raw images into suitable representations 
or feature vectors. Manually-extracted features serve as inputs 
to the image classification (e.g., machine learning or threshold 
based algorithms). Hough transforms, along with Canny edge 
detectors or Gabor filtering, have been used for edge detection 
[14], [19], [29]. Canny edge detection typically includes Sobel 
operators, which identify gradients across pixels using convo-
lutional filters. Hargrove [14], [22] used standard image pre-

 

Table 1. Comparison of experimental data collection for vision-based 

environment recognition systems. 

Reference Sensor Position Dataset Quality Classes 

[14] RGB 

Camera 

Head 5 928x620 2 

[15] RGB 

Camera 

Head 40,743 128x128 2 

[16] RGB 

Camera 

Chest 34,254 224x224 3 

[17] RGB 

Camera 

Chest 940,000 1280x720 12 

[18] RGB 

Camera 
Waist 7,284 224x224 3 

[19] RGB 

Camera 

Chest 12,383 32x32 

Grayscale 

17 

[20] RGB 

Camera 

Chest 3,669 32x32 

Grayscale 

12 

[21] RGB 

Camera 

Lower 

Limb 

3,992 1080x1920 6 

[22] Depth 

Camera 

Chest 170 80x60 2 

[23] Depth 

Camera 

Lower 

Limb 
22,932 320x240 5 

[24] Depth 

Camera 

Lower 

Limb 

402,403 320x240 5 

[26], [27] Depth 

Camera 

Lower 

Limb 

7,500 224x171 5 

[28] Depth 

Camera 

Waist 4,016 2048 Point 

Cloud 

3 

[29] Depth 

Camera 

Waist 4,000 171x224 5 

 

Table 2. Comparison of environment recognition systems using statistical pattern recognition and machine learning for image classification. Note that 

these algorithms were developed and evaluated using individual private datasets (see Table 1).  

Reference Feature Extractor and/or Classifier Hardware Classification Accuracy Computation Time 

[14] Hough Transform with Gabor Filter or 

Canny Edge Detector 
Intel Core i5 Not Specified 8 seconds 

[19]  Gabor Barcodes and Hamming Distances Intel Core i7 (3.60GHz) 88.5% 0.15 seconds 

[21]  SURF Features and Bag of Words Intel Core i7-2600 CPU 

(3.40GHz) 

86% Not Specified 

[22]  Heuristic Thresholding and Edge Detector Intel Core i5 98.8% 0.2 seconds 

[23] Support Vector Machine Intel Core i7-2640M 

(2.8GHz) 

99.0% 14.9 ms 

[24] Cubic Kernel Support Vector Machine Intel Core i7-2640M 

(2.8GHz) 

94.1% 14.9 ms 

[29] Regions-of-Interest and Linear 

Discriminate Analysis 

Intel Core i7-8750H 

(2.2GHz) 
Not Specified Not Specified 
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processing and rule-based thresholds to recognize convex and 
concave edges for stair recognition. While their system perfor-
mance was satisfactory, the computations were time-consum-
ing (i.e., 8 seconds/frame) and the system was evaluated using 
only five sampled images [14].  

Varol’s research group leveraged support vector machines 
(SVMs) for classifying depth images of human locomotion en-
vironments [23], [24]. Support vector machines are supervised 
machine learning algorithms that map extracted features into a 
high-dimensional feature space and separate samples into dif-
ferent classes by way of constructing optimal hyperplanes with 
maximum margins. Varol compared different dimensionality 
reductions and SVM model designs. Their environment recog-
nition system achieved ~94.1% image classification accuracy 
using a cubic kernel SVM and no dimension reduction [24]. 
Though SVM models are effective in high-dimensional space 
and offer good generalization (i.e., robustness to overfitting), 
these algorithms require manual selection of kernel functions 
and statistical features from regions-of-interest [23] [24]. Deep 
learning replaces manually-extracted features with multilayer 
networks that automatically learn optimal image features from 
training data. Convolutional neural networks (CNNs) typically 
outperform SVMs for image classification [31] and thus have 
become the standard in computer vision.  

The latest cohort of environment recognition systems have 
used CNNs for classification [15], [16], [18], [20], [26]–[28] 
(Fig. 3). Multiple convolution and pooling layers are stacked 
with decreasing resolutions and increasing number of feature 
maps. The convolutional layers perform convolutions between 
the input and convolutional filters. The resulting feature maps 
are passed through nonlinear activation functions. The pooling 
layers spatially downsample the feature maps by aggregating 
neighboring elements using maximum values. CNNs conclude 
with fully-connected layer(s) and softmax, which estimate the 
probability distribution of each class. Environment recognition 
systems have typically involved supervised learning, wherein 
the differences between the predicted and labelled class scores 
are calculated, and the network parameters are updated to min-

imize the error through backpropagation. Table 3 compares the 
performances of different environment recognition systems 
using CNNs for image classification. The neural network from 
Simon’s group [18] achieved the highest image classification 
accuracy (i.e., ~99%) albeit included the largest computational 
and memory storage requirements, with 27 million parameters 
and 7.7 billion multiply-accumulate operations (MACs).  

Few environment recognition systems [18], [23], [24], [26] 
have included temporal information to minimize the occur-
rences of periodic misclassifications. Fu’s research group [26] 
compared recurrent neural networks (RNNs) and hidden Mar-
kov models for environment recognition using sequential data. 
RNNs process sequences of inputs while maintaining internal 
hidden state vectors that contain time history information and 
that feedback on themselves recurrently. Although RNNs are 
designed to learn long-term dependencies, theoretical and em-
pirical evidence has suggested that they struggle with storing 
sequential information over extended periods [31]. Therefore, 
recurrent neural networks are often supplemented with explicit 
memory modules such as long short-term memory (LSTM) 
networks. Fu [26] showed that hidden Markov models outper-
formed (i.e., ~97.3% accuracy) both recurrent neural networks 
(i.e., ~96.9% accuracy) and LSTM networks (i.e., ~96.8% ac-
curacy) for human locomotion environment recognition.  

III. DISCUSSION  

Environment recognition systems can improve the control 
of robotic lower-limb exoskeletons and prostheses by predict-
ing the upcoming locomotion mode prior to execution, therein 
enabling more accurate and responsive transitioning between 
locomotion modes. These systems have used different weara-
ble technology and classification algorithms for environment 
recognition. However, their relative operational performances 
for onboard real-time control (e.g., inference times, classifica-
tion accuracies, and computational and memory requirements) 
have not been previously considered, which motivated the cur-
rent analysis. We compared the practical advantages and draw-
backs of different wearable technology, training datasets, and 
classification algorithms used for recognizing human walking 

 

Fig. 3 Examples of convolutional neural networks used for environment recognition. The top and bottom schematics were recreated from graphics 

provided by Dan Simon (Cleveland State University, USA) and Chenglong Fu (Southern University of Science and Technology, China), respectively. 
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environments. Several researchers have explored using laser 
rangefinders [10]–[12] and radar detector [13] for environment 
sensing. However, most systems have involved RGB cameras 
[14]–[21] and depth cameras [22]–[28] mounted on the chest, 
waist, and lower-limbs (see Table 1). Environment recognition 
systems have used statistical pattern recognition and machine 
learning for image classification [14], [19], [21]–[25], [29] 
(Table 2). Unlike these algorithms that require manual feature 
engineering, convolutional neural networks automatically 
learn optimal image features from training data. This design 
feature, along with achieving higher image classification accu-
racy [31], could explain the growing implementation of deep 
learning networks for human locomotion environment classi-
fication [15], [16], [18], [26]–[28].   

Environment recognition systems have focused on improv-
ing image classification accuracy, leading to more accurate yet 
inefficient algorithms with greater computational and memory 
storage requirements (see Table 3). These design features can 
be problematic for mobile and embedded vision applications 
(e.g., lower-limb prostheses) with limited operating resources. 
While the newly-developed graphics processing units (GPUs) 
have many core processors with high memory bandwidth [31], 
the current microcomputers used in lower-limb prostheses and 
exoskeletons cannot effectively support the architectural and 
computational complexities of traditional convolutional neural 
networks [24]. To enable onboard deep learning for real-time 
control, the ideal image classification algorithm would achieve 
high accuracy with minimal parameters, numerical operations, 
and inference time. Motivated by these design principles, we 
evaluated the performances of different convolutional neural 
networks (Ɲ) for human locomotion environment recognition 
using a novel balanced metric called NetScore [32]: 

Ω(Ɲ) = 20log (
a(Ɲ)α

p(Ɲ)βm(Ɲ)γ)                                                   (2) 

where a(Ɲ) is the classification accuracy, p(Ɲ) is the network 
parameters, m(Ɲ) is the numerical operations during inference, 
and α, β, and γ are coefficients that control the effects of accu-
racy, and the architectural and computational complexities, re-
spectively. Similar to Wong [32], the NetScore coefficients 
were {α = 2, β = 0.5, γ = 0.5} to better emphasize classification 
accuracy, while partially considering the network parameters 
and operations. The number of operations and parameters are 
representative of the computational and memory requirements, 

respectively. The resulting NetScores are presented in Table 3. 
Despite having the highest image classification accuracy, the 
neural network from Simon’s research group [18] achieved the 
lowest NetScore (i.e., 56.8) due to the disproportionately large 
number of parameters and operations. Conversely, the network 
from Tung’s research group [20] attained the highest NetScore 
with approximately 119.7. It should be noted that these net-
works were trained and evaluated on different private datasets. 

 These NetScores demonstrate a fundamental limitation in 
comparing the performances of convolutional neural networks 
trained using different datasets such that the smaller database 
from Tung [20] allowed a smaller classifier to obtain relatively 
high accuracy. Researchers have each individually collected 
experimental data for training their environment recognition 
algorithms. These repetitive measurements are inefficient for 
the biomechatronics field and individual private datasets have 
prevented comparisons between classification algorithms from 
different researchers. The absence of an open-source database 
of human locomotion environment images has impeded the 
development of environment recognition systems for lower-
limb exoskeletons and prostheses. Drawing inspiration from 
ImageNet [33], we recently published the “ExoNet” database 
through IEEE DataPort [17]. ExoNet represents the first open-
source database of high-resolution wearable camera images of 
human locomotion environments. Aside from being the only 
open-source database, the large scale and diversity of ExoNet 
distinguishes itself from previous environment recognition 
systems, with more than 940,000 human-annotated images and 
12 classes (Table 1) [17]. With ongoing advances in wearable 
technology and artificial intelligence, larger and more diverse 
training datasets are needed to develop next-generation image 
classification algorithms for environment-aware controls.  

Our comparative analysis concluded that future research in 
environment recognition systems for lower-limb exoskeletons 
and prostheses should consider developing 1) efficient deep 
convolutional neural networks for onboard classification with 
limited operational resources, and 2) large-scale open-source 
datasets for training and comparing classification algorithms 
from different researchers. 
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