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Automated Type Synthesis of
Planar Mechanisms Using
Numeric Optimization With
Genetic Algorithms
This paper presents a novel method for the automated type synthesis of planar mecha-
nisms and multibody systems. The method explicitly includes topology as a design vari-
able in an optimization framework based on a genetic algorithm (GA). Each binary string
genome of the GA represents the concatenation of the upper-right triangular portion of
the link adjacency matrix of a mechanism. Different topologies can be explored by the GA
by applying genetic operators to the genomes. The evolutionary process is not dependent
on the results obtained from enumeration. Two examples of topology-based optimization
show the applicability of this method to mechanism type synthesis problems. This method
is distinct from others in the literature in that it represents the first fully automated
algorithm for solving a general type synthesis problem with the help of a numeric
optimizer. �DOI: 10.1115/1.1904049�
1 Introduction
The procedure for systematically conducting mechanism design

consists of three steps: task definition, type synthesis, and dimen-
sional synthesis �1�. Dimensional synthesis seeks to determine
optimal dimensions and inertial properties of a prescribed type of
mechanism; it has been studied in depth. Some commercial soft-
ware, such as LINCAGES-4 �6� and WATT, is helping designers
to efficiently solve kinematic dimensional synthesis problems, al-
though they typically handle only specific types such as planar
4 bars or some 6 bars. Other mechanical system analysis pack-
ages, such as ADAMS, may serve as dynamic dimensional syn-
thesis engines when combined with optimization methods. How-
ever, type synthesis, i.e., the selection of the optimum topology
among feasible mechanism structures for a specified task, is still
an open problem in the field of computer-aided mechanism de-
sign. Current type synthesis techniques mostly involve the enu-
meration of distinct mechanisms that satisfy a certain degree of
freedom �DOF� requirement. Linear graph theory is used exten-
sively in type synthesis, which can be subdivided into number
synthesis, topological synthesis, and topological analysis �2�.

Erdman �3� provides an overview and literature review of
mechanism design and concludes that “the most critical stage of
the entire design process is …choosing the best topology for a
given task” �see Ref. �3�, p. 95�, otherwise known as topology
optimization or type synthesis. Another overview is provided by
Norton �4�, who also reviews the application of numerical optimi-
zation to mechanism synthesis. Soni et al. �5� developed a rules-
based expert system for mechanism type selection and automated
dimensional synthesis, but the system can handle only specific
mechanism design problems and is based on heuristics, not on a
numeric optimization framework. Wang et al. �6� proposed an-
other computerized rules-based method for conceptual design of
complex mechanisms based on Yan’s regeneration-oriented cre-
ative design theory �7�. Chiou et al. �8� developed a computer
program for the design of function generating mechanisms, adopt-
ing the function decomposing and recomposing creative design
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method based on a matrix representation scheme and basic kine-
matic building blocks. However, neither Wang et al. nor Chiou et
al. considered the selection of optimum mechanism types for a
given task.

Kong et al. have used the screw theory to develop a method for
enumerating spatial parallel robots with decoupled degrees of
freedom, either translational �9� or rotational �10�. However, their
method is a manual approach that is restricted to the special to-
pologies of parallel robots, not an automated approach to the type
synthesis of general mechanisms.

Much success has been reported in the area of compliant
mechanism design using continuum-based topology optimization
techniques; an excellent description of this approach can be found
in Bendsoe and Sigmund �11�. In an attempt to extend this work to
articulated mechanisms with rigid links, Kawamoto et al. �12�
used a truss-based ground-structure representation and graph-
theoretical enumeration to perform an exhaustive analysis of all
possible topologies. This method was improved by Felter �13�,
who used an energy or geometry optimization approach to identify
and remove redundant joints and links. In the work by Kawamoto
et al. and Felter, however, only binary links with a set of fixed
dimensions were considered, and Gruebler’s criterion for the DOF
of a planar mechanism was not utilized.

Eberhard et al. �14� have pointed out the merits of using genetic
algorithms �GAs� in multicriteria optimization of multibody sys-
tem parameters, but topology is not included as a design variable.
Leger �15� has accomplished automated synthesis and optimiza-
tion of open-chain robot configurations with a variant of a GA.
However, the type synthesis problem for general mechanisms is
not tackled. Rao �16� used a GA to enumerate planar mechanisms,
test for isomorphism among kinematic chains, and identify kine-
matic inversions. However, the selection of the “best” chain and
inversion for function generation is not accomplished by the GA,
but through the application of some proposed design heuristics.

Norton states that only Fang �17� has attempted to solve the
general type synthesis problem using numerical optimization. Ac-
tually, Fang used a GA to simultaneously determine the optimal
dimensions for several mechanisms of a fixed four-link topology.
Topology is not explicitly used as a design variable, and no new
topologies are created during the GA evolutionary process. Fang
notes that infeasible mechanisms can simply be assigned a null

fitness, so that they do not cause any convergence problems.
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In this paper, the topology of a mechanism is explicitly in-
cluded as one design variable. Given some design objectives, a
GA is used to automate the procedure for finding the best mecha-
nism type, using a novel method to encode the topology of a
mechanism into a binary string genome. When genetic operations
are applied to these genomes, different topologies will be ran-
domly explored by the GA. Since the GA is capable of handling
both discrete and continuous parameters, it can also be used to
simultaneously integrate type and dimensional synthesis, a step
that is necessary for the conceptual design of mechanisms in the
early design stage. Therefore, what distinguishes the proposed al-
gorithm is the fact that it fully automates the process of solving a
general type synthesis problem within a numeric optimization
framework.

This paper is organized as follows. An introduction to the rep-
resentation of mechanism topology is presented in Sec. 2. An
outline of GAs and the framework for the automated type synthe-
sis of planar mechanisms then follows. Next, the applications of
the algorithms to two topology-based optimization examples and
some observations on computational efficiency are discussed in
Sec. 4. Finally, conclusions are drawn in the last section.

2 Representations of Mechanism Topology
The topology of a mechanism contains the essential information

about which link is connected to which other link by what type of
joint; it can be hierarchically represented in several different
ways, including functional schematic representation, structural
representation, graph representation, and matrix representation,
etc. �18�. Figure 1 shows the functional schematic, kinematic
structure, graph, and adjacency matrix representations of a four-
link mechanism.

The functional schematic is the familiar cross-sectional drawing
of a mechanism in which only those elements that are essential to
the function of the mechanism are shown.

In a structural representation, each link of a mechanism is de-
noted by a polygon whose vertices represent the kinematic joints,
and the polygon denoting the ground link is labeled accordingly.
The vertices of a structural representation can be colored or la-
beled for the identification of kinematic joints.

A graph of a mechanism can be formed by representing links as
the vertices and joints as the edges, and by labeling the vertex
denoting the ground link. The edge connection between vertices
corresponds to the kinematic joint connection between links. To
make a difference between various joint connections, the edges
can be labeled or colored.

For convenience of computer programming, the topology of a
mechanism is expressed in matrix forms. The link-to-link adja-
cency matrix is the most frequently used one. Other representation
Fig. 1 Four-link mechanism and its kinematic representation
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forms, such as the incidence matrix, are also useful for the iden-
tification and classification of mechanisms, as well as kinematic
and dynamic analysis �19�.

The n links of a planar mechanism are numbered sequentially
from 1 to n. Its link-to-link adjacency matrix �LAM� is defined as
follows:

LAMij = �1 if link i is adjacent to link j

0 otherwise �including i = j� � �1�

By definition, the LAM is an n�n symmetric matrix with zero
diagonal entries. The matrix determines the structural topology of
a mechanism up to structural isomorphism �see Section 3.3�.

Shown in Fig. 2 are structural representations of five types of
six-link mechanisms with one DOF. Subfigures �a�–�e� respec-
tively are Stephenson I, II, and III and Watt I and II mechanisms.
Every link attached to a hatched area is the ground link and num-
bered as link 1. The LAM of the Stephenson I mechanism in Fig.
2�a� is

�
0 1 0 0 1 0

1 0 1 0 0 1

0 1 0 1 0 0

0 0 1 0 1 0

1 0 0 1 0 1

0 1 0 0 1 0

� �2�

Note that the upper-right triangular portion of a LAM contains
sufficient information about the topology of a mechanism because
of its symmetry. Manipulating the LAMs will reveal some topo-
logical characteristics of the mechanisms, such as structural iso-
morphism, etc.

3 An Approach to Automated Type Synthesis

3.1 Overview of Genetic Algorithms. GAs are general-
purpose stochastic optimization methods for finding global op-
tima, especially suitable for poorly characterized solution spaces.
GAs can be applied to optimization problems involving either
continuous or discrete parameters.

A GA emulates an ecological system in which the mechanics of
natural selection and natural genetics are the primary driving force
for improving the performance of a population �20�. Candidate
solutions are encoded into string structures called genomes, which
are analogous to genetic codes. A fitness function will assign a
fitness value to every string in the population. A selection scheme
is used to choose a prescribed amount of better fit strings from the
current generation while maintaining their diversity. The strings
are combined among themselves with a structured, yet random-

Fig. 2 Five types of six-link, 1-DOF mechanisms
ized information exchange in order to form a new generation of
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candidate solutions. Controlled by probability, the exchange is
based on three operations that mimic the adaptive process of natu-
ral systems: duplication, crossover, and mutation. A duplication
operation copies the selected string to the new generation. A cross-
over operation produces a new string by cutting a string at one
point, and swapping in the complementary part from another
string. A mutation operation changes the value�s� at random loca-
tion�s� of the string. Theoretically, the strings of the new genera-
tion are created by using bits or pieces of the fittest strings in the
previous generation. These bits or pieces of the strings contribute
to the overall performance of the strings, and create offspring with
higher fitness values. The evolutionary process will not terminate
until it satisfies a prescribed criterion, e.g., a maximum number of
generations.

The GA offers the following advantages over traditional meth-
ods: �a� higher reliability to find the global optima due to its
multiple-point exploration capability; �b� seeking good solutions
by manipulating the genetic material in genomes without any in-
sight about the problem solved �e.g., continuity, differentiability,
etc.�—given only a fitness of each genome; and �c� searching
using probability rules.

The earlier appealing features come with a price that the num-
ber of fitness function evaluations is higher in GAs than in tradi-
tional optimization methods. Still, the GAs are far more efficient
than methods such as exhaustive searches or random walks.
Clearly, if a problem has broader scope than what can be readily
handled by traditional optimization methods, and if the computa-
tion involved in evaluating the fitness function is not prohibitively
high, then GAs are highly competitive. Automated type synthesis
of mechanisms may fit into this category.

3.2 Automated Type Synthesis by GAs. In the area of
mechanism design, the topology of a mechanism can be hierarchi-
cally defined by the number of links, the number of joints and
their types, the connectivity of links and joints, which of the links
are the ground and output�s�, and which of the joints are associ-
ated with the inputs. As mentioned in Section 1, most research on
type synthesis considered only the enumeration of mechanisms, a
process of determining all possible mechanism topologies to per-
form a given task or combination of tasks without regard to the
dimensions of the components. No report has been found in the
literature on automating the mechanism type selection process by
numeric optimization methods to seek the most appropriate ones
for a clearly defined design task.

To be clear, the term “type synthesis” in this paper refers to
choosing the optimum mechanism topology. In practice, some es-
sential dimensional information of a mechanism is of utmost im-
portance to judge whether a particular topology can satisfy the
given design task requirements. For example, a generic four-link
topology will not be capable of generating continuous relative
rotation between two links unless it satisfies Grashof’s law.

The mechanism type synthesis problem will be tackled by ex-
plicitly using topology as one design variable in a numeric opti-
mization framework with a GA. The GA is well-suited to such a
problem involving topology because it allows the design param-
eters to vary discretely. Based on different design tasks, the design
variable set can contain the essential dimensions of various links.
In this way, the GA is used to perform automated type synthesis of
mechanisms.

The initial focus is on planar linkage systems with simple revo-
lute joints and a specified number �n� of rigid links. The upper-
right triangular portion of the symmetric n�n link-to-link adja-
cency matrix, which consists of only 0 and 1 s, is concatenated as
a binary string genome representing the system topology. The
length �l� of each genome is defined by

l = n�n − 1�/2 �3�
For example, the Stephenson I six-link mechanism in Fig. 2�a� is
represented by the binary string in Fig. 3 whose genome length

equals 15. Here the link numbered with 1 is always assumed to be
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the ground link of the mechanism, which corresponds to the first
n−1 bits in its binary string.

By applying mutation or crossover operators to this string, a
different system topology can be obtained. For example, the bi-
nary string for a six-link Watt chain can be converted to the rep-
resentation for a six-link Stephenson chain, and vice-versa, by
exchanging the positions of a particular 1 and 0. Thus, different
n-link topologies can be explored by the GA. Meanwhile, essen-
tial dimensional �and inertial� parameters may be bound to each
mechanism topology as resolved from the task definition.

In this work on automated type synthesis, the fitness function
evaluation is only based on topology; these simple evaluations can
be quickly accomplished on a personal computer �PC� workstation
in a sequential way. Alternatively, these evaluation tasks can be
distributed over a network of computers, because the fitness of
candidate designs can be evaluated independently. This lends it-
self nicely to implementation in a parallel processing environ-
ment, such as the Beowulf PC cluster that was used in this work
on topology-based mechanism type synthesis. This distributed
synthesis process is outlined in Fig. 4. The cluster was relatively
inexpensive to develop, and has allowed us to recently extend this
type synthesis research to the more computationally expensive
kinematic synthesis problem �21�.

In our automated type synthesis, we used both a classic genera-
tional GA as well as a steady-state GA. The steady-state GA is
very similar to the generational GA except that its genetic opera-
tions are applied to a smaller portion of the population continu-
ously; it keeps creating new solutions and adds them to the popu-
lation while removing less-fit solutions to make room.

The initialization process of these GAs in this paper is accom-
plished by directly creating random binary string genomes for the
initial population. This process is crude, but satisfactory for prob-
lems only involving mechanism topology.

In each stage of evolution, it is possible for the GA to create
infeasible topologies, e.g., with the wrong DOF or with rigid sub-
chains. In the authors’ present work, this problem is handled by
assigning a penalty value to a genome representing an infeasible
topology. When combined with the direct random initialization
process that we used, this method is simple and effective in algo-
rithm implementation. In future, special genetic operators may be
developed to create only feasible topologies. The genetic opera-
tors must obey simple rules, such as the Gruebler’s criterion that
defines the DOF of a mechanism; these rules will be established
from and dominated by the mechanism type enumeration
techniques.

The earlier synthesis method does not rely on heuristics, which
may be case dependent. Heuristics can be included for a particular
problem by adding penalty terms in the fitness function, and by
introducing constant properties into kernel mechanisms that will
not be changed by genetic operators, etc. In these ways, the expe-
rience and insight of the designer can be brought into the mecha-
nism topology optimization process.

Fig. 3 A binary string representing Stephenson I six-link
mechanism
Fig. 4 Distributed architecture for mechanism synthesis
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3.3 Challenge of Structural Isomorphism. Two isomorphic
mechanisms share the same topological structure; there exists a
one-to-one correspondence between their links and kinematic
joints such that all incidences are preserved. Structural isomor-
phism of mechanisms can mathematically be identified by their
LAMs �or other methods� �18�, because the form of a LAM is
dependent on the labeling of links in a mechanism. For example,
the structural representation shown in Fig. 5 is obtained from a
relabeling of the links of the same mechanism of Fig. 2�a�. As a
result, the LAM becomes

�
0 0 1 1 0 0

0 0 1 1 0 0

1 1 0 0 0 1

1 1 0 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0

� �4�

Although the structural representations shown in Figs. 2�a� and 5
are for the same mechanism, their LAMs do not assume the same
form. However, the two LAMs, Eqs. �2� and �4�, are actually
related by a congruence transformation; they are identical after a
permutation of some specific rows and columns �18�.

When a GA initializes and evolves candidate mechanism de-
signs, different binary string genomes in the genotype space are
decoded into LAMs in the phenotype space. The LAM and addi-
tional decoded dimensional parameters are used to evaluate the
fitness of every design. Since different forms of LAMs may actu-
ally represent an identical mechanism topology, the performance
of the GA can be degraded. How to eliminate those isomorphic
genomes without disturbing the evolutionary process is an out-
standing research problem. It is viewed as a key point to improv-
ing the search efficiency of the GA. Developing special genetic
operators is a potential way to solve this problem.

4 Examples of Automated Type Synthesis

4.1 Finding an Optimal Kinematic Inversion for Six-Link
Mechanisms. Rao �22� proposes that the accuracy of motion gen-
eration by kinematic chains with the same number of links and
DOF is dependent on the following factors: �a� the type of link
assortment; �b� the type of links connected by each joint, e.g.,
binary-ternary, etc.; and �c� the size of loops in the chain and their
adjacency. In the earlier order, all these factors will hierarchically
influence the performance of the chains. The link assortment of a
kinematic chain is an orderly sequence of numbers
	n2 ,n3 , ¯ ,ni , ¯ ,nC
, where ni represents the number of links
with i joints in the chain �e.g., n3 is the number of ternary links�,
and C is the maximum number of joints in any link of the chain.
Design parameters of a link are those required to kinematically
specify the link completely, e.g., a binary link has one design
parameter �its length�.

In our 6 bar example, the criterion that biases different link
assortments is not considered since all six-link, 1-DOF mecha-
nisms belong to a unique link assortment, i.e., four binary links
and two ternary links. The design parameters of a ground link do

Fig. 5 A relabeling of Stephenson I mechanism
not play an effective role in transmitting the motion. As a rule,
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fixing a link with fewer joints will generate a better kinematic
inversion �22�. Thus, the number of joints on the ground link is
selected as one fitness function to be minimized.

However, if there are more distinct links with the same number
of joints, one should consider the connectivity of the joints located
between the ground link and its adjacent links. Borrowed from
information theory, Eq. �5� is used to calculate the energy flow �E�
of an inversion in a comparative sense; the greater the value, the
better the corresponding kinematic inversion

E = − �
i=1

j
ji

J
log2

ji

J
�5�

where ji is the joint value of joint i, defined as the number of other
joints to which joint i is rigidly connected through one and only
one link �except that joints on the ground link will not be counted
into the joint value of a grounded joint�; j is the total number of
joints in the chain; J is the summation of joint values of the chain.
For example, for the Stephenson I six-link mechanism in Fig.
2�a�, we have j1= j4= j7=2, j2= j3= j5= j6=3, j=7, and J=18, its
energy flow is calculated as follows:

E = − �3� 2
18 log2

2
18� + 4� 3

18 log2
3
18�� = 2.780 �6�

In addition to the earlier criteria, all genomes generated by the GA
have to satisfy three constraints from the mechanism enumeration
techniques �23�:

�a� Gruebler’s criterion stipulating the DOF �d� of a mechanism

d = 3�n − 1� − 2j �7�

�b� Number of joints �c� on a single link satisfies

2 � c � C �8�

where

C = ��n − d + 1�/2 if d = 0,1

min��n − d − 1�,�n + d − 1�/2� if d � 2
�

�c� There are no three-link or five-link rigid subchains, shown
in Fig. 6, by, respectively, detecting the following two submatrices
in the LAM

�
. . . 1 . . 1

. . .

. . .

. . . 1

.

.

.
� �9�

�
. . . 1 . . 1

. . .

. . .

. . . . . 1 . . 1

. . . .

. . . .

. . 1 . . 1

.

.

.

.

� �10�
.
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We used a classic generational GA whose binary string ge-
nomes have 15 bits. Other parameters of the GA are listed in
Table 1. Note that only 100 generations are needed for the type
synthesis problem treated here; in our more recent work on kine-
matic synthesis �21�, more than 1000 generations were required to
find globally-optimal solutions.

The GA always found Stephenson I six-link mechanism as its
global optima in ten trials. This result conforms to the observation
by Rao �22�, demonstrating the applicability of the proposed al-
gorithm. Given that there are only five possible solutions, this
method for automating the type synthesis of planar mechanisms is
encouraging, but not very convincing.

4.2 Optimizing the Rigidity of Eight-Link 3-DOF Planar
Parallel Manipulators. Parallel manipulators have drawn much
attention recently, as they remedy some of the drawbacks of open-
chain robots, such as flexibility, accumulation of mechanical er-
rors, and control problems. The rigidity of a parallel manipulator
is due to the existence of multiple closed chains �loops� in the
mechanism’s structure. In this section, a GA is used to explicitly
manipulate mechanism topology as a discrete design variable in
order to find the stiffest eight-link, 3-DOF manipulator.

Based on the proposal by Rao �24�, a loop-based matrix is
adopted as a method that measures the rigidity of kinematic chains
in a comparative sense. This method assumes that a closed kine-
matic chain can be viewed as a system of interconnected springs.
Every loop, including the peripheral one, analogies a spring with a
stiffness proportional to the number of joints in the loop. To obtain
conservative results for the resultant mechanism stiffness, Rao
recommends that all the springs or loops are considered to be in
series because such a system is always less stiff than the same
springs in parallel.

A system of springs in series will have greater resultant stiff-
ness when the springs are of equal stiffness. Consequently, the
quantitative criterion for comparing the rigidity of kinematic
chains is measured in the form of a symmetric loop-based matrix
�K� whose off-diagonal entries are the number of joints common
to two loops; all diagonal entries equal zero. Figure 7 shows seven
distinct chains for eight-link, 3-DOF mechanisms �23�. For the
chain in subfigure �a�, if the independent loops are numbered 1
and 2, and loop 3 is its peripheral loop, then its loop matrix is
expressed as follows:

Table 1 Parameters of a generational GA for 6-bar inversion
problem

Population size 25
Stopping criterion 100 generations

Crossover probability 0.80
Mutation probability 0.01

Scaling scheme � truncation
Selection scheme Tournament plus elitism

Fig. 6 Structural representations of three-link and five-link ba-
sic rigid chains
914 / Vol. 127, SEPTEMBER 2005
K = �0 1 4

1 0 4

4 4 0
� �11�

Because each joint is counted exactly two times, the sum of each
row of matrix K is called the joint value of the corresponding
loop. In general, a chain whose loop joint values are more uniform
will have greater rigidity. The uniformity is measured by the sum
of squares of all loop joint values; the smaller the sum, the greater
the uniformity and, therefore, the rigidity. Thus, it is selected as
one fitness function.

On the other hand, the number of input joints should be equal to
the DOF of the parallel manipulator. To reduce the manipulator
inertia, Rao recommends that all drive motors be associated with
the joints incident to the ground link �24�. For example, a 3-DOF
chain must have a ternary as a ground link so that there are three
joints available to be connected to drive motors. This will give a
design constraint. The kinematic chains in Figs. 7�f� and 7�g� have
fractionated DOF, i.e., they could be split into separate chains,
either closed or open, when one of its links is cut into two, such
that the sum of the individual DOF equals the DOF of the overall
chain �25�. A multi-DOF chain with fractionated DOF cannot sat-
isfy the constraint of placing all motors on grounded joints.

In addition to the above criterion and constraints, Eqs. �7�–�10�
in Section 4.1 will be employed as filters through which every
genome has to pass. As for the detection of the seven-link basic
rigid subchains shown in Fig. 8, the additional submatrices of a
LAM needed to be identified are expressed in Eqs. �12�–�14�.

�
. 1 1 . 1 . .

. . 1 . 1 .

. . . 1 1

. 1 . 1

.

.

.

� �12�

Fig. 7 Seven kinematic chains for eight-link, 3-DOF planar
mechanisms
Fig. 8 Three seven-link basic rigid chains
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�
. 1 1 1 . . .

. . . 1 1 .

. . 1 . 1

. . 1 1

.

.

.

� �13�

�
. . . 1 1 1 1

. 1 1 1 . .

. . . 1 1

.

.

.

.

� �14�

A steady-state GA was used to search for the optimum topology
of an eight-link, 3-DOF parallel manipulator, whose genome
length is equal to 28. Other parameters are listed in Table 2.

In ten trials, the GA always found the same optima correspond-
ing to the chain in Fig. 7�c�, with a ternary as its ground link. This
result also verifies Rao’s conclusion. It is interesting that the re-
sulting mechanism corresponds to the architecture of a very popu-
lar 3-DOF parallel robot manipulator �26�. Given that there are 26
possible kinematic inversions for this problem �23�, this example
better shows the applicability of the proposed method. It also
demonstrates the robustness of the GA, since it always found the
global optima from each of ten random initial population.

4.3 Some Comments on Computational Efficiency. Unless
mechanism enumeration techniques are incorporated into the GA,
one cannot guarantee that infeasible topologies are not generated.
However, we have allowed infeasible genomes to exist in each
generation because it is believed that even those genomes repre-
senting unrealizable physical models will contribute to the GA
evolutionary process toward optimum designs. This conjecture
has been substantiated by Tay et al. �27� in their work on auto-
mated design of dynamic systems, and the same phenomenon was
observed in our own work. Furthermore, our foremost objective
was to develop a robust and fully automated procedure for type
synthesis; maximizing the computational efficiency of this proce-
dure is a subject for further research.

The allowance of many infeasible topologies will have a nega-
tive effect on the efficiency of the GA. However, we found the
CPU time required for the two topology-based optimization ex-
amples to be quite reasonable, especially when compared with a
manual approach to these design problems. On average, the first
problem requires approximately 20 min of CPU time on a Pen-
tium III PC with 733 MHz CPU and 512 M random access
memory, and the second problem averages 50 min over the ten
trials. Note that no congruence transformations are applied to the
matrices in Eqs. �9�, �10�, and �12�–�14�. Instead, pattern recogni-

Table 2 Parameters of a steady-state GA for eight-link, 3-DOF
parallel manipulators problem

Population size 100
Population overlapping 25

Stopping criterion 200 generations
Crossover probability 0.80
Mutation probability 0.01

Scaling scheme � truncation
Selection scheme Tournament plus elitism
tion techniques from information theory are used to quickly iden-
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tify those mechanisms containing rigid subchains.
Extending this research to kinematic and dynamic synthesis

problems will place a greater demand on CPU time because evalu-
ating a mechanism for its time-domain response is generally quite
time consuming. It may then be necessary to develop special GA
operators that only generate feasible topologies, plus a small num-
ber of infeasible topologies, at each new generation.

5 Conclusions
This paper presents a novel method for the automated type

synthesis of planar mechanisms and multibody systems. The au-
thors employ a genetic algorithm as an optimization approach to
explicitly include mechanism topology as a design variable. The
topology of a mechanism is encoded into a binary string genome
by concatenating the upper-right triangular portion of its link ad-
jacency matrix. Two examples of topology-based optimization
show the applicability of this algorithm to mechanism type syn-
thesis problems.

In relation to other work in the literature, this research fits into
the area of computational conceptual design. However, the au-
thors’ work is different in a fundamental way: it uses numeric
optimization rather than domain-specific rules. The optimization-
based approach allows a designer to explore an area for which
heuristics are difficult or impossible to establish. It is the first fully
automated approach to solving a genuine mechanism type synthe-
sis problem using a numeric optimization framework.

In our latest work �21�, we have extended this topology-based
optimization to the kinematic synthesis of planar multibody sys-
tems. A topology feasibility metric that encapsulates numerous
topological requirements was used to guide the GA to generate
feasible mechanisms. This significantly increased the efficiency of
the process, which exploits the ability of a GA to simultaneous
search for feasible topologies in a discrete domain and optimum
dimensions in a continuous domain. By combining the GA with a
multibody analysis package, this automated synthesis approach
can generate mechanism designs that closely match the desired
kinematic characteristics.
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