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Abstract. Multibody dynamics involves the generation and solution of the equations of motion for a system of 
connected material bodies. The subject of this paper is the use of graph-theoretical methods to represent multibody 
system topologies and to formulate the desired set of motion equations; a discussion of the methods available 
for solving these differential-algebraic equations is beyond the scope of this work. After a brief introduction to 
the topic, a review of linear graphs and their associated topological arrays is presented, followed in turn by the 
use of these matrices in generating various graph-theoretic equations. The appearance of linear graph theory in a 
number of existing multibody formulations is then discussed, distinguishing between approaches that use absolute 
(Cartesian) coordinates and those that employ relative (joint) coordinates. These formulations are then contrasted 
with formal graph-theoretic approaches, in which both the kinematic and dynamic equations are automatically 
generated from a single linear graph representation of the system. The paper concludes with a summary of results 
and suggestions for further research on the graph-theoretical modelling of mechanical systems. 
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1. Introduct ion  

A multibody system is hereby defined as afinite number of material bodies connected in an 
arbitrary fashion by mechanical joints that limit the relative motion between pairs of bod- 
ies. Practitioners of multibody dynamics study the generation and solution of the equations 
governing the motion of such systems. Several different approaches for systematically formu- 
lating these equations of motion have been developed, and encoded in numerical or symbolic 
computer programs. Such programs relieve an analyst of the error-prone labour involved in 
deriving the governing differential-algebraic equations by hand. For the program to be appli- 
cable to a wide range of mechanical systems, the topology of which is specified by the user at 
execution time and is not known apriori, the underlying formulation must somehow represent 
the connectivity of the system and use this topological information during the derivation of 
the equations of motion. 

Linear graph theory is that branch of mathematics that studies the description and manip- 
ulation of system topologies. Interestingly, the extent to which this theory has been incorpo- 
rated into current multibody dynamic formulations ranges from a bare minimum, typically in 
approaches that use absolute coordinates to describe the motion of each body, to a maximum 
in formal graph-theoretic procedures. It is the goal of this paper to examine this apparent 
conundrum in some detail, by explicit referring to a number of existing formulations. 

The paper begins with a brief review of finite directed linear graphs and associated math- 
ematical theorems, followed by a discussion of the minimal use of such graphs in absolute 
coordinate formulations. This in turn is followed by an examination of how linear graphs 
are used to represent system topologies in formulations that employ relative joint variables 
as generalized coordinates. Finally, a number of approaches that rely entirely on graph- 
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Fig. 1. Electrical network example. 

theoretic techniques to automatically formulate the equations of motion are described. The 
paper concludes with a summary of results and suggestions for future exploitation of linear 
graph-theoretic methods in multibody dynamics. 

2. Review of Graph-Theoretical Methods 

The study of linear graph theory, one branch of the wider field of combinatorial mathematics, 
originated with Euler's famous solution [ 1 ] to the problem of the Ktnigsberg bridges in 1736. 
A complete review of the contributions to linear graph theory since then is beyond the scope 
of this article. Instead, attention will be directed on those graph theorems that have application 
to the dynamic analysis of multibody systems. In consideration of the previous definition 
of a multibody system as a finite number of connected bodies, a discussion of infinite or 
unconnected graphs is excluded from this review. Furthermore, attention will be restricted 
to the study of directed graphs, since their undirected counterparts find less application in 
multibody dynamics. In summary then, the following review is limited to connected finite 
directed linear graphs and their associated mathematical theorems. For a more complete 
discussion of linear graph theory and its application to physical systems analysis, the reader 
is directed to [2-5]. 

2.1. REPRESENTATION OF TOPOLOGY 

A linear graph is a collection of edges, no two of which have a point in common that is not a 
vertex. In turn, an edge is defined as a line segment together with its distinct endpoints, and a 
vertex (or node) is an endpoint of an edge. The topology of a linear graph is completely defined 
when one specifies which edges are incident upon (connected to) each and every vertex of the 
graph. 

To illustrate the use of linear graphs in representing topology, consider the diagram in 
Figure 1 which depicts an electrical network consisting of two inductors (L1, L2), three 
resistors (R3, R4, Rs), a capacitor (C6), and a voltage source (~) .  Figure 2 shows the linear 
graph which is topologically equivalent, or isomorphic, to the electrical network. This graph 
is constructed by drawing a node for each point at which two physical elements connect, 
and by replacing these elements with directed edges on a one-to-one basis. The direction 
(arrow) assigned to each edge is arbitrary and serves only to provide a reference direction for 
"through" and "across" variables, which are defined in a subsequent section. 
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Fig. 2. Linear graph isomorphic to electrical network. 

From the linear graph, one can construct the incidence matr ix  [IN] which contains a 
complete topological description of the original physical system. This is a v x e matrix, where 
v is the number of vertices in the graph, and e is the number of edges. The (i,j) entry in 
[IN] is equal to ( -  1, + 1,0) if edge j is (negatively, positively, not) incident upon node i. The 
directed edge j is positively incident upon node i if it points towards the node, and negatively 
incident if it is directed away from the node. As an example, the incidence matrix for the 
linear graph in Figure 2 takes the form: 

L1 L2 R3 R4 R5 C6 V7 

a 

b 
C 

[ m ]  = d 
e 

y 

- 1  0 0 
1 0 1 
0 0 - 1  
0 1 0 
0 - 1  0 
0 0 0 

0 0 0 1 
1 0 0 0 
0 0 - 1  0 
0 0 1 0 

- 1  1 0 0 
0 - 1  0 - 1  

(1) 

in which the vertices associated with rows and the edges associated with columns have 
been explicitly labelled. One can see from this example that the rows of [IN] are not linearly 
independent, since their sum is a row containing all zeroes. The (v - 1 ) × e reduced incidence 
matr ix  [A] is obtained by deleting any one row of [IN]; the remaining rows of [A] are linearly 
independent, and the vertex corresponding to the deleted row is referred to as the datum 
node. 

An important concept in linear graph theory is that of a circuit, which is a subset of a graph 
(or subgraph) such that, on every vertex, there are incident exactly two edges. In other words, 
a circuit is a closed loop of edges. With this concept, one can define a spanning tree, which is 
a subgraph containing all the vertices of the original graphs, but no circuits. The (v - 1 ) edges 
in a tree of the graph are called branches, whereas the remaining edges in the complement of 
the tree, or cotree, are known as chords. One possible spanning tree for the graph in Figure 2 
has been drawn with thick lines and consists of edges Li ,  L2, R3, R4, and Rs. The remaining 
edges C6 and V7 comprise the chords of the cotree. Having defined the concept of a tree, 
two new topological matrices can now be introduced - the fundamental cutset matrix and the 
fundamental circuit matrix. 
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A cutset is a subgraph of a connected linear graph such that, when deleted, the graph is left 
in two distinct parts. A fundamental cutset, or f-cutset, is a cutset consisting of one branch 
from the tree and a minimal number of chords such that no subgraph of the cutset is itself a 
cutset. As an example, the f-cutset corresponding to branch L1 in Figure 2 consists of LI and 
V7 (note that node @ is not deleted along with the cutset edges and constitutes one of the 
two remaining parts of the graph). There will be (v - 1 ) f-cutsets for a given linear graph and 
tree, from which one can construct the fundamenta l  cutset matr ix  [CU]. The (i, j) entry of 
[CU] is zero if edge j is not in the f-cutset corresponding to branch i, and ( -  1, + 1 ) if edge j 
is in the f-cutset and has the (opposite, same) orientation as branch i. With this definition, the 
(v - 1) × e matrix [CU] takes the general partitioned form: 

[CU] = [[lt] I [A~]], (2) 

in which [lt] is a square unit matrix corresponding to the tree branches in the first (v - 1) 
columns, and [Ac] is the remaining (v - 1) x (e - v + 1) submatrix. For the linear graph in 

~ n d a m e n t a l c u t s e t m a ~ x ~ e s t h e s p e c i f i c f o r m :  [00000 
0 1 0 0 0  1 

[CU]= 0 0 1  0 0 1 . (3) 
0 0 0 1 0 - 1  
0 0 0 0 1  0 

Figure 2, the 

An important result from linear graph theory is that the fundamental cutset matrix [CU] is row- 
equivalent to the reduced incidence matrix [A]. In other words, [CU] need not be constructed 
using its definition - it can be obtained through simple row operations on [A]. Verification of 
this theorem for the linear graph in Figure 2 is left to the reader. 

A fundamental circuit, or f-circuit, is a circuit in which one edge is a chord from the cotree 
of the graph, and all the remaining edges are branches. To illustrate, the f-circuit corresponding 
to chord C6 in Figure 2 also contains branches L2, R3, and R4. There will be (e - v + 1) 
f-circuits for a given graph and tree, from which the fundamenta l  circuit  matr ix  [CI] can 
be constructed. The (i, j )  entry of [CI] is zero if edge j is not in the f-circuit corresponding 
to chord i, and ( -  1, + 1 ) if edge j is in the f-circuit and has the (opposite, same) direction as 
chord j as one travels around the circuit. With this definition, the (e - v + 1 ) × e matrix [CI] 
can be written in the general form: 

[CI] = [[Bt] I [lc]], (4) 

where [lc] is a square unit matrix corresponding to the cotree chords, and [Bt] is the remaining 
(e - v + 1 ) x (v - 1 ) submatrix. The specific form of [CI] for the example in Figure 2 is: 

[ C I ] =  [ 0 - 1 - 1  1 0 1 0 ]  
1 0 0 - 1  - 1  0 1 " (5)  

Another important linear graph theorem [6] states that the rows of the circuit and cutset 
matrices for a given graph and tree are orthogonal, or mathematically, 

[C1][CU] T = [0] (6) 

in which the superscript T represents the transpose operation, and [0] is a (e - v + 1 ) x (v - 1) 
matrix containing all zeroes. Substituting equations (2) and (4) into equation (6) and re- 
arranging, one can show that: 

[Bt] = -[Ac] T, (7) 
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which can be verified for the linear graph in Figure 2 by examining the specific form of 
equations (3) and (5). 

In summary, the incidence matrix [IN] contains a complete topological description of a 
given linear graph. The nonsingular reduced incidence matrix [A] is obtained by deleting a row 
of [IN] corresponding to the datum node. By selecting a spanning tree and numbering the first 
(v - 1 ) columns of [A] to correspond to the branches, the fundamental cutset matrix [CU] can 
be obtained through simple row operations. This topological matrix explicitly shows (v - 1 ) 
independent ways in which the given linear graph can be cut into two distinct parts - a result 
that is used later in this paper to generate the force equilibrium equations for mass elements in 
a multibody system without actually constructing the corresponding free-body diagrams. The 
fundamental circuit matrix [CI] can, in turn, be obtained directly from [CU] using equation (7) 
to construct the [Bt] submatrix. Upon completion, [CI] can be used to identify an independent 
set of (e - v + 1) circuits in the given graph, an application of particular relevance to the 
kinematic analysis of multibody systems with closed loops. 

2.2. GRAPH-THEORETICAL EQUATIONS 

The circuit, cutset, and incidence matrices have more than topological significance - they can 
also be used to generate the governing equations for the physical system to which the linear 
graph is isomorphic. This fact was recognized almost four decades ago by Trent [5], who 
introduced the concept of through and across variables in order to set up these equations. 

A through variable is a physical variable, associated with an edge of a graph, that would 
be measured by an instrumental placed in series with the corresponding element in the original 
network. In the electrical network example in Figure 1, an appropriate through variable would 
be the current through an element. For a multibody system, the relevant through variables 
are forces or torques. Regardless of the type of physical system, the above definition of a 
through variable guarantees that the "Vertex Postulate", which states that the sum of through 
variables at any node of a system graph must equal zero when due account is taken of the 
orientation of edges incident upon that node, is satisfied for the linear graph. Essentially, 
the Vertex Postulate represents a generalization of Kirchhoff's Current Law, from electrical 
network theory, that is applicable to all physical systems. It can be expressed mathematically 
for all v nodes in a graph by premultiplying the column matrix of through variables {T} by 
the incidence matrix: 

= {0),  (8) 

where {0} is a v x 1 column matrix of zeroes. 
To obtain a linearly independent set of equations in the through variables, [IN] in equa- 

tion (8) can be replaced by either the reduced incidence matrix [A] or the cutset matrix [CU]. 
In the latter case, and using equation (2), the resulting equations can be solved explicitly for 
the (v - 1) through variables {Tt} associated with the branches: 

{Tt} = --[A~]{T~} (9) 

in which {re} are the cotree through variables. If these latter variables are known, then {rt} 
can be calculated directly from equation (9). It is for this reason that the cotree and tree 
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through variables are referred to as "primary" and "secondary" variables, respectively. Using 
equation (3) for the electrical network example, equation (9) takes the specific form: 

r3 = r6 , (10) 

7" 4 --7"6 -÷- T7 

7-5 T7 

which is equivalent to the set of equations obtained by successive applications of Kirchhoff's 
Current Law to the network. 

An across variable associated with an edge is a physical variable that would be measured 
by an instrument placed in parallel with the corresponding element in the physical network. 
In electrical systems, voltage is the most common example of such variables, whereas in 
multibody systems, relative displacements, velocities, and accelerations are all appropriate 
across variables. In general, the derivatives and integrals of across variables are themselves 
across variables, as are vectors whose scalar components correspond to across variables. A 
rigorous definition of across variables is that they satisfy the "Circuit Postulate", namely that 
the sum of across variables around any circuit of  a graph must equal zero when due account 
is taken of the direction of edges in the circuit. 

To obtain a linearly independent set of equations that are mathematically equivalent to the 
Circuit Postulate, one need only premultiply a column matrix of across variables {a} by the 
circuit matrix, and set the result to {0}: 

[CI]{a} = {0}. (11) 

Equation (4) can be used to express the (e - v + 1 ) across variables associated with the chords 
{ac} as explicit functions of the tree across variables {at}: 

{c~c} = -[St]{at},  (12) 

which is why {at} is added to the list of primary variables, and {ac} is a subset of the 
secondary variables. Using equation (5) for the electrical network example, equation (12) 
takes the form 

0~7 --0~1 + 0:4 + 0~5 ' 

which is equivalent to the independent set of equations obtained by applying Kirchhoff's 
Voltage Law to the inner two loops of the network. 

With e primary variables and another e secondary variables, the total number of unknowns 
is 2e. Available for the solution of these unknown quantities are the (v - 1 )cutset equations (9) 
and the (e - v + 1) circuit equations (12) - a total of e linearly independent equations. The 
remaining e equations required to effect a solution are obtained from the constitutive, or 
terminal, equations for each of the e elements in the system. The terminal equation for each 
element expresses the functional relationship between the through and across variables and 
the independent variable, time. As an example, the terminal equation for the ideal inductor L1 
shown in Figure 1 would be: 

L dT-1 (14) 
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where cq corresponds to the voltage across L1, and rl represents the current passing through 
the inductor. For a three-dimensional multibody system, the through and across variables are 
spatial vectors and the corresponding terminal equations are vectorial relationships. Regardless 
of the type of system under study however, the circuit, cutset, and terminal equations comprise 
a necessary and sufficient set for the solution of all unknown variables as functions of time 
[6]. The advantage of using these formal graph-theoretic techniques over traditional methods 
of formulating the governing equations is twofold: 

1. the topological equations are clearly separated from the constitutive equations for the 
elements comprising the physical system under study, and 

2. there is a number of standard graph-theoretic formulations available in the literature 
[2-5] for systematically establishing the governing equations - the particular choice of 
formulation method is made based upon the desired final form of these equations. 

Finally, one may add that the systematic nature of formal graph-theoretic approaches make 
them quite attractive if a computer implementation is desired. 

Before ending this review of linear graph theory, an auxiliary set of nodal variables are 
introduced. Essentially, a nodal variable corresponds to a physical variable that would be 
measured by an instrument placed between (across) the relevant node and a reference datum 
node. For an electrical network, the voltage difference between a node and the ground would 
be classified as a nodal variable. In a multibody system, the absolute displacement, velocity, 
or acceleration of a point relative to an inertial reference frame all represent nodal variables. 
The reduced incidence matrix [A] provides a convenient means for transforming between the 
nodal {r;} and across {o~} variables of a system graph: 

{a} --[A]T{~}. (15) 

The nodal transformation equation (15) increases the total number of available equations by 
( v -  1), which corresponds to the additional ( v -  1 ) unknowns, the auxiliary nodal variables. 

3. Absolute (Cartesian) Coordinate Formulations 

Attention is now switched to the other main topic of this paper, the dynamics of multibody 
systems. An example of such a system is the planar four-bar mechanism shown in Figure 3, 
which consists of three rigid links connected by ideal revolute joints to form a closed loop 
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with the ground (the fourth "bar"). Assuming that a time-varying torque T(t) is applied to 
link 1, the goal of a dynamic analysis would be to determine the configuration of the system at 
each instant during a finite interval of time. To represent the configuration, a set of coordinates 
that uniquely describe the position of each body in the system must be defined. The dynamic 
analysis is accomplished by generating the differential-algebraic equations (DAEs) of motion 
and solving them for the time-varying coordinates. This procedure has been successfully 
automated in a number of existing multibody programs using a variety of different formulation 
approaches. 

Several of these approaches make use of absolute coordinates, which describe the position 
and orientation of each body in the system relative to an inertial frame of reference. For body 
2 of the planar four-bar mechanism, shown in Figure 4, the absolute coordinates are defined as 
the Cartesian coordinates (x2, Y2) of the mass center C2 in the inertial X Y  reference frame, as 
well as the angle 02 between the link and the positive X axis. With three absolute variables per 
body, the total number of system coordinates {p} is nine. Obviously, these nine coordinates 
are not independent since the four-bar mechanism has only one degree of freedom. The motion 
of individual bodies is constrained by the presence of kinematic joints between adjacent links; 
relationships between the absolute coordinates are obtained from a consideration of these 
holonomic constraint elements. Specifically, each pin joint requires that connected end points 
of adjacent bodies remain coincident during any motion of the system. Mathematically, for 
the kinematic pair consisting of bodies i - 1 and i connected by pin joint/~: 

li 1 
¢'2i-1 = xi-1 + - ~ -  cosOi_l - xi + cosOi = 0 (16) 

li-1 li 
(~2i = Yi-1 -F T sin~9i_l - Yi + "~ sin0i = 0, (17) 

noting that li is the length of uniform link i, the terms lo, 00, 14 and ~4 are constants defining 
the positions of pins/°1 and P4 in the inertial reference frame, and xo, Yo, x4, and y4 are all 
identically zero. 

Assembling equations (16) and (17) for the four pin joints results in a set of eight nonlinear 
algebraic equations: 

{(I)(p)} = {0}, (lS) 

which, by themselves, are not sufficient to solve for the nine absolute coordinates. To obtain 
a second set of equations for the system, one can write the equations of motion for each body 
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in the system, by applying the Newton-Euler equations to a free-body diagram of each link. 
Note that the reaction forces {R} in the pin joints enter explicitly into these expressions. 
Assembling the nine differential equations for all three bodies into a matrix form gives 

[M,~]{~} + [J]T {R} = {Qa}, (19) 

in which [Ma] is the generalized mass matrix, {Qa} contains the applied forces and torques, 
and [J] is the Jacobian matrix of the constraint equations (18). In explicit form, the entries of 
[J] are given by 

0¢9i 
Jij = Opj (20) 

Together, equations (18) and (19) constitute a set of 17 differential-algebraic equations that 
can be solved for the nine absolute coordinates {p} and eight reaction forces {R} as functions 
of the independent variable, time. 

The approach described above has been extended and applied to the analysis of three- 
dimensional systems of rigid and flexible bodies connected by a wide variety of general 
holonomic and nonholonomic joints [7-13]. Due to its simplicity, this formulation can be 
readily implemented in a computer program that automatically generates the governing DAEs 
for a given mechanical system. A library of constraint equations for a variety of kinematic 
joints can be created in advance and used to generate the relationships between the absolute 
coordinates of two bodies connected by a particular type of joint. A second library containing 
the corresponding Jacobian matrix for each joint can also be created, and used to generate 
the system Jacobian matrix [J] by means of an assembly process similar to that employed by 
the finite element method. The generalized mass matrix [Ma] and forcing vector {Qa} can be 
constructed directly from the input data provided by a user. Thus, all terms in the governing 
equations (18) and (19) can be obtained without using methods from linear graph theory. As 
Haug [9] has observed, the use of absolute coordinates in the underlying formulation results 
in a "bypassing [of] topological analysis". 

Oflandea et al. [10] have used an even larger set of absolute coordinates than that described 
above in order to maximize the sparsity of the resulting DAEs, which are subsequently solved 
using sparse matrix methods and an implicit numerical integration routine. It is worth noting 
that these authors make explicit reference to the similarity between their derived equations 
and those arising in linear graph theory; specifically, they observe that equation (19) from 
their paper represents an assembly of the circuit, cutset, and terminal equations that would 
be obtained from a network model of their multibody system. In spite of this comparison, 
the authors assemble their equations without exploiting the systematic nature of a graph- 
theoretical approach. G6radin [11] uses absolute coordinates in a finite element formulation of 
the equations of motion for flexible multibody systems. Once again, the use of such coordinates 
eliminates the need for linear graph theory since, as the author points out, "the topology of 
the articulated system is automatically embedded into its finite element description". 

4. Relative (Joint) Coordinate Formulations 

A second means of representing the time-varying configuration of a multibody system is 
through the use of relative coordinates. These coordinates describe the relative position and 
orientation of two adjacent bodies in terms of variables associated with the kinematic joint 
connecting the two bodies. A joint that allows j degrees of freedom (where j < 6) contributes 
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j variables to the set of system relative coordinates {q}. As an example, the relative rotation 
between any two links in Figure 3 can be described by a single angle ¢ corresponding to the 
revolute joint connecting the two links. The complete set of three relative coordinates for this 
four-bar mechanism can be defined in terms of the previous absolute coordinates: 

q~l = 01 

t~2 ----- 02 - - 0 1  

¢3 = 03 - 02 (21) 

corresponding to pin joints P1, P2, and P3. Note that it is not necessary to define the position 
of link 4 (the ground) relative to link 3. 

If the multibody system has no closed loops, i.e. it has a "tree" topology, the set of relative 
coordinates is equal in number to the degrees of freedom of the system. As an example, if pin 
P4 were removed from the four-bar mechanism, the resulting open-loop system would have 
three degrees of freedom. Using relative coordinates {q}, the equations of motion for such a 
system can be written in the form 

[Mr]{~} = {Qr(q,(l , t)},  (22) 

noting that reaction forces and torques in the joints have been eliminated from these equations 
using either an analytical approach (e.g. d'Alembert's Principle or Lagrange's equations) 
or a systematic substitution process [14] in conjunction with the Newton-Euler equations. 
Equation (22) constitutes a set of ordinary differential equations that can be numerically 
integrated to obtain the relative coordinates as functions of time. 

These same equations can be used to derive the DAEs governing the motion of a multibody 
system with closed loops. In this case, the relative coordinates are no longer independent and 
are related by the set of nonlinear algebraic constraint equations: 

{ffl(q)) = (0} (23) 

corresponding to the equations guaranteeing closure of an independent set of loops. For the 
four-bar mechanism, these loop closure equations can be obtained by summing the eight joint 
constraint equations (16) and (17), resulting in 

I0 cos 00 + I1 cos 01 + 12 cos 02 + 13 cos 03 - 14 c o s  04 = 0 (24) 

10 sin 00 + Ii sin 01 + 12 sin 02 + 13 sin 03 -- 14 sin 04 = 0. (25) 

Defining two new constants Cz and Cy that represent the distance between pins P1 and P4 in 
the X and Y directions, respectively, 

C~c = 14 c o s  04 - 10 c o s  00 (26) 

C v = t4 sin 04 - lo sin 00 (27) 

and using equations (21) to replace the absolute coordinates with their relative counterparts, 
the constraint equations (24) and (25) can be written in the desired form: 

ffJl = /1 cos ¢1 + 12 cos(q~1 + ~2) + 13 cos(~bl + ¢2 + q~3) - Cx = 0 (28) 

~2 = 11 sin ~bl + t2 sin(q~l + ~b2) + t3 sin(~bl -t- q~2 + ~3) - Cy = 0. (29) 
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The final set of DAEs is obtained by removing from the system model one kinematic joint 
for each independent closed loop. The motion of the resulting open-loop system is governed 
by equation (22). By adding to this equation terms corresponding to the reaction forces and 
torques in the joints that were removed, the differential equations for the original system with 
closed loops are obtained: 

[M~]{~} + [K]T{A} = {Q~}, (30) 

where {A) is a set of Lagrange multipliers, and [K] is the Jacobian matrix of the loop closure 
constraint equations: 

Kij = .Oqj • (31) 

Equations (23) and (30) constitute the final set of DAEs for the multibody system, expressed 
in terms of relative coordinates. One can see that they are similar in form to the corresponding 
equations (18) and (19) in absolute coordinates, but are generally fewer in number. The 
generalized mass matrix [M,.] is smaller and less sparse than its absolute counterpart [Ma], 
and the generalized forcing vector {Qr} is a complex function of the relative coordinates, 
their derivatives, and time. Even though the loop closure equations (23) have a higher order of  
nonlinearity than the constraint equations (18), the smaller set of DAEs for relative coordinates 
can be solved more efficiently than its counterpart in absolute coordinates. However, as 
Nikravesh [8] has pointed out, this computational advantage is offset by the additional labour 
required to generate these equations. 

One source of this additional labour is the requirement for topological processing when 
relative coordinates are employed. The reason for this is simple: regardless of the type of 
approach one uses to derive the differential equations (30), one needs expressions for the 
velocity (e.g. to formulate the kinetic energy for use with Lagrange's equations) or the 
acceleration (e.g. using the Newton-Euler equations) of each body relative to an inertial 
frame of reference. For a particular body mi, one can obtain these expressions from the 
relative coordinates and their time derivatives only if one knows the identity and ordering of 
the intermediate bodies connecting mi to the inertial reference frame. In brief, a mathematical 
description of the system topology is required; such a description is conveniently provided by 
linear graph theory. 

Sheth and Uicker [15] recognized this fact over two decades ago, when they used Hamil- 
ton's Principle and relative coordinates to formulate the differential equations for a multibody 
system consisting entirely of closed kinematic loops. To obtain the supplementary set of loop 
closure constraint equations, the authors construct a simple linear graph representation of the 
multibody system, in which nodes represent links and edges represent kinematic joints. With 
this linear graph, the authors are able to derive an independent set of loop closure equations 
that are equivalent to the fundamental circuit equations, with the relative coordinates play- 
ing the role of across variables. Furthermore, a graph-theoretical algorithm is employed to 
minimize the number of joints appearing in the final set of independent loops. It is possible 
to identify further equivalences between the equations derived by Sheth and Uicker and the 
graph-theoretical circuit and cutset equations; the interested reader is referred to the thesis by 
Li [16]. 

In the first monograph on multibody systems, Wittenburg [14] makes direct use of linear 
graph theory to represent the topology of a system of rigid bodies containing both open and 
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Fig. 5. Wittenburg's linear graph of four-bar mechanism. 

closed kinematic loops. Similar to the model employed by Sheth and Uicker, rigid bodies are 
represented as nodes of the graph and hinges between bodies appear as edges. Wittenburg's 
graph model is more encompassing however, since his "hinge" has been generalized to include 
springs, dampers, and other connections having six degrees of freedom. In addition, Wittenburg 
makes explicit use of a "spanning tree" that is consistent with conventional graph-theoretic 
methods. For the four-bar mechanism, the linear graph thus defined takes the form shown in 
Figure 5. The four nodes have been labelled as mi, where mi represents link i, and the hinges 
labelled Pj correspond to the four pin joints. The edges comprising an arbitrarily-selected tree 
are drawn as solid lines, while the one cotree edge is dashed. 

To represent the system connectivity, Wittenburg defines an incidence matrix [W] that 
takes the general form 

EI 011E ] [w] = [s] [s*] 
(32) 

or specifically, for the linear graph of the four-bar mechanism 

1 0 0[ 1 

-1 1 01 0 [W] = 0 -1  1 0 (33) 

0 0 -1  -1  

Upon examination, one can see that the matrix [W] is exactly the negative of the incidence 
matrix [IN] defined in Section 2 of this paper. The first row of [W] corresponds to the datum 
node, and the (*) superscript is used to identify hinges in the cotree of the graph. Therefore, 
the n × n submatrix [S], where n is one less than the number of nodes (bodies) in the system, 
represents the tree portion of the reduced incidence matrix [A]. The inverse of this matrix was 
first introduced by Branin [17] and called the "node-to-datum-path matrix", since it can be 
constructed by examining which edges lie in the path between a given node and the datum 
node. 
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Unaware of Branin's previous work, Roberson and Wittenburg [18] re-invented this matrix, 
called it simply the "path matrix" [T], and verified the relationships 

[T]T[So] T = - { 1 }  (34) 

IT]IS] = [Sl[T] = [1], (35) 

where {1} is a column matrix of n elements, each equal to 1, and [1] is the n x n iden- 
tity matrix. Wittenburg [14] makes extensive use of the [S] and [T] matrices to derive the 
differential equations (30) for a multibody system. Unfortunately, the generation of the con- 
straint equations (23) is only presented by way of three example analyses. This drawback 
was subsequently addressed in [19], in which Wittenburg presents a systematic procedure for 
formulating the loop closure equations, once again making use of the topological matrices [S] 
and IT]. 

It is interesting to note that formal graph-theoretic methods can be used to derive many 
of the equations appearing in Wittenburg's formulation. To do so, one must identify a set of 
through and across variables [5] that respectively satisfy the vertex and circuit postulates for 
Wittenburg's linear graph. The relative rotational velocities {f2} form a natural set of across 
variables for this graph, and must therefore satisfy the fundamental circuit equation (12): 

= (36) 

where {Qc} and {Qt} correspond to hinges in the cotree and tree, respectively. Recalling 
equation (7) and using the interesting fact [17, 19] that the path, reduced incidence, and cutset 
matrices are related by 

[T][S*] = [At], (37) 

one can verify that equation (36) is identical to Wittenburg's equations (5.211), which is used 
to find an expression for the virtual work done in cut (cotree) hinges. 

An appropriate nodal variable for Wittenburg's graph is the difference between the absolute 
angular velocity of each body and that of the base body (node): 

~/i = _wi - w__0. (38) 

A subset of the nodal transformation equation (15) can be used to relate this set of nodal 
variables {~/} to the tree across variables {ftt ), if one recognizes that -[S] corresponds to the 
tree portion of the reduced incidence matrix [A]: 

{~-~t } = - - [ s ]T({~}  -- W---0{ 1 }). (39) 

Premultiplying equation (39) by -[T] T, one obtains Wittenburg's equation (5.122): 

{w} = -[T] T{f2t} + w0{1 }, (40) 

which is subsequently used to obtain the differential equations (22) for the open-loop (tree) 
portion of the multibody system. For a further discussion of the relationships between Wit- 
tenburg's formulation and formal graph-theoretic methods, the reader is directed to the forth- 
coming paper [20]. 

If one is only interested in using the topological description to generate kinematic rela- 
tionships, then alternatives to a linear graph representation are available in the literature. As 
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an example, the tree topology of an open-loop multibody system is represented by Huston 
and Passerello [21] using a "body connection array", which is subsequently employed by 
Amirouche [22] to generate the loop closure equations for a general system of rigid and flexi- 
ble bodies. Nikravesh and Gim [23] transform the absolute coordinate DAEs (18) and (19) to 
the set of equations (23) and (30) in relative coordinates using a topology-dependent velocity 
transformation matrix; Kim and Vanderploeg [24] have presented a systematic procedure for 
constructing this matrix using a modified version of the path matrix [T], in which all - 1 's 
are replaced by +1 's. Pereira and Proen~a [25] have applied a similar transformation to the 
DAEs for a multibody system containing rigid and flexible members. Hiller et al. [26] have 
presented an alternative means of transforming the equations from absolute to relative to (in 
some instances) minimal coordinates, using the concept of a "kinematical transformer" to 
represent a closed loop; the topology of the complete system is contained in a block diagram 
of these kinematical transformer elements. 

Using a linear graph representation similar to that employed by Wittenburg, Hwang and 
Hang [27] have developed a recursive formulation for a system of rigid bodies with closed 
loops, and implemented this formulation on a computer with parallel processing capabilities. 
In a subsequent formulation for flexible multibody systems, Lai et al. [28] achieved a greater 
degree of parallelism by defining an "extended graph" in which nodes represent reference 
frames attached to bodies and edges represent the transformations between these frames. It 
is interesting to note that this graph representation is very similar to the "vector-network 
model" first introduced by Andrews and Kesavan [29], which is discussed further in the next 
section. 

5. Graph-Theoretic Multibody Formulations 

In the previous section, it was shown how a number of current multibody dynamics for- 
mulations use linear graph theory to represent the system topology and to generate various 
kinematic relationships. The difference between such approaches and a formal graph-theoretic 
procedure has been summarized by Li [16]: 

To appreciate the difference between an ad hoc application of graph theory to dynamics 
and a graph-theoretic approach, one must understand that a terminal graph (edge) is part 
of a mathematical model of a physical component. If the individual system components 
are modelled properly, the resulting system graph will automatically satisfy the cutset 
and circuit postulates. 

As discussed in Section 2, if each edge is associated with a physical component and a 
consistent set of through and across variables is chosen, then a graph-theoretic formulation 
will automatically provide a necessary and sufficient set of DAEs. In the formulation discussed 
in the previous section, the edges did not correspond to physical components but simply 
represented the connectivity of the system. It is impossible to obtain the dynamic equations 
of motion directly from such a linear graph. 

One of the first applications of formal graph-theoretic methods to multibody dynam- 
ics resulted in the "vector-network method" of Andrews and Kesavan [29]. This graph- 
theoretic formulation was used to systematically derive the equations of motion for a three- 
dimensional system of particle masses. More recently, it has been extended to the analysis of 
two-dimensional [ 16] and three-dimensional [30] constrained mechanical systems. To better 
understand this formulation, consider the vector-network model of the four-bar mechanism 
shown in Figure 6. In this graph representation, edges represent the position vectors cor- 
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Fig. 6. Vector-network graph of four-bar mechanism. 

87 

responding to physical components while nodes represent connection points between these 
components. In addition to representing the three rigid bodies therefore, the edges ml, m2, 
and m3 locate the mass centers of these links relative to a datum node @ fixed in inertial space. 
Similarly, edges r4 and r5 represent the points where pins/91 and P4 attach to the ground. 
The "rigid-arm" elements s6 to Sn correspond to body-fixed position vectors from the mass 
centers to the points on each body where the revolute joints are connected. The driving torque 
is represented by the edge T12, while the remaining edges hi3 to hi6 correspond to pin joints 
Pl to P4, respectively. 

The vector-network graph is significantly more complex than its counterpart in Figure 5 
because it contains dynamic, as well as kinematic, information. The existence of torque and 
mass elements in the vector-network model is evidence of this. Of course, the vector-network 
graph also contains the topological information provided by Wittenburg's graph, which can be 
recovered from Figure 6 by deleting the dynamic mass and torque elements, and contracting 
each combination of kinematic joint and connected rigid-arm elements into a single edge. 

To generate the system equations using a graph-theoretic approach, a tree is selected that 
contains elements 1 to 11, with the torque and kinematic joint elements placed in the cotree. 
A suitable across variable is the position vector r__ i corresponding to element i in the graph, 
while the force __F i in this element is identified as an appropriate through variable. For each 
pin joint element hi, one can write the terminal equation: 

_r i = O, (41) 

recognizing the fact that the two points (nodes) connected by a revolute joint remain coincident 
for any possible motion of the system. With this terminal equation, the kinematic constraint 
equations can be systematically generated using the fundamental circuit equations (12) for 
the cotree pin joints. As an example, the circuit equation corresponding to kinematic joint hi4 
(/:'2) is 

/ '14 ~-  7"8 -~ I'2 - -  7"1 - -  r--7 = 0 .  ( 4 2 )  

The eight constraint equations (16) and (17) are obtained by resolving the vectorial circuit 
equations for the four pin joints into components parallel to the inertial X and Y axes. In a 
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similar systematic fashion, and recognizing the fact that the terminal equations for the mass 
elements corresponds to the vectorial Newton-Euler equations, the cutset equations for these 
tree elements result in nine scalar differential equations in which the reaction forces in the pin 
joints appear explicitly. One can see that, as a consequence of using absolute coordinates to 
represent the position and orientation of each mass element, the final set of DAEs generated 
by the vector-network method corresponds exactly to equations (18) and (19). 

Using an analytical substitution procedure, Li [16] has reduced this set of DAEs to the 
smaller set corresponding to equations (23) and (30). More recently, McPhee [31 ] has directly 
derived these latter equations in relative coordinates by simply using a different tree selection 
scheme in a formal application of the vector-network method. As discussed in Section 2 
and demonstrated above, such an approach provides a systematic formulation procedure in 
which the topological equations are clearly distinguished from the constitutive equations. This 
has the important implication that new types of mechanical elements, modelled by suitable 
terminal equations, can be incorporated into the multibody system model without altering 
the underlying formulation procedure. With this in mind, efforts are currently underway to 
incorporate nonholonomic joints, flexible bodies, and variable-mass elements into existing 
vector-network formulations. One further advantage of a graph-theoretic approach is that 
it can provide a single unified formulation for systems containing elements from different 
physical regimes, e.g. hydraulic, pneumatic, or electronic elements. This leads the author to 
be optimistic about the future application of graph-theoretic methods to the growing field of 
mechatronics. 

6. Summary and Conclusions 

To develop a dynamic formulation that is applicable to general multibody systems with open 
and closed loops, some means of representing the topology of the system is required. If one 
uses absolute coordinates to describe the location of bodies in the system, the topological 
description is automatically embedded in the relatively large set of DAEs. If one uses a set 
of relative (joint) coordinates however, some form of topological processing is required in 
order to account for the connectivity of the bodies. To represent the system topology and 
to generate some of the required kinematic relationships, several researchers have made use 
of linear graphs and their associated topological matrices. It has been shown that many of 
these kinematic relationships are equivalent to the equations obtained from a formal graph- 
theoretic approach. The advantages of using such an approach have been discussed, and the 
systematic generation of the governing DAEs using the vector-network method has been 
described. Research is underway to extend this graph-theoretical method to the analysis of 
flexible multibody and mechatronic systems. 
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