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ABSTRACT

The application of linear graph theory to the modelling of flexible multibody systems is described. When

combined with symbolic computing methods, linear graph theory leads to efficient dynamic models that

facilitate real-time simulation of systems of rigid bodies and flexible beams. The natural extension of linear

graphs to the modelling of mechatronic multibody systems is presented, along with a recently-developed

theory for building complex system models from models of individual subsystems.

Keywords: Mechatronic multibody systems, dynamic modelling, symbolic computing, graph
theory, subsystems.

1. INTRODUCTION

Linear graph theory, invented by Leonhard Euler in 1736, was applied to the

modelling and analysis of one-dimensional physical systems in the 1950s and 1960s

[1]. The basic theory of this modelling approach was established during this period,

and subsystem analysis methods were developed to facilitate the modelling of very

large electrical networks [2]. Linear graph theory was extended to the modelling of

multi-dimensional particle mass systems in the 1970s [3], and to spatial multibody

systems of rigid bodies in the 1980s and 1990s [4, 5].

Quite recently, graph-theoretic methods for modelling flexible multibody systems

were developed [6]; an overview is presented in the following sections. Graph theory

Mathematical and Computer Modelling of Dynamical Systems
ISSN 1387-3954 print/ISSN 1744-5051 online # 2004 Taylor & Francis Ltd.

http://www.tandf.co.uk/journals
DOI: 10.1080/13873950412331318044

1Address correspondence to: John McPhee, Systems Design Engineering, University of Waterloo, Ont.,

Canada N2L 3G1. E-mail: mcphee@real.uwaterloo.ca
2Systems Design Engineering, University of Waterloo, Ont., Canada N2L 3G1.
3MD Robotics, 9445 Airport Road, Brampton, Ont., Canada L6S 4J3.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

4:
28

 0
1 

D
ec

em
be

r 
20

14
 



can be used to generate equations in terms of user-selected coordinates, including

absolute or joint or indirect coordinates, or some combination of the three. By

selecting coordinates that are well-suited to a given problem, one can reduce the

number and complexity of the governing equations.

Given that linear graphs were originally applied to electrical networks, the

extension of graph-theoretic methods to the modelling of mechatronic multibody

systems is natural and straightforward. From a single linear graph of the entire system,

the coupled equations for the electrical and mechanical domain are systematically

derived. Symbolic programming was used to implement this graph-theoretic formu-

lation; the resulting Maple program (DynaFlex) for modelling flexible multibody

mechatronic systems is briefly described.

The modelling of complex systems is greatly facilitated by the use of subsystem

models; a newly-developed graph-theoretic generalization of the Norton and

Thevenin theorems from electrical network theory is used to generate models of

multibody mechatronic subsystems. This subsystem modelling approach is demon-

strated on a PD-controlled parallel robot.

2. FLEXIBLE MULTIBODY SYSTEMS: LINEAR GRAPH

REPRESENTATION AND COORDINATE SELECTION

Consider the planar slider-crank mechanism shown in Figure 1, and its linear graph

representation in Figure 2. Consistent with the terminology of Kesavan et al. [1] and

Roe [2], a linear graph G is a collection of e edges that intersect only at v nodes (or

vertices). A circuit is defined as a subgraph of G such that there are exactly two

distinct paths between every pair of nodes of the subgraph. Essentially, a circuit is a

closed loop of edges. A tree is defined as any subgraph that contains all the nodes of

G and has no circuits; edges in the tree are called branches, while the remaining

edges (in the cotree) are chords. Finally, a outset is a subset of edges that, when

Fig. 1. Slider-crank mechanism.
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removed, divides the graph into two parts, and no subset of this cutset has this

property.

Nodes in the multibody system graph in Figure 2 represent body-fixed reference

frames, while edges represent kinematic or dynamic transformations associated with

physical components. Note that the graph is directed; the arrowhead on each edge

establishes a positive direction for measuring transformations between the frames at

the tip and tail nodes. Edges m1 � m3 represent the three bodies, which may be rigid

or flexible. Newton’s Laws require that the edges originate at an inertial frame (node)

and terminate at a body-fixed frame (node) – the center of mass for a rigid body,

and at one end of a flexible beam element. For clarity, the physical components are

superimposed on the linear graph with dotted lines.

Edges h8 � h10 are the three revolute joints connecting the bodies, while s11 is the

prismatic joint between the ground and the slider. The ‘‘arm elements’’ r4 � r7

represent transformations from the body frame to the body-fixed joint frames. These

transformations are functions of the body rotation and, for flexible bodies, the

deformation coordinates. Finally, edge F12 is the external force acting on the slider.

Additional physical effects, for example, motor torques, springs, and weights, are

easily added to the system graph.

Associated with each edge are through (force, torque) and across (translation,

rotation) variables that satisfy the fundamental cutset and circuit equations [1]. For

mechanical systems, the cutset equations provide dynamic equilibrium equations for

any combination of components, while the circuit equations provide closure

conditions around any loop. These cutset and circuit equations are systematically

generated from an incidence matrix representation of the linear graph. Thus, the

kinematic and dynamic equations can be automatically generated for a system with

any topology, as demonstrated in the subsequent sections.

If a tree is selected for the graph, then the circuit equations can be used to express all

kinematic variables as linear combinations of the coordinates associated with the tree

Fig. 2. Linear graph of slider-crank mechanism.
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edges (‘‘branches’’) [5]. Thus, by selecting a spanning tree, the branch coordinates q

that appear in the kinematic and dynamic equations are defined. This is an important

feature of a graph-theoretic approach, since most other multibody formulations are

restricted to a pre-defined set of coordinates, usually absolute [7] or joint [8].

As an example, consider the slider-crank mechanism from Figure 1. Rigid arm

elements (i.e. r4 � r7) are always selected into the tree of a multibody system graph

because they represent constant kinematic transformations; since there are no unknown

coordinates associated with an arm element, they don’t introduce any variables into q.

By also selecting h8, h10, and s11 into the tree, one will obtain equations in the

corresponding branch coordinates q ¼ ½�8; �10; s11�T . All cotree variables can be

expressed in terms of q using the circuit equations, for example, for the rotation of cotree

rigid body m2:

�2 ¼ �11 þ �10 � �7 ð1Þ

!2 ¼ !11 þ !10 � !7 ð2Þ

where �i and !i are the orientation and angular velocity for element i, i.e., the

orientation and angular velocity of the tip node relative to the tail node. These across

variables are defined by the constitutive equations for the corresponding element type,

for example, �i ¼ �ik̂k for revolute joints 8, 9, and 10, and !11 ¼ 0 for the prismatic

joint. In this manner, all kinematic variables are systematically expressed in terms of q.

Using graph theory, one can generate equations in absolute coordinates (select

all bodies into the tree), joint coordinates (select joints into the tree), or some

combination of the two. One can even select two different trees – one to generate

rotational equations and one to generate translational equations. By doing this, one

can reduce the total number of equations to be solved, and reduce their complexity at

the same time [5]. By selecting coordinates that are tailored to the problem at hand,

one can obtain equations that are well-suited to real-time simulation, in either a virtual

reality environment or an operator-in-the-loop simulation.

3. KINEMATICS OF MULTIBODY SYSTEMS

For dependent branch coordinates, which is always the case for systems with closed

kinematic chains, the kinematic constraint equations are generated by projecting the

circuit equations for cotree joints onto the reaction space for that joint. For holonomic

constraints, one obtains m nonlinear algebraic equations in terms of the n branch

coordinates q:

Fðq; tÞ ¼ 0 ð3Þ

where n� m ¼ f , the degrees of freedom (DOF) of the system.

4 J. MCPHEE ET AL.
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To demonstrate, consider again the slider-crank with the dependent branch co-

ordinates q ¼ ½�8; �10; s11�T , i.e., with h8, h10, and s11 selected into the tree. The

reaction space for a joint is defined by the unit vectors that span the space of reaction

forces and moments arising in the joint. Thus, the reaction space for cotree joint h9 is

spanned by unit vectors {̂{ and |̂| (the directions of the joint reaction forces), onto which

the circuit equation for h9 is projected:

F ¼ r9 � {̂{; |̂| ð4Þ

¼ ðr6 � r7 þ r10 þ r11 � r8 þ r4 � r5Þ � {̂{; |̂| ð5Þ

where ri is the translational displacement vector for element i. Substituting the

elemental constitutive equations, for example, r10 ¼ 0, and evaluating,

F ¼ L67 cos �10 þ s11 � L45 cos �8

L67 sin �10 � L45 sin�8

� �
¼ 0 ð6Þ

where L45 ¼ L4 þ L5, etc., and Li ¼ jrij. Thus, one obtains m ¼ 2 constraint

equations in terms of the n ¼ 3 branch coordinates for this 1-DOF system.

To get a smaller set of coordinates and equations for the same example, one can

select h8, h9, and h10 into the tree for translational equations, and h8, h10, and s11 into a

second tree for generating rotational equations. This results in the n ¼ 2 branch

coordinates q ¼ ½�8; �10�T . The only non-null constraint equation is obtained from the

circuit equation for cotree joint s11, projected onto the unit vector |̂| normal to its axis

of sliding (direction of normal reaction force) to obtain the single kinematic constraint

equation:

F ¼ L45 sin �8 � L67 sin �10 ¼ 0 ð7Þ

This procedure for generating kinematic equations is valid for any system

topology, and for any selected set of branch coordinates. The corresponding set of

velocity or acceleration constraints are obtained by projecting the circuit equations at

the velocity or acceleration level, respectively, onto the same joint reaction space.

Alternatively, one can use symbolic computing to time-differentiate the position-level

Constraint Equations (3).

4. DYNAMICS OF MULTIBODY SYSTEMS

Once the kinematic equations are obtained, the dynamic equations can be

systematically generated by projecting the cutset equations for branch components

onto the motion space for that component [5]:

M€qqþFT
ql ¼ F ð8Þ
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where M is the mass matrix, Fq is the Jacobian matrix of the constraint equations, the

Lagrange multipliers l correspond to reactions in cotree joints, and F contains

external forces and quadratic velocity terms.

Alternatively, the principle of virtual work may be employed, especially when

flexible bodies are included in the system model [6], to obtain the Dynamic Equations

(8). To facilitate this approach, the first variation of the constraint equations is

partitioned into f independent coordinates qi and m dependent coordinates qd:

�F ¼ Fqd�qd þFqi�qi ¼ 0 ð9Þ

where Fqi ¼ @F=@qi and Fqd ¼ @F=@qd is non-singular as long as the given

physical constraints are not redundant. One can then solve these Linear Equations (9)

for the transformation from dependent to independent variations:

�qd ¼ �F�1
qd
Fqi�qi ¼ J�qi ð10Þ

and for the transformation from all variations to independent variations:

�q ¼ �qd
�qi

� �
¼ J

1

� �
�qi ¼ G�qi ð11Þ

where G is easily shown to be an orthogonal complement to the Jacobian matrix Fq,

that is, the matrix product GFq ¼ 0.

By summing up the contributions of all working components, the system virtual

work �W is obtained. If there are nT moments Ti, nF forces Fj (e.g., springs, dampers,

weights, applied forces), nR rigid bodies, and nL flexible bodies,

�W ¼
XnT
i¼1

Ti � ��i þ
XnF
j¼1

Fj � �rj

�
XnR
k¼1

½mkak � �rk þ ðI
k
� _!!k þ !k � I

k
� !kÞ � ��k� þ

XnL
l¼1

�Wfl ð12Þ

where mk is the mass of body k, I
k

is its inertia dyadic about its center of mass, ak
is the acceleration of its mass center, and !k is its angular velocity. The terms �r
and �� are translational and rotational virtual displacements. They represent a small

displacement taking place at a given time, which is compatible with the system con-

straints. The virtual work of a flexible body �Wf is defined by:

�Wf ¼ �
Z
V

����TsdV þ
Z
V

�r � ðf
b
� �€rrÞdV ð13Þ

where ���� is the column matrix of varied strain components, r is the matrix of

corresponding stress components, f
b

is the body force, including gravity, and ��€rr is

the inertial force per unit volume. The first volume integral in Equation (13)

6 J. MCPHEE ET AL.
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represents the virtual strain energy, while the second integral is the virtual work of

body forces, including gravity, external forces and inertial forces. By making

assumptions about the material properties and deformation field, one can express �Wf

in terms of the branch coordinates q, which include the deformation coordinates for

the flexible body. For a Rayleigh beam with linear elastic material properties, the

details of this derivation are presented in [9].

Substituting the element constitutive equations into Equation (12), and using the

Transformation Equation (11), one obtains:

�W ¼ QT�q ¼ QTG�qi ¼ QT
i �qi ¼ 0 ð14Þ

where Q and Qi ¼ GTQ are the generalized forces associated with �q and �qi,
respectively. Since �q are not independent quantities, Q can only be set to zero if it is

augmented by the Lagrange multipliers l. The result is the set of Dynamic Equations

(8), which are said to be written in ‘‘augmented’’ form.

Alternatively, the dynamic equations can be written in an ‘‘embedded’’ form, in

which the constraint reactions l do not appear. Since �qi are independent, each

generalized force Qi can be set directly to zero to obtain one dynamic equation per

degree of freedom: eMM€qq ¼ eFF ð15Þ
where eMM ¼ GTM is an unsymmetric f � n mass matrix and eFF ¼ GTF. Note that the

embedded Dynamic Equations (15) can be directly obtained by pre-multiplying the

augmented Dynamic Equations (8) by GT to eliminate the Lagrange multipliers. In

Section 7, these embedded equations will be used to advantage in an inverse dynamic

analysis.

In a forward dynamic analysis, one has to solve a set of differential-algebraic

equations (DAEs) to determine the time response qðtÞ. Equations (3) and (8) comprise

a set of nþ m index-3 DAEs that can be solved simultaneously for qðtÞ and lðtÞ. An

attractive alternative is to solve the smaller set of n index-2 DAEs (3) and (15) for only

the branch coordinates qðtÞ. There are quite a number of different numerical methods

available for solving the DAEs that govern the forward dynamics of multibody

systems [10].

5. INDIRECT COORDINATES

It has already been shown that one can generate models in absolute or joint

coordinates, by selecting a suitable tree for the linear graph representation. By

defining and selecting ‘‘virtual joints’’ into the tree [11], it is also possible to generate

equations in ‘‘indirect coordinates’’ corresponding to bodies that are not necessarily

adjacent [12]. Consider the open-loop multibody system taken from [12], and its

corresponding linear graph in Figure 3.

DYNAMICS OF MECHATRONIC MULTIBODY SYSTEMS 7

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

4:
28

 0
1 

D
ec

em
be

r 
20

14
 



Once again, bodies are represented by edges m1 � m4, body-fixed transformations

by arm elements r5 � r11, revolute joints by edges h12 � h14, and the spherical joint by

b15. In addition, two virtual joints are added: a virtual revolute joint vh16 representing

the rotation of m3 relative to m1, and a virtual spherical joint vb17 to represent the

rotation of m4 relative to the ground. Fayet and Pfister [12] have shown that the

corresponding indirect coordinates result in equations that are simpler in form than

the more traditional joint coordinate equations. This is due to the fact that joint axes z2

and z3 are parallel, and absolute angular coordinates give simpler equations than

relative angular coordinates [13]. With a graph-theoretic approach, one can generate

the motion equations in indirect coordinates by simply selecting vh16 and vb17 into the

tree in place of h14 and b15.

To demonstrate, consider a serial manipulator comprised of the first three bodies

m1 � m3 in Figure 3. Using this graph-theoretic approach, the Dynamic Equations (8)

were generated in terms of the joint coordinates qb ¼ ½�12; �13; �14�T and the indirect

coordinates qi ¼ ½�12; �13; �16�T . The joint angle �12 measures rotation about a

vertical Z axis, while joint angles �13 and �14 are about horizontal axes z2 and z3 fixed

in m2 and m3, respectively. The indirect coordinate �16, corresponding to virtual joint

vh16, measures the orientation of m3 relative to the non-adjacent m1.

Both sets of coordinates are independent for this serial manipulator, so there are no

kinematic constraint equations and no constraint reactions l appearing in the dynamic

equations. However, some of the entries in these equations will differ for the two sets

of coordinates, for example, the second diagonal entry in the two mass matrices:

Mbð2; 2Þ ¼ I2z þ m2L
2
7 þ I3z þ m3½L2

78 þ 2L78L9 cos �14 þ L2
9�

Mið2; 2Þ ¼ I2z þ m2L
2
7 þ m3L

2
78

Fig. 3. Open-loop multibody system and linear graph.

8 J. MCPHEE ET AL.
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where Mb is in joint coordinates while Mi is written in indirect coordinates. The

entries in row 2, column 3 are:

Mbð2; 3Þ ¼ I3z þ m3l
2
9 þ m3l78l9 cos �14

Mið2; 3Þ ¼ m3l78l9 cosð�16 � �13Þ

The use of indirect coordinates results in a simplification of the mass matrix, for

which the diagonal entries correspond to moments of inertia of ‘‘compound

augmented bodies’’ [12]. In this case, Mið2; 2Þ is the moment of inertia I2z of m2, plus

the mass of m3 concentrated at joint 14, about the z2 axis. In contrast, the more

complex Mbð2; 2Þ is the combined moment of inertia of m2 and m3 about z2.

The forces F are also simplified, albeit slightly, by the use of indirect coordinates.

Table 1 provides the number of additions, multiplications, and function calls needed

to evaluate M and F for both sets of coordinates. These are easily obtained using built-

in routines from the Maple symbolic programming language.

6. MECHATRONIC MULTIBODY SYSTEMS

Graph-theoretic modelling is not restricted to mechanical systems; it has long been

applied to electrical, pneumatic, and hydraulic systems [1, 2], and our graph-theoretic

symbolic algorithms were easily extended to the modelling of mechatronic multibody

systems [14, 15]. These systems are comprised of electrical networks, multibody

systems, and transducer elements that convert mechanical energy into electrical

energy and vice-versa. All components are represented within a single linear graph.

It has already been shown how the equations for the mechanical subsystem are

generated. For the electrical domain, edges in the linear graph again correspond to

physical components, while nodes represent points of interconnection. Through

variables are currents while across variables are voltages. The circuit equations satisfy

Kirchoff’s voltage law around every fundamental circuit – one for each cotree

element. The cutset equations are a generalization of Kirchoff’s current law, and give

a unique equation for each tree element. Once again, the tree selection determines the

variables appearing in the final system equations.

Table 1. Number of operations for dynamic equations of first three bodies (m1 � m3).

Adds. Mults. Functs.

M� 27 53 12

Mi 20 43 11

F� 62 149 59

Fi 60 138 57

DYNAMICS OF MECHATRONIC MULTIBODY SYSTEMS 9
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To demonstrate, consider the two-link manipulator shown in Figure 4 with its

linear graph representation. The system graph contains the standard mechanical

components: m1 and m2 for the two rigid bodies, r3 � r6 for the body-fixed arm

elements, and J1 � J2 for the two revolute joints. The corresponding joint angles �1

and �2 are controlled by two DC motors, M7 and M8, that are powered by voltage

sources V1 and V2. Note that the graph consists of two parts, one for the mechanical

domain and one for the electrical domain, and that the two domains are coupled by the

motors, which have edges in each domain. This is always the case for a transducer

element that converts energy between different domains.

By selecting the joints into the mechanical tree, and the voltage sources into the

electrical tree, four differential equations are generated for the two-link manipulator –

two for each of the two domains – in terms of �1, �2, and the two motor currents.

L7 0

0 L8

� �
di7
dt
di8
dt

� �
¼ V1ðtÞ � R7i7 � Kv7

_��1

V2ðtÞ � R8i8 � Kv8
_��2

� �
ð16Þ

where ij, Rj, Lj, and Kvj are the current, armature resistance, inductance, and voltage

constant for motor j. Note that a minimal number of system equations is automatically

generated. Although the electrical sub-network in this example is trivial, networks of

higher complexity can be efficiently modelled using linear graph theory.

For the mechanical domain, two second-order differential equations are generated:

½Mð�1; �2Þ�
€��1
€��2

� �
¼ F1ð�1; �2; _��1; _��2; i7Þ

F2ð�1; �2; _��1; _��2; i8Þ

� �
ð17Þ

where the mass matrix M is a complex function of the joint coordinates, and the forces

F are functions of the joint coordinates, joint velocities, and motor currents. Had the

links been modelled as flexible beams, additional equations would be generated for

the deformation coordinates, which would also appear in M and F.

Together, Equations (16)–(17) constitute the dynamic equations of the electro-

mechanical system. These system equations can be used to find inverse solutions for

Fig. 4. DC motor-driven robot manipulator and linear graph.
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the motor currents required to drive a particular trajectory, or as the basis of a forward

dynamic simulation that tests out different controller strategies [14].

7. SYMBOLIC COMPUTER IMPLEMENTATION: DYNAFLEX

Symbolic programming provided an effective computer implementation of our graph-

theoretic virtual work formulation [16], especially when real-time simulations of

complex mechanical systems are required. Multiplications by 0 and 1 are eliminated

in a symbolic program, and trigonometric simplifications are automated. The

kinematic and dynamic equations can be visually examined for physical insight, or

exported as optimized code (in which repeated expressions are identified and evalu-

ated only once) for subsequent simulation.

We have used the Maple symbolic programming language to develop our

DynaFlex software4 for modelling flexible multibody systems. A variety of modelling

components is available, including: three-dimensional rigid bodies or elastic beams;

revolute, prismatic, spherical, planar, universal, and other joints; kinematic drivers;

springs, dampers, actuators, and other force components. Symbolic kinematic and

dynamic equations can be generated in absolute or joint coordinates or a combination

of both. Dynamic equations can be generated in either the augmented form (8) or the

embedded form (15). The DynaFlex program requires an input file that describes the

system’s topology and parameters; this file can be easily created using the graphical

user interface, DynaGUI.

7.1. Mechanical Example

To demonstrate the modelling process using DynaGUI and DynaFlex, consider the

spatial slider-crank mechanism [7] shown in Figure 5. A crank is driven at a constant

rotational speed by the torque T . The crank is connected to the ground by a revolute

joint at A, and to a connecting rod by a spherical joint at B. A sliding block is attached

to the ground by a prismatic joint at D, and to the connecting rod by a universal joint at

C. An inverse dynamic analysis is required to determine the driving torque T .

A screenshot of the DynaGUI model is shown in Figure 6. The three bodies are

represented by rectangles; body-fixed frames are shown as attached circles, or as a

square for the main body frame. The four joints are shown as lines connecting the

three bodies and the ground. Each joint has a particular type and set of properties, and

may be in the tree or cotree. In this example, the spherical joint is placed in the cotree;

the branch coordinates corresponding to the remaining joints in the tree are

q ¼ ½s; �; �; ��T , which are shown in Figure 5.

4http://real.uwaterloo.ca/�dynaflex
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Fig. 5. Spatial slider-crank mechanism.

Fig. 6. DynaGUI model of spatial slider-crank.

12 J. MCPHEE ET AL.
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The motion for the crank is prescribed as � ¼ 2�t, and the corresponding torque T

is automatically included in the virtual work computation. Combining the prescribed

motion with the projected circuit equations for the cotree spherical joint, and sub-

stituting the link lengths given by [7], DynaFlex generates the kinematic equations:

F ¼

2 sin �þ 6 sin � sin� þ 25=10

2 cos �þ 6 cos � sin � þ 3

25s� 6 cos �
�� 2�t

8>><
>>:

9>>=
>>; ¼ 0 ð18Þ

which are easily solved for qðtÞ. By requesting the dynamic equations in the

embedded form of Equation (15), DynaFlex produces a single dynamic equation for

this 1-DOF system. The driving torque appears linearly in this equation, so a symbolic

expression for T is easily obtained with Maple and plotted in Figure 7; the results are

identical to those shown in [7], which were obtained by solving a large system of

linear equations using numerical methods. Unlike the latter approach, our symbolic

solution for T can be viewed, exported as optimized C or Fortran or Matlab code, and

used to facilitate the real-time control of a physical prototype.

7.2. Electro-Mechanical Example

Shown in Figure 8 is a simple model of an electro-mechanical system, taken from

[17]. The electrical circuit contains a resistor R1, a moving-plate capacitor C2 with

plate separation s, an inductor L3, and a voltage source E4. The moving plate of the

capacitor has a mass m5, and a suspension stiffness and damping of k6 and d6,

respectively. The model also includes the weight of the moving plate.

Shown in Figure 9 is the linear graph for the simple electro-mechanical system.

Edges in the graph correspond to physical components on a one-to-one basis. An

Fig. 7. Driving torque on crank of spatial slider-crank.
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additional component, r0, specifies the location of the suspension support. Assuming

that the spring is undeformed when s ¼ 0, the constant distance r0 equals the

undeformed spring length. The tree selected for the graph is shown in bold; for this

tree, the system equations will be formulated in terms of the plate separation s and

capacitor current i2.

Once again, the transducer element C2 has an edge in both the mechanical and

electrical domains. Due to the electrical attraction of the plates, a force arises that

Fig. 8. A simple electro-mechanical system.

Fig. 9. Linear graph of simple electro-mechanical system.
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depends upon the voltage v2. Conversely, the current through the capacitor depends

upon the speed of separation _ss. These phenomena are encapsulated in the two

Constitutive Equations [18]:

F2 ¼ 1

2
C0

2v
2
2 ð19Þ

i2 ¼ C2ðsÞ
dv2

dt
þ C0

2 _ssv2 ð20Þ

where the notation C2ðsÞ emphasizes that the capacitance varies with plate separation,

and C0
2 � dC2ðsÞ=ds.

Figure 10 shows the model that was assembled using the DynaGUI building

blocks. From this DynaGUI model, a DynaFlex input file is automatically generated.

This input file contains all the topological information embedded in the linear graph

(so that it is not necessary to know how the graph is constructed), as well as the

parameters for the various components. From this input file, DynaFlex generates two

ordinary differential equations in terms of the chosen variables s and i2:

C0
2 _ss

�
�R1i2 � L3

di2

dt
þ E4ðtÞ

�
þ C2ðsÞ

�
�R1

di2

dt
� L3

d2i2

dt2
þ dE4

dt

�
� i2 ¼ 0

m5€ssþ d6 _ssþ k6sþ m5g�
1

2
C0

2

�
�R1i2 � L3

di2

dt
þ E4ðtÞ

�2

¼ 0

which are equivalent to those manually derived in [17].

Fig. 10. DynaGUI model of simple electro-mechanical system.

DYNAMICS OF MECHATRONIC MULTIBODY SYSTEMS 15

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

4:
28

 0
1 

D
ec

em
be

r 
20

14
 



8. EFFICIENT MODELLING VIA SUBSYSTEMS

The modelling of multibody systems is greatly facilitated by the use of subsystem

models. Models of entire sub-assemblies can be created and stored (symbolically) for

future use. Generating libraries in this fashion results in faster formulation times as only

the interactions between library components need to be derived during formulation.

Additionally, the use of pre-derived sub-assemblies simplifies the modelling of complex

systems. In a time-varying topological situation, for example a virtual reality application

in which the user is adding or removing parts to their model, the system equations can be

reformulated quickly by focusing attention only on the modified subsystems.

Graph theory is naturally suited to the modelling of systems via subsystem models.

Although the subsystem modelling of electrical circuits was achieved decades ago

using graph theory [2], it has only recently been extended to the nonlinear kinematics

and dynamics of multibody systems [19].

Subsystem models are particularly well-suited for the topologies that are typical of

parallel manipulators: a number of kinematic chains (or ‘‘legs’’) in parallel from the

ground to the end effector [20, 21]. Each leg can be modelled as a subsystem that is

kinematically decoupled from the other leg subsystems. This allows the equations for

kinematics and inverse dynamics to be generated and solved in parallel, either

symbolically or numerically on a parallel computing platform.

In this section, we model one leg of a PD-controlled parallel manipulator as an

abstracted subsystem using linear graph theory, which is then used to combine three of

these subsystem models into a symbolic model of the parallel robot.

8.1. Subsystem Modelling of Parallel Manipulator Leg

Consider one leg of a planar parallel manipulator, shown in Figure 11. A revolute joint

connects two planar links to one another, while an additional revolute joint connects

Fig. 11. PD controlled leg of parallel manipulator.
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one of the links to the manipulator’s base (which is free to translate and rotate). A DC

motor actuates this joint, designated the ‘‘ankle’’, based on a voltage supplied by the

proportional-derivative (PD) controller. The inputs to the controller consist of a user-

defined voltage (related to the desired angle of the joint) and a voltage signal

specifying the actual joint angle (supplied by an angle sensor). The output voltage of

the PD-controller is a linear combination of the error and derivative of the error in the

angle it is controlling.

The leg interacts with its mechanical environment at the moving base and tip

(body-fixed reference frames Am and Bm). Electrical interaction occurs only at node

Ae, where the voltage signal for the desired ankle angle is input. These interactions are

depicted on the left-hand side of Figure 12, the black box model of the leg.

Although not shown on the figure, the derivatives for all of the input and output

variables are also assumed. Note that when a voltage or position is expressed, it is

assumed to be with respect to the electrical or mechanical ground, respectively.

The inputs (known variables from the environment) are shown on the left-hand side

of the black box in Figure 12. For the leg subsystem, the inputs consist of the motion

of the base frame (~rrAm, �Am), the forces acting at the leg’s tip (~FFBm, TBm), and the

voltage to the controller (vAe). It should be noted that inputs are usually expressions:

functions of time and other system variables external to the subsystem.

The subsystem’s outputs appear on the right of the black box depiction, and can be

expressed as two different sets of equations. The first set relates the input expressions

to the internal variables used to model the dynamics of the subsystem. We call this set

the subsystem’s internal equations. Modelling the leg with the variables shown in

Figure 11 (joint coordinates and motor currents) results in three internal variables: �1,

�2, and i1. As a result, three internal equations are generated.

The second set of output equations relate the inputs’ complementary variables

(~FFAm, TAm, ~rrBm, �Bm, iAe) to the input expressions and internal variables. These

equations are referred to as the subsystem’s constitutive equations.

Although linear graph theory provides a systematic means of generating subsystem

models [19] (including all of the advantages inherent with tree selection), hand-

derived models, or models derived using a symbolic software package, are also easy

to represent as linear graph subsystem models. The only requirements are the

Fig. 12. Black box and linear graph representations of leg subsystem.
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symbolic equations governing the subsystem and a clear understanding of the

system’s input, internal and output variables. In these cases, even if linear graph

theory is not used to generate the subsystem model, it can still be effectively used to

integrate the subsystem model into a larger system.

The right hand side of Figure 12 shows how the linear graph subsystem model is

obtained from the black box representation of the subsystem. Notice that two graphs

are required to represent the black box model. The first graph is a generic

representation of the inputs that will be applied to the subsystem by the external

system. For example, edge in_1m might be replaced by a full model for another robot

that is controlling the motion of the base. The second graph represents the actual

subsystem graph – the nodes and edges that make up the subsystem.

In the black-box representation of the subsystem, the direction of the arrow relative

to the box’s boundary indicates whether a variable represents an input or an output. In

the linear graph representation of the subsystem, this is accomplished through the tree

selection and the concept of primary variables. The details of this conversion can be

found in [22].

8.2. Modelling of Parallel Manipulator Using Subsystems

A three degree of freedom (DOF) planar, parallel manipulator is shown in Figure 13.

As can be seen, the manipulator consists of a single platform connected by revolute

joints (h10, h11, h12) to three identical legs. The system’s linear graph overlays a

drawing of the manipulator in order to show the similarities between the physical

system and linear graph. Once again, interconnections between components are

shown as nodes, while edges correspond to components or subsystems. The system’s

tree is shown in bold. Nodes are denoted by a capital letter, while their corresponding

domain appears as a lower case letter. Cartesian axes are attached to the mechanical

nodes, to emphasize their interpretation as body-fixed reference frames. The linear

graph representation of the leg subsystems is consistent with that shown in Figure 12.

The only difference is the addition of the subsystem’s prefix (S1_, S2_ and S3_) to the

edge identifiers.

The system’s governing equations arise from equations internal to the system

components and the interconnections between the system’s components. The first

group, the internal subsystem equations, can be directly obtained from the subsystem

definitions. In the case of the parallel manipulator, each leg subsystem contains three

internal dynamic equations (recall Section 8.1). Since none of the other components

are subsystems, the rest of the governing equations arise from the interconnections

between the system’s components.

The ‘‘system-level’’ equations are obtained using one of the common graph-

theoretic approaches to generating dynamic equations (Section 4). For the parallel

manipulator, the inclusion of the platform mass in the tree results in three mechanical

18 J. MCPHEE ET AL.
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dynamic equations. These equations define the dynamic equilibrium of the platform,

and are obtained from the cutsets for the mass edge m9.

Fxm9 þ Fxh10 þ Fxh11 þ Fxh12 ¼ 0

Fym9 þ Fyh10 þ Fyh11 þ Fyh12 ¼ 0

Tzm9 þ Tzh10 þ Tzh11 þ Tzh12 ¼ 0

ð21Þ

where Fij and Tij represent the ith component of the force or torque, respectively,

associated with edge j.

Including both of the internal and ‘‘system-level’’ equations results in ð3 � 1Þ ¼ 3

electrical dynamic equations and ð3 � 2 þ 3Þ ¼ 9 mechanical dynamic equations.

These equations are in terms of 12 modelling variables: the 3 motor currents, the 6 leg

joint angles and 3 platform position/orientation variables. However, the manipulator

has only 6 degrees of freedom: 3 mechanical and 3 electrical. Thus, we require 6

constraint equations, which couple the mechanical dynamic equations originating

from the subsystems.

Fig. 13. 3-DOF parallel manipulator.
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These 6 equations also arise from the interconnections between the system’s

components. From Section 3, they are obtained from the projected loop closure

conditions imposed by the cotree revolute joints (h10, h11, and h12) that attach each

leg to the platform:

F ¼

xh10 � xR6 � xm9 þ xS1 2m

yh10 � yR6 � ym9 þ yS1 2m

xh11 � xR7 � xm9 þ xR4 þ xS2 2m

yh11 � yR7 � ym9 þ yR4 þ yS2 2m

xh12 � xR8 � xm9 þ xR5 þ xS3 2m

yh12 � yR8 � ym9 þ yR5 þ yS3 2m

2
6666664

3
7777775
¼ 0 ð22Þ

where xi and yi represent the x or y displacement, respectively, of the ith edge.

Once the topological and constitutive equations have been systematically combined,

the resulting equations are completely in terms of the system-level and internal sub-

system primary variables. The modelling variables related to the subsystem edges

(those starting with S1_, S2_ and S3_, in the graph) have been eliminated using standard

graph-theoretic transformations. As a result, the final equations are the same as those

derived without using subsystem models. However, the equations are now topologically

grouped. To see this more clearly, consider the mechanical dynamic equations for the

parallel robot, written in the format given by Equation (8):

M

1
€��1

1
€��2

2
€��1

2
€��2

3
€��1

3
€��2

0€xxm9

0€yym9

0
€��m9

2
6666666666664

3
7777777777775
þ

X X 0 0 0 0

X X 0 0 0 0

0 0 X X 0 0

0 0 X X 0 0

0 0 0 0 X X

0 0 0 0 X X

X 0 X 0 X 0

0 X 0 X 0 X

X X X X X X

2
6666666666664

3
7777777777775

0Fxh10

0Fyh10

0Fxh11

0Fyh11

0Fxh12

0Fyh12

2
6666664

3
7777775
¼ F ð23Þ

In this equation, the leading subscript indicates the subsystem to which a variable

belongs, while its trailing subscript refers to the component’s edge identifier. System-

level variables have ‘‘0’’ as a leading subscript. The ‘‘X’’ markers in the transpose of

the constraint Jacobian matrix indicate a non-zero entry. It should also be noted that

the mass matrix M is block diagonal.

By organising the mechanical dynamic equations in this manner it is clear how the

equations can be decoupled. The two dynamic equations for each leg can be

simultaneously solved in order to obtain the revolute reaction forces in terms of that

subsystem’s joint accelerations. These values can then be substituted into the

expressions for the last three mechanical dynamic equations. The use of subsystems

with linear graph theory clearly reveals this substitution process, which has been used
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in hand derivations of the dynamics of parallel robots [23]. The three electrical

dynamic equations remain unchanged.

To validate our subsystems modelling theory, it was programmed into Maple.

Using this software, the above equations were automatically generated using the

aforementioned subsystem models. For simulation purposes, the decoupling strategy

mentioned above was implemented on the mechanical equations. The three electrical

equations, in terms of the currents running through the three DC-motors, were left

unchanged. Finally, in order to generate a set of pure ordinary differential equations

(ODEs), the six kinematic constraint equations were differentiated twice. No

constraint stabilization method was used.

A forward dynamic analysis was then performed by providing an input voltage to

drive each of the legs’ ankle motors and solving the system ODEs. Once the forward

analysis was completed, the values of the currents were used to determine the torque

supplied by each motor during the simulation. These torques were then compared

with an inverse dynamics solution of a purely mechanical version of the system

obtained by Ma and Angeles [24], and confirmed by Geike and McPhee [25]. As

expected, the motor torque for the PD-controlled system fluctuates about the inverse

dynamic solution (Fig. 14).

Fig. 14. Comparison of PD-controlled and inverse solution motor torques.
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The parameters and initial conditions used for the mechanical system are identical

to those used by Geike and McPhee. The electromechanical parameters for the DC-

motors, angle sensors and PD-controllers are as follows: Kt ¼ Kv ¼ Ks ¼ L ¼
R ¼ 1;B ¼ 0:01, Kp ¼ 4000, Kd ¼ 8000. Note that the mass and inertia of the motors

are ignored in order to maintain the same mechanical model used in [25].

The initial conditions for the currents running through DC-motors are

1i1 ¼ �1:427A, 2i1 ¼ 44:268A, 3i1 ¼ �20:699A. The input voltages to the leg

subsystems were simply the angle drivers prescribed by Geike and McPhee multiplied

by Ks. The large values for the currents are a result of the simple motor parameters and

the lack of any gearing between the motors and the driven links.

9. CONCLUSIONS

When combined with symbolic programming, linear graph theory provides a very

efficient approach to modelling flexible multibody mechatronic systems. By selecting

a spanning tree for a linear graph of the system, one can define a set of coordinates that

is well-suited to the problem at hand. From a single linear graph representation of a

complex system, the coupled equations for the electrical and mechanical subsystems

are systematically generated in symbolic form by our Maple implementation

(DynaFlex) of the graph-theoretic formulation. Special topologies, for example for

parallel manipulators, can be exploited, especially if a subsystem modelling approach

is adopted. This newly-developed subsystems approach is a generalization of the

Norton and Thevenin theorems for electrical networks, and greatly facilitates the

modelling of mechatronic multibody systems.
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