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1 Introduction

A major goal of research in multibody dynamics is to develop formulations that
automatically generate and solve the governing equations of motion for a system of
rigid and flexible bodies, given only a description of the system. Much progress has
been made in multibody dynamics research over the last few decades and nowadays,
there are several commercially-successful computer programs (e.g. Adams, Dads)
that automatically analyze the dynamics of multibody mechanical systems.

However, these same programs, and the theoretical formulations on which they
are based, are not capable of modelling general multidisciplinary applications in
which a multibody system is coupled to other physical domains, e.g. electrical or
pneumatic. There are numerous important applications of multidisciplinary multi-
body systems, including vehicles with active suspensions and traction control, mecha-
tronic systems, and micro-electromechanical systems (MEMS). The design of these
multidisciplinary applications would be greatly facilitated by algorithms that could
automate their dynamic analysis.

There are two distinct approaches that have been proposed for modelling and
simulating the dynamics of multidisciplinary multibody systems. The first is based
on coupled simulations, or “co-simulation”, in which two separate simulation pro-
grams or subroutines are coupled numerically. The advantage of co-simulation is
that one can use existing programs that are very well-developed for their particu-
lar domain. However, numerical stability problems may arise during a co-simulation
[20] and, more importantly, there is no underlying mathematical framework that one
could use to generate analytical models of these multidisciplinary applications.

The second approach is to apply a unified systems theory to the dynamic mod-
elling of multidisciplinary multibody systems. This paper focuses on this second
approach for several reasons:

e aunified theory leads to analytical models that promote physical insight
e aunified theory can be applied manually or implemented in a computer algorithm
e the computer implementation can be symbolic or numeric
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symbolic models are very appropriate for real-time simulation

symbolic models facilitate design optimization and sensitivity calculations
symbolic models are easily communicated between colleagues and to students
a unified theory can be extended to new situations and domains

Two main systems theories dominate the literature: linear graph theory and bond
graph theory. Note that linear graph theory is sometimes abbreviated to “graph the-
ory”, especially in the literature on electrical circuits. A few authors [17, 22] have
also proposed the principle of virtual work as the basis of a third unified theory, but
these authors are forced to adopt elements of graph theory in their formulations, e.g.
when generating topological equations for electrical subsystems. Thus, virtual work
on its own does not constitute a complete and independent systems theory that can
be used to automate the dynamic analysis of complex systems.

The goal of this paper is to present the modelling of multidisciplinary multibody
systems using bond graph theory and linear graph theory, and to investigate their
relative advantages and disadvantages.

2 Representative Problems

The features of modelling with bond graphs and linear graph theory will be demon-
strated by means of four example problems, ranging from quite simple to very com-
plex. Three of the examples are multidisciplinary applications, with components
from the mechanical and electrical domains, and the last three examples contain
multi-dimensional multibody subsystems.

2.1 Condenser Microphone

A simple model of a condenser microphone [3, 4] is shown in Figure 1. A voltage
source F4 is connected in series with a resistor Ry, capacitor C5, and inductor L.
The resistor and inductor are modelled by standard linear constitutive equations [10],
but the upper plate of the capacitor is free to move, requiring extra consideration.
This upper plate represents the mass (ms), stiffness (kg), and damping (d7) of the
mechanical portion of the microphone. For completeness, the gravitational force on
the upper plate has also been included in the model.
Due to the electrical attraction of the two plates, a voltage vy across the capacitor
results in an attractive force F5 between the two plates given by [3]:
1dCy 4
B= 2 7dz 2 M
where the capacitance Cs is a function of the plate separation z; it decreases as x
increases, i.e. dCy/dx < 0, giving a positive force of attraction in equation (1).
The second constitutive equation for the capacitor is:
dl)g dCQ dx

1y = CZE + E%W @)
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Fig. 1. Simple model of condenser microphone

where i9 is the current through the capacitor; the second term on the right-hand
side is induced by the relative motion of the two plates. Note that there are usually
two constitutive equations for transducers, such as this moving-plate capacitor, that
couple one physical domain (electrical) to a second (mechanical). It is through these
transducers that energy can flow between the two domains.

In this condensor microphone, vibrations of the plate result in an electrical cur-
rent that can be measured and amplified, if necessary. The goal of this example is to
generate the system equations that relate the motion of the plate to the current.

2.2 Inverted double pendulum

This example, taken from Karnopp et al [5], is a planar mechanical multibody sys-
tem. As shown in Figure 2, it consists of a horizontally-translating mass m, upon
which an inverse double pendulum is mounted. The two links of this pendulum have
lengths /7 and /-, and the masses m; and my are assumed to be concentrated at the
tips of the links. Gravity acts vertically downwards.

The purpose of this example is to demonstrate some features of multi-dimensional
multibody systems, and the application of bond graphs and linear graph theory to
these systems.

To automate the dynamic analysis of a multibody system, one must develop a
formulation that can express all kinematic quantities in terms of a general set of

77777777777
Fig. 2. Inverted double pendulum
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coordinates, and generate the dynamic equations in terms of these coordinates. By
far, the two most popular sets are absolute (Cartesian) coordinates and relative (joint)
coordinates, although other possibilities do exist [23].

Absolute coordinates lead to relatively simple computer implementations, which
is why they are used in commercially-successful packages such as Adams, Dads, and
Working Model. These coordinates, which represent the position and orientation of
every body in the system, will not be independent if there are any holonomic joints
in the system. In that case, the n coordinates q are related by m nonlinear algebraic
equations:

®(q,t) =0 3)

where n —m = f, the degrees of freedom of the system. The dynamic equations are
easily generated from free-body diagrams of each body, with the constraint reactions
represented by Lagrange multipliers A:

Mg+ P A=F 4)

where M is the constant 7 X n mass matrix, ® is the Jacobian matrix of the con-
straint equations (3), and F contains external forces and quadratic velocity terms.
Equations (3) and (4) constitute a set of n 4+ m differential-algebraic equations
(DAEs) that can be solved for q(t) and A(t).

Joint coordinates are more difficult to implement in an automated formulation,
because one must pay more attention to topological processing [24]. However, the
reward is fewer equations to solve than those expressed in absolute coordinates. For
open-loop systems, i.e. those having no closed kinematic chains, the joint coordi-
nates are independent and equal in number to the degrees of freedom f. There are
no kinematic constraint equations (3) to satisfy, and a minimal set of f ordinary
differential equations (ODEs) is obtained for the dynamics:

Mg=F )

where the f x f mass matrix M is now a function of q.
Since the inverted double pendulum is an example of an open-loop system, it is
best modelled by joint coordinates.

2.3 Robot Manipulator

In this example, an experimental two-link robot manipulator is modelled. An overview
of the experimental system is shown in Figure 3. It consists of two DC motors, a
shoulder motor and an elbow motor, and two links. The interchangeable links may
be rigid or flexible; in this example, we model the manipulator with rigid links. The
manipulator is supported by air bearings on a large glass surface so as to minimize
friction and gravitational effects. The shoulder motor may also be fixed to the glass
surface by a vacuum, which is the case considered in this example. A variety of sen-
sors are used to track the motion of the manipulator and a moving payload. These
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sensors provide feedback to a microcomputer that is responsible for generating con-
trol signals to the two motors. More details of the WatFlex experimental manipulator!
can be found in [21].
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Fig. 3. Watflex robot manipulator

Shown in Figure 4 is a model of the two-link manipulator. We have chosen to
include gravity (g) in the model, by re-orienting the robot such that the links rotate
about horizontal joint axes. The first joint angle is designated 6, while the second
is 61 _>. Therefore, the absolute rotation 65 of the second link is the sum of the two
joint angles.

The objective is to control the robot to follow a prescribed joint trajectory, specif-
ically a rotation of both joints by 90 degrees in 4 seconds at constant angular speeds.
These desired joint angles are input to a PD-controller that computes the differences
between the desired and actual angles. The controller then supplies the two DC mo-
tors with voltages that are proportional to these differences (errors), and the time
derivatives of these errors (i.e. the differences between desired and actual angular
speeds).

! http://real.uwaterloo.ca/ watflex
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Fig. 4. PD-controlled robot manipulator

Similar to the moving-plate capacitor in the previous example, there are two con-
stitutive equations for each DC motor in the model:

do di
vad +R2+L£ (6)
d@
T=K 7
71 — dt (N

where K, is the voltage (back emf) constant, L and R are the armature inductance
and resistance, respectively, K is the torque constant, and B is the coefficient of
viscous friction in the bearings. The masses and inertias of the stator and rotor are
assumed to be lumped with the mechanical component to which they are affixed.

2.4 Parking Gate System

In this fourth example, another electromechanical multibody system is considered.
This system is used to raise and lower a flexible barrier, which is typically used
to control access to a parking lot. The flexible barrier is 3 m long, and is rigidly
connected to link P,Os of the Watt-II six-bar mechanism [8] shown in Figure 5. A
spring is used to counter-balance the weights of the moving links and flexible barrier,
and an asynchronous 3-phase induction motor is used to drive the input link of the
six-bar mechanism. More details of this system may be found in [13].
As shown in Figure 6, the induction motor is in a star-star configuration with
a short-circuited rotor. Mutual inductance effects arise within each circuit, and also
between the stator and rotor components — which is what converts the electrical
currents into a driving torque.
The position of the rotor 6 influences these mutual inductance effects, as can be
seen from the constitutive equation for the motor torque 7"
1 22
Ay

j=1k=1

Jkijik) (3

%\®
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Fig. 6. Equivalent circuit for 3-phase actuator

where p = 3 is the number of pairs of poles, ¢; is the current in inductor j, the index
j ranges over the three inductors (L1, Lso, Ls3) in the stator, k ranges over the three
rotor inductors (L,1, L2, Ly3), and My is the entry in the jth row and kth column
of the mutual inductance matrix defined by:

cos (Berm)  cos (GEm + %’r) cos (0o, + %’T)
M = My, | cos (fem + 47 cos (Oem) €08 (fem + 2F) )
cos oem + 2?71' Cos (eem + 4?7‘-) COSs (eem>

where 0., is the electromechanical position given by 6., = pf, and M, is the
external mutual inductance between the stator and rotor.

The voltage v; induced in each stator and rotor inductance is given by the second
constitutive equation:

P . P

di; d
iszi-—J—E — (M1 10
’ j=1 ! dt k=1 dt( klk) (o

where L;; is the entry in the ith row and jth column of the inductance matrix of the
stator or rotor in which inductor ¢ resides:
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L, M, M, L, M, M,
Ls= | M, L, M, L.=| M, L, M, (11)
M, M, L M, M, L,

where L and L, are the stator and rotor self-inductances, respectively, and M, and
M, are the internal mutual inductances of the stator and rotor. In equation (10), the
index j ranges over the inductors that are fixed with respect to the given inductor ¢,
while the index k ranges over the inductors that are in relative motion. Thus, the first
summation includes self-inductance terms, while the second summation represents
the mutual inductance between stator and rotor components, which depends on the
relative angle 6.

The flexible barrier is initially in a horizontal position, with no currents in the
stator and rotor. A dynamic analysis and simulation is required to determine the
response of the parking gate system to a sinusoidal input voltage (220V, 50Hz) over
a period of 2 seconds.

3 Unified Modelling Theories

A perusal through monographs on “system dynamics” [5, 11] reveals that two unified
modelling theories have become firmly established over the last few decades.

The first, linear graph theory, was invented by Leonhard Euler in 1736 to solve
the famous Konigsberg bridge problem [1]. Kirchoff applied graph theory to his
analysis of electrical networks in the 1850s, and the generality of the graph theory
approach in all physical domains was established by Trent [32] in 1955. The appli-
cation of linear graph theory to physical system modelling is now well-established
[6, 10, 11]. For multidisciplinary applications, the coupling between the different
physical domains is not explicitly shown by the graph, but is embedded in the con-
stitutive equations for the coupling elements (transducers).

The second unified modelling theory, bond graph theory, was invented by Henry
Paynter [9] as an alternative notation in which energy flows between different phys-
ical domains are explicitly represented in the graph. Bond graphs were slow to be
accepted by the engineering community, “mostly because of rather hazy mathemati-
cal underpinnings” [26]. Birkett and Roe [14], among others, have published a series
of papers to address the lack of a combinatorial foundation for bond graphs. Nowa-
days, bond graphs are very well-known [2, 5, 12] and applied to multidisciplinary
problems in both academia and industry.

Some authors [26] have stated that bond graphs are a special case of oriented
linear graphs, while others [14] have concluded that bond graphs and linear graphs
are distinct special cases of matroids. Regardless of the relationship between bond
graph theory and linear graph theory, their representation of and application to multi-
disciplinary problems is very different in practice, especially for multibody systems.

In the following, a brief overview of bond graphs and linear graph theory is given,
and their differences are highlighted through their application to the four example
problems.



Unified Modelling of Multidisciplinary Multibody Systems 133

3.1 Bond Graph Theory

To develop a bond graph or linear graph model of a physical system, it is first de-
composed into a finite number of discrete components. In bond graph theory, one
distinguishes between “one-port” elements that connect to other components at two
locations, and “two-port” elements that have four connection points. A one-port ele-
ment is represented graphically by a single stroke, or bond, while a two-port element
is depicted by two bonds. It is through these bonds that power flows through the sys-
tem model; the two-port elements can provide an explicit representation of the energy
transfer between different physical domains in a multidisciplinary application.

Associated with each bond is an effort (e) and flow (f) variable, the product of
which gives power. For electrical components, the effort and flow corresponds to
voltage and current, respectively. For mechanical systems, the effort and flow are
usually taken as force and velocity, respectively, in what is known as the “force-
effort” analogy [12]. In the less popular “force-flow” analogy, forces are flows and
velocities are efforts.

By defining these generalized variables, and components with generalized con-
stitutive equations in terms of these variables, one can develop bond graphs that
represent multiple physical domains. The set of generalized one-port components
includes resistances (R), inertias (I), capacitances (C'), effort sources (S, ), and flow
sources (Sf). A resistance, through which energy is lost from the system, can model
an electrical resistor or a mechanical viscous damper. Similarly, an inertia can model
an electrical inductor or a mechanical inertia, in the force-effort analogy. In the force-
flow analogy, an inertia represents a mechanical spring. A summary of the bond
graphs and constitutive equations for generalized one-port components is shown in
Table 1

Table 1. Bond graphs and constitutive equations for generalized one-port components
Component Bond graph Equation

Effort source Se—| e=e(t)

Flow source Si—~ f=rf
Resistance |_~ R e=e(f)

Capacitance —™cC f=C%

Inertia —| ] e=1 ‘;—ft

Note that the bond graphs shown in Table 1 have a half-arrow associated with
them. This is to identify the direction used to measure positive power flow, a conven-
tion established by the modeller for each system. Usually, one tries to predict positive
power flows, starting from energy sources and flowing to loads. Thus, the arrow is
directed away from the effort and flow sources in Table 1. Since resistances dissipate
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power, usually in the form of heat, the arrow is directed towards the R component.
Finally, power may flow to and from the capacitances and inertias; in Table 1, power
flowing into these components (i.e. being stored) is chosen as positive.

Also shown in Table 1 are vertical bars at one end of each bond. This bar is known
as a “causal” stroke, and is used to assign causality to a model, i.e. which of the
efforts and flows are causes, and which are effects. The convention is that the causal
stroke indicates the direction of effort, with flow acting in the reverse direction. Thus,
the causal stroke is on the right side of the effort source in Table 1, and on the left side
of the flow source. With linear R elements, there is no preferred causality; one may
interpret the effort as causing the flow, or vice-versa. With linear inertias, the flow is
proportional to the time integral of effort. The causal direction shown in Table 1 for
the I element implies that effort is input to the element, and flow is the output. Thus,
flow is being calculated from effort, which requires an integration. This is known as
“integral causality”; the converse is derivative causality [12].

The assignment of causality to a bond graph model is used to facilitate the com-
putation of the system equations. Causality conflicts can also reveal a fundamen-
tal modelling problem. By obtaining integral causality for a bond graph model, the
governing equations will take the form of ordinary differential equations that can
be readily solved using numerical integration methods. Derivative causality is to be
avoided, due to the error-prone nature of computations involving numerical differen-
tiation.

There are two basic types of two-port elements: transformers and gyrators [12].
In a transformer, the efforts in the two bonds are proportional, with the ratio known
as the transformer modulus. Since transformers are energy-conserving elements, i.e.
the power in one bond equals the power in the other, the flows in the two bonds must
be equal to the reciprocal ratio. For gyrators, the effort in one bond is proportional
to the flow in the second, and vice-versa for power conservation. The proportionality
constant is the gyrator modulus. In modulated transformers and gyrators, the moduli
are time-varying inputs.

From the topology of the physical system being modelled, the bond graphs of
the discrete components are combined using 0 and 1 junctions, where 0 represents
a parallel connection, and 1 represents a series connection. For all components con-
nected by a 0 junction, all efforts are equal and all flows must sum to zero, taking
into account the direction assigned to the half-arrows. For all components connected
by a 1 junction, all flows are equal and all efforts sum to zero. Thus, the 0 and 1
junctions provide the topological equations for a given system.

By combining the topological equations with the constitutive equations, one has
a necessary and sufficient set of equations to generate a complete system model. The
bond graph approach is unified, since it can easily handle multidisciplinary applica-
tions, and very systematic. Thus, it is quite amenable to computer implementation
and several computer programs have been developed using bond graph theory as
their basis.

Full details of bond graph theory may be found in [5], [12], and [14]. In the
following, the application of bond graph theory to the four examples is presented
and discussed.
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3.1.1 Bond Graph Model of Microphone

Shown in Figure 7 is a bond graph representation of the condenser microphone
shown in Figure 1. A single bond graph provides a unified representation of the elec-
trical and mechanical domains making up this multidisciplinary application. Note the
use of the colon (:) notation in the figure to show the parameters associated with a
generalized component model. Also, the effort and flow variables are shown explic-
itly for some of the bonds, with effort above the bond and the flow variable below.

Fig. 7. Bond graph model of condenser microphone

The electrical circuit is modelled on the left using a resistance (R;), capacitance
(C5), aninertia (L3), and an effort source for the voltage driver (F,). These four elec-
trical components are connected in series, i.e. by a 1 junction. The assigned power
flow directions are consistent with those shown in Table 1.

The mechanical subsystem is modelled on the right using a resistance for the
damper (d7), a capacitance for the spring (kg), an inertia for the mass (ms), and an
effort source for the weight. The components in the physical system are connected in
parallel; however, we are using the conventional force-effort analogy which requires
that the bond graph components be connected by a series 1 junction. This is some-
what counter-intuitive, but it is needed to obtain the correct topological equations for
the force-effort analogy. Using the force-flow analogy, parallel and series mechanical
connections would be represented by parallel 0 and series 1 junctions, respectively.
Regardless of whether one uses a force-effort or force-flow analogy, the bond graph
does not bear much resemblance to the physical system.

The bond graphs for the mechanical and electrical domains are explicitly coupled
by the capacitance element. In this case, the moving-plate capacitor is modelled as
a “C-field” two-port component with the mechanical effort e, = F» and electrical
flow fy = i defined by the constitutive equations (1) and (2), respectively.

The system equations are derived very systematically from the bond graph. One
starts with the topological equations for efforts from the 1 junctions:

’1)4—1}1—1)3—’02:0 (12)
B+ Fs+Fg+ Iy —F;=0 (13)
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where v; and Fj is the voltage or force for component 4, and F}; is the weight. The
corresponding topological equations for flows are:

i1 = i3 =4 = io (14)
Gy = dg = 7 = Gy = 25 = & (15)

Combining the topological equations (12-15) with the constitutive equations for
components, and re-arranging, one obtains:

diy
2
dt 3

d?is
dt2

di
Cé:t <R1i2 — Lgﬁ + E4(t)> + Cq <R1

5 +E4> =iy (16)

1 d ’
ms@ + drd + kex + msg = 505 <—Rli2 - L3£ + E4(t)> (17

where C), = %ﬂg’:). These two ODEs are equivalent to those derived by hand in
[17], and can be solved for the capacitor current i2(t) and plate separation x ().

3.1.2 Bond Graph Model of Inverted Double Pendulum

When one switches from one-dimensional systems to multi-dimensional mechanical
systems, the bond graph representation becomes considerably more complex. Con-
sider the bond graph model of the inverted double pendulum, taken from [5] and
shown in Figure 8. This bond graph requires some explanation since it bears little
resemblance to the physical system in Figure 2.

The bond graph model consists mainly of one-port elements, plus two multi-port
modulated transformers (MTFs). Although the system has only 3 degrees of freedom,
it is modelled by 7 absolute speeds: & for the sliding mass, and z, ¥, 0 for each of the
two links. Associated with each of these speeds is an inertia in the bond graph, e.g.
the moment of inertia J; corresponding to 91. Note that §; = [g, the coordinate for
the first revolute joint in Figure 2, and 6, = (¢ + (7. Gravity and the applied force
F' are modelled as effort sources in the —y and z directions, respectively.

Clearly, there are a lot of bonds making up the model of this relatively simple
mechanical system. This is due to the fact that bond graphs were designed to oper-
ate on scalar variables. Hence, there is one bond for each of the 7 absolute speeds.
One can combine the speeds associated with a given body into a single “multibond
graph” [31] to obtain a simpler graph representation. However, the speeds are still
represented by a column matrix of scalar variables, and not as a frame-invariant ten-
sor, e.g. a Gibbs vector. Thus, the modeller must keep track of local reference frames
and introduce manually-derived rotation transformations into the graph, as needed.

Note also that there are no components to explicitly represent the joints that con-
nect the rigid bodies and constrain their absolute speeds. Thus, the 4 kinematic con-
straint equations (3) that express the interdependency of the 7 absolute coordinates
must also be derived manually, with 2 equations obtained from each revolute joint.

The constraint forces that arise in the joints are converted into their correspond-
ing Lagrange multipliers by the modulated transformers. Thus, these MTF elements
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Fig. 8. Bond graph model of inverted double pendulum [5]

represent the rows of the Jacobian matrices (transposed) from equation (4); the top
MTF in the bond graph corresponds to the Jacobian of the two kinematic constraints
from the lower revolute joint in Figure 2, while the bottom MTF represents the Jaco-
bian of the two constraint equations from the upper revolute joint.

Bond graphs were designed to operate on speeds, so that power is obtained from
the product of efforts and flows. However, multibody system equations are gener-
ally expressed in terms of displacements, which are needed to calculate kinematic
constraint equations, their Jacobians, and kinematic transformations between frames.
These displacements are not represented as effort or flow variables in the bond graph,
and must be obtained from numerical integration of the absolute speeds.

The use of absolute coordinates results in large systems of DAEs corresponding
to equations (3) and (4). To avoid having to solve DAE:s, resistance and capacitance
elements are added to the bond graph to model damping and stiffness in the joints
[33]. The translational speeds & across the joint, which are zero for an ideal joint
model, are the complementary variables to the Lagrange multipliers. By modelling
the joints in this fashion, the constraint equations are only needed to compute the
Jacobians for the MTF elements, and the DAEs are converted to stiff ODESs. For the
inverted double pendulum modelled with 7 absolute speeds, the 11 DAEs are reduced
to 7 ODEs. Numerical integration of the latter may require special solvers for stiff
systems, and will not guarantee that the 4 constraint equations are satisfied.
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Tiernego and Bos [31] use multibond graphs to analyze the dynamics of open-
loop multibody systems and, by applying well-known velocity transformations from
absolute speeds to joint speeds [18], they are able to generate a minimal set of ODEs
corresponding to equation (5). However, their procedure cannot handle the closed
kinematic chains that typically arise in mechanical systems, and it seems that much
of their analysis (e.g. derivation of velocity transformations) must also be performed
manually before the bond graph is constructed.

Favre and Scavarda [15] present an extension of the work by Tiernego and Bos
to systems with closed kinematic chains, but it seems that manual derivations of
kinematic transformations are still required (no equations are presented for their two
examples). The current state of bond graph modelling of multibody systems is best
summarized by Karnopp et al [5]: “It is true that low-order, linear systems can be
simulated with virtually no effort from the user. But complex nonlinear systems do
require significant user input”.

3.1.3 Bond Graph Model of Robot

Consider the bond graph representation, shown in Figure 9, of the two-link PD-
controlled robot manipulator from Figure 4. The bond graph is quite complex, mak-
ing it difficult to interpret, but it does constitute a single unified representation of this
multidisciplinary application.

-d,sin®,)

TI \yT/MTF%iﬁlﬁlml

Se— {1 | ®GY —— ™11 C
kep, d, cos(©,)
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Fig. 9. Bond graph model of robot manipulator
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The two DC-motors are modelled on the left of the bond graph. The applied volt-
age (coming from the PD-controller) is represented as an effort source, while the I
and R elements correspond to the armature inductances and resistances, respectively.
These elements are connected in series (1 junction) with a gyrator (GY), that couples
the electrical domain to the mechanical domain. Substituting the component equa-
tions into the sum of efforts for the 1 junction gives the constitutive equation (6) for
the DC-motor model.

The mechanical portion of this bond graph is somewhat different from that shown
in Figure 8 for the inverted double pendulum. The mechanical subsystem is still
represented by absolute speeds, with inertias corresponding to each of these 6 speeds.
The joints are again modelled by stiffness (C) elements, but damping across the
joint is not included. The modulated transformers are now used to convert between
the Cartesian , y speeds and the absolute rotational speeds 6, and 65, i.e. velocity
transformations. These transformations are manually derived and shown in the bond
graph as parameters for the MTF two-port elements. The absolute rotational speeds
are easily converted into joint angular speeds using 0 and 1 junctions. The rotational
damping in the DC motor, seen in equation (7), is modelled by a resistance acting on
the joint speed.

16
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Fig. 10. Angular displacement of first joint versus time

To evaluate the performance of the PD-controller, the dynamic response of the
robot is simulated by numerically integrating the 6 ODEs for the absolute coordi-
nates. This was accomplished using the commercial software package 20-sim?, with
which the system equations can be generated from the bond graph model and nu-
merically integrated. The 20-sim results for the angular displacement and speed of
the first joint are shown in Figures 10 and 11, respectively. Also shown are the re-

2 www.20sim.com
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sults from two other software packages: DynaFlex, based on linear graph theory, and
Robotran/Electran [13, 16], based on the virtual work principle and Kirchoff’s laws.

— Electran
20-SIM
—— DynaFlex

Angular Velocity [rad/sec]

Time t [s]

Fig. 11. Angular speed of first joint versus time

Because the robot is started from rest and immediately commanded to move at
a constant speed of 90/4 deg/s (0.39 rad/s), large voltages are supplied by the PD
controller to accelerate the system. This sets up an oscillation in the system response
that is still evident at the end of the simulation. The plot of joint speed shows that
the response is slowly converging to 0.39 rad/s, and that the bond graph results from
20-sim are in good agreement with those from the two other programs. However,
additional high-frequency oscillations are visible in 20-sim velocity plot, resulting
from the use of stiff springs to model the revolute joints. In contrast, the Electran
and DynaFlex programs make direct use of rigid joint models, and their responses
do not exhibit this high-frequency oscillation. As a result, they are able to simulate
this problem faster than 20-sim.

3.1.4 Bond Graph Model of Gate System

Shown in Figure 12 is a bond graph model, created by Sass et al [27], of the 3-phase
induction motor used to actuate the parking gate system in Figure 5. The induc-
tive effects and the electromechanical coupling are modelled by a mixed IC-field for
which the corresponding inductance matrices Lg, L,, and M are defined by equa-
tions (9) and (11). The star-star connection shown in Figure 6 is modelled by the two
0 junctions that force the sum of the three currents to be zero. This star-star connec-
tion results in two constraints that can be seen in the bond graph as two derivative
causalities for the I part of the IC-field.
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Fig. 12. Bond graph model of 3-phase actuator

A multibond graph of the 6-bar mechanism is shown in Figure 13. Using the
approach of Favre and Scavarda [15] for this mechanism, every vector is assumed
to be resolved in the inertial reference frame, and the center of mass is taken as the
point of reference for each body. Thus, the bond graph takes the shape of a diamond
for each body, as can be seen in the figure. This bond graph contains 5 moving bodies
(for simplicity, the flexible beam is not shown in the graph) and the loop constraints
are imposed by means of the zero-velocity flow source (Sy = 0). This method for
opening and closing kinematic chains is only valid for revolute joints connected to
the ground. Closing the loops elsewhere would require the manual calculation of the
relative velocities of the two points connected by the revolute joint. Other joint types,
e.g. prismatic or universal, would be even more problematic.
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Fig. 13. Bond graph model of parking gate mechanism

One can see that the causality assignment and derivation of equations is not
straightforward for a multidisciplinary system of this complexity. Furthermore, the
manual derivation of kinematic transformations is very tedious for a system con-
taining several bodies, especially if some of them are flexible. As a result of these
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difficulties, a numerical simulation of the system response using bond graphs and the
20-sim software was abandoned.

3.2 Linear Graph Theory

Linear graph theory is a branch of mathematics devoted to the study of system topol-
ogy. It has been combined with the characteristics of physical components to ob-
tain a unified systems theory for modelling multidisciplinary applications. The term
“graph-theoretic modelling” (GTM) is often used to denote this systems theory. In
a nutshell, a system model is obtained by combining topological relationships from
linear graph theory with the constitutive equations for individual components. This
systems theory is very methodical and well-suited to computer implementation.

To model a physical system, individual components are identified and their con-
stitutive equations are determined. In general, these constitutive relationships are ob-
tained from experimental measurements of the component’s “through” and “across”
variables; through variables (7) are measured by an instrument in series with the
component, while across variables («) are obtained from an instrument in parallel.
For electrical systems, the through and across variables are current and voltage, re-
spectively. For mechanical systems, force and displacement (or its derivatives) play
the role of through and across variables, respectively. Note that through and across
variables may be tensors of any order, including scalars and vectors.

One can see that the through and across variables correspond (approximately)
to the flow and effort variables, respectively, from bond graph theory. However, the
definition of through and across variables as experimental measurements naturally
results in the force-flow analogy for mechanical systems. Furthermore, mechanical
displacements are represented explicitly, and not as numerical integrals of velocities.
Finally, the GTM approach is not restricted to scalar variables.

Once the constitutive equations are determined, the component models are com-
bined in the topology defined by the structure of the physical system. A linear graph,
consisting of lines (edges) and circles (nodes or vertices), is used to represent the sys-
tem topology. The edges represent the individual components, whereas nodes repre-
sent the points of their interconnection. From this graph, linear topological equations
are systematically obtained in terms of the through and across variables for all com-
ponents. The system model is simply the combination of these topological equations
with the individual constitutive equations.

Graph-theoretic modelling has been applied to a wide variety of disciplines and
multidisciplinary applications, including electrical and mechanical systems [6, 10],
electromechanical multibody systems [28], and electrohydraulic multibody systems
[25]. The essential features of graph-theoretic modelling are presented in the follow-
ing by means of the four example problems.

3.2.1 Linear Graph Model of Microphone

For the condenser microphone from Figure 1, a linear graph representation is shown
in Figure 14. Edges Ry, Cs, L3, and E represent the resistor, capacitor, inductor,
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and voltage source, respectively. Note that the linear graph resembles the physical
system, which is an advantage when it comes to modelling using this approach. Di-
rections are assigned to each edge to establish a positive convention for measuring
the through and across variables, similar to setting the polarity on a measuring in-
strument. The constitutive equations for electrical components are expressed in terms
of the scalar variables, current (¢) and voltage (v). For the purpose of this example,
we assume standard linear relationships for these components, e.g. v; = Rj4; and
vy = Lg ‘%“, but the constitutive equations may be highly nonlinear in general.

mY

4

Fig. 14. Linear graph model of condenser microphone

Also shown in Figure 14 is the linear graph of the mechanical part of the con-
denser microphone. The edge ms represents the inertia and weight of the moving
mass; the edge begins at a ground-fixed (inertial) reference node and terminates at
the center of mass. Its constitutive equation is given by the combination of gravity
with the d’Alembert form of Newton’s Second Law: F5 = msg — msas, where
the vector force F5 depends on gravity g = —g%, the vector acceleration as = % %,
and the upwards unit vector Z (parallel to x). The edge Fg represents the combined
effects of the spring and damper components (these could easily be split into sepa-
rate edges for the spring and damper, if desired). Its vector constitutive equation is
Fs = —kg(|rs| — ls)P6 — d7(ve- 76)Ts, where lg is the undeformed spring length,
ke and d7 are the stiffness and damping coefficients, vg is the relative velocity of
the endpoints, and 7#g = rg/|rg| is the unit vector parallel to the component. Finally,
the edge 7o locates the point where the spring-damper is attached to the ground:
ro = l() 2.

Note that the graph consists of two parts, one for each physical domain. This
is always the case for linear graph models of multidisciplinary applications. The
parts of the graph are not coupled explicitly, but by the constitutive equations for
transducer components, which have an edge in each of the coupled domains. In this
example, the electrical and mechanical domains are coupled by the moving-plate
capacitor, which is characterized by two constitutive equations: the scalar equation
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(2) for the electrical edge and the vector equation 5 = —F5?% for the mechanical
domain, where the attractive force F5 is defined by equation (1) and acts in the —X
direction.

For each of the two parts of the linear graph, mechanical and electrical, we can
generate sets of topological equations that relate the through and across variables.
This can be done manually by inspection of the graph, or by applying matrix opera-
tions to an “incidence matrix” that encapsulates the topology of the physical system.
For a linear graph with e edges and v vertices, entry I}, of the e x v incidence matrix
Iis [0, -1, or +1] if edge k is [not incident upon, incident and away from, or incident
and towards] the vertex j.

The Vertex Postulate [6] then allows us to write:

IT=0 (18)

where T is the column matrix of through variables for all edges. For electrical sys-
tems, the Vertex Postulate reduces to Kirchoff’s Current Law at every node. For me-
chanical systems, the Vertex Postulate gives v equations for dynamic equilibrium.

Starting from the Vertex Postulate, two very useful sets of topological equations,
the “cutset” and “circuit” equations, can be systematically derived by selecting a tree
and applying elementary matrix operations to I. For electrical networks, the circuit
equations correspond to Kirchoff’s Voltage Law around a closed circuit, while the
cutset equations are linear combinations of the vertex equations for all the nodes in
a given subgraph.

A tree is a set of v — 1 edges (“branches”) that connects all of the vertices but
does not contain any closed loops. A very attractive feature of linear graph theory
is that by selecting a tree, one can control the primary variables appearing in the
final system: they are the across variables c;, for branch elements, and the through
variables 7. for cotree elements (“chords”). This is accomplished by:

e re-writing the cutset equations as the chord transformations 7, = —A .7, where
T3 are the branch through variables and A is obtained from elementary row
operations on I

e Dby re-writing the circuit equations as the branch transformations e, = —Bpav,
where o, are the cotree across variables

The Principle of Orthogonality, which represents a very generalized energy conser-
vation principle, guarantees that B, = — AT

By selecting edges R;, L3, and Ey into the tree for the electrical sub-graph in
Figure 14, one gets the chord transformations:

i 1
is y= 1| 1 | is (19)
i -1

and the single branch transformation:

vg=—| 1 U3 (20)
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Assuming that there is one constitutive equation for each of the v elements, sub-
stituting the branch and chord transformations into these constitutive equations will
result in v system equations in terms of the v primary variables.

It is possible to reduce the equations to an even smaller set by exploiting the
linear nature of the electrical constitutive equations. One approach is to generate
one equation for each capacitor and inductor, and to use the remaining constitutive
equations and branch/chord transformations to express all other variables in terms of
the capacitor voltages and inductor currents. This approach was successfully imple-
mented by Muegge [7]. For the electrical portion of the linear graph shown in Figure
14, one would get two first-order ODE:s in terms of v, and 3.

Another approach is to express all variables in terms of the currents associated
with chords, or the voltages associated with branches. The former is called the cur-
rent formulation, while the latter is named the voltage formulation; both were imple-
mented in the Maple symbolic programming language by Scherrer and McPhee [28].
By selecting the tree appropriately, one can significantly reduce the final number of
system equations.

For the example shown in Figure 14 with the capacitor Cy selected into the
cotree, the current formulation will give a single second-order ODE in terms of the
corresponding current i5.

This is accomplished by substituting the chord transformations in (19) into the
constitutive equations for the branches, giving:

V1 = Rlig
dio
= L3—=
U
Vg = E4(t)

where E,(t) is the prescribed voltage source. Substituting these constitutive equa-
tions into the branch transformation (20) gives:

. di
vy = —Ryip — Lgd—; + E4(t) 1)
which expresses the capacitor voltage in terms of its current. Substituting this equa-
tion into the electrical constitutive equation (2), the single ODE for the electrical
domain is obtained:

, , di d _ di .
Chi (-Rm - Lgd—; + E4(t)> +Co (-Rm - Lgd—; + E4(t)) =iy (22)

where CY) = dC5/dx and the primary electrical variable is the cotree current is.

For the mechanical domain, the fixed vector 7o and mass ms are selected into the
tree shown as bold edges in Figure 14, resulting in only one primary across variable
r5 = x. This is an independent coordinate for the 1-dof mechanical subsystem, and a
single dynamic equation is obtained from the cutset equation for the mass, projected
onto its motion space defined by 2:

(Fs+F; —Fs=0)-1% (23)
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Substituting the mechanical constitutive equations into this expression, evaluating,
and re-arranging,

Ldc,

5 v3 4 drie + ke(z6 — lg) = 0 (24)

—msZ —msg +
Assuming that the spring is unstretched at + = 0, which implies that I = 70,
one gets the branch transformations:

Xy =X

T =T — X, i’@z—i‘

which shows that the spring-damper shortens as x increases. Substituting these
branch transformations and the capacitor voltage (21) into equation (24), one gets
the single ODE for the mechanical domain:

b dri ke 4 msg — 29 (-2 pe) es)
msx 7L 6L T MM5g = 2 du 172 3 dt 4
Together, equations (22) and (25) can be solved for the primary variables i (¢)
and z(t). Equations (22) and (25) are equivalent to those derived by hand in [17].

3.2.2 Linear Graph Model of Inverted Double Pendulum

The same basic concepts apply when one models a multi-dimensional mechanical
(multibody) system using linear graph theory: the system model is obtained by com-
bining the constitutive equations for individual components with the linear cutset
and circuit equations resulting from their connectivity. Again, the selection of a tree
determines the primary variables appearing in the system equations. The cutset and
circuit equations retain a simple form because linear graph theory allows the use
of vector modelling variables. However, the constitutive equations for some compo-
nents will be nonlinear due to the finite rotations of bodies in the system. Further-
more, the physical interpretation of nodes and edges must be generalized.

To illustrate, consider the inverted double pendulum shown in Figure 2, and its
linear graph representation in Figure 15. For the sake of clarity, the three bodies are
superimposed on the graph with dashed lines. One can see that the topology of the
physical system is closely mirrored by the structure of the linear graph.

Each node in the linear graph represents the position and orientation of a body-
fixed reference frame, while the edges represent transformations between frames
corresponding to physical components. For each element, there are now two sets of
through and across variables: translational and rotational. Thus, there will be two
sets of cutset and circuit equations, since these variables cannot be added together.
Although the incidence matrix is the same for each, selecting different trees can be
used to create different cutset and circuit equations for translation and rotation. This
can be used to reduce the system equations to a set that is smaller in number than
those generated by conventional multibody formalisms [23].
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Fig. 15. Linear graph model of inverted double pendulum

In Figure 15, the edges m;, ms, and ms represent both the translational and
rotational inertia of the three rigid bodies (slider and two links). These bodies are
connected by the revolute joints hg and h7, and by the prismatic joint sg between
the slider and the ground. The “rigid arm” elements r4 and r5 define the position
and orientation, relative to the center of mass frames on the bodies, of the body-fixed
frames that define the connection points of these joints. Finally, the external force
on the slider is modelled by the force element Fy, originating at the inertial frame
(node) and terminating at the slider.

The constitutive equations for the multi-dimensional translation of rigid bodies
(and spring-dampers) are the same as that shown in the previous section. However,
a second equation relates the d’ Alembert torque on the body to its rotational inertia.
This equation corresponds to Euler’s equations for rotational motion.

For the rigid-arm elements, e.g. 4, the tip node does not rotate relative to the tail
(center of mass) node; hence, the angular velocity (e.g. wy) is zero. However, the
translational velocity of the rigid-arm is a nonlinear function of the angular velocity
of the body on which it resides, e.g. v4 = wy X ry4, which is a well-known result
from rigid body kinematics. For the ideal joints, one always finds that the motion
allowed by a joint, e.g. rg = x% where rg is the translational displacement of the
slider along X, is orthogonal to the reaction forces and torques that arise in the joint,
e.g. Fg = Fg jand Tg = Tglz: where 7 and k are unit vectors parallel to Y and Z,
respectively. This is a result of the fact that ideal joints do no work, and can be used
to eliminate joint reactions in the system dynamic equations.

The topological equations remain linear regardless of the nonlinearities in the
constitutive equations. Furthermore, the selection of trees can again be used to de-
fine the primary variables q and X in the final system equations, where the “branch
coordinates” q are the unknown across variables for elements (branches) in the tree.

By selecting into the tree those components with known across variables, i.e. r4
and r5, the number n of branch coordinates (and system equations) is reduced. If the
tree is completed by m1, ms, and mg, then the final equations are in terms of the
absolute coordinates for the three bodies. In that case, the system equations take the
form of the DAEs (3) and (4).

If joints hg, h7, and sg are selected into the tree in place of mq, ms, and msg,
then one obtains equations in the joint coordinates 3, (37, and x; for this open-loop
system, the governing equations would then take the form of the ODEs shown in
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(5). Thus, linear graph theory provides a unification of traditional absolute and joint
coordinate formulations.

Any joints left in the cotree, e.g. hg in the absolute coordinate formulation, will
provide the reaction loads appearing in the Lagrange multipliers A. Furthermore,
these cotree joints will also provide one kinematic constraint equation for each re-
action load. These m constraint equations (3) express the relationships between the
branch coordinates, which will not be independent if there are joints in the cotree;
this is always the case for a system with closed kinematic chains. These constraint
equations are always found by projecting the circuit equations for the cotree joints
onto their reaction spaces.

To demonstrate, consider a mixed-coordinate formulation that results from se-
lecting m1, me, 74, 75, and sg into the tree for Figure 15. The corresponding branch
coordinates q = [x1,y1, 01, T2, Y2, 02, x| are identical to those used in the previous
bond graph model of this system. (Note that the joint speed « is the same as the ab-
solute speed used in the bond graph model, which neglected the other two absolute
speeds for the sliding mass in an ad hoc manner). The two revolute joints left in the
cotree, hg and hr, each provide 2 Lagrange multipliers and 2 constraint equations to
the system DAEs, for a total of m = 4 constraints. For example, one can generate
the translational circuit equation for joint hg:

I‘1+I‘4—I‘6—I'8:0 (26)

where rg = 0 and rg = 2% from the constitutive equations for revolute and prismatic
joints, respectively. For the rigid body, r1 = z12 + y1j, and ry = —lysin6;7 —
l1 cos 60 j for the body-fixed vector.

Note that the circuit equations represent the zero summation of displacement
vectors around a closed kinematic chain. The reaction space for hg is spanned by unit
vectors % and j, since the revolute joint prevents translations along these two axes (but
allows rotation along &, which defines the joint motion space). Projecting the vector
circuit equation (26) onto these two unit vectors, and substituting all constitutive
equations, results in the kinematic constraint equations:

zr1 —l1sinf; —x =0 27
Yy — l1 COS 01 =0 (28)

which are easily verified by hand. These equations, which are very systematically
generated in terms of g, correspond to two of the four rows in the constraint equations
(3) for this example. The other two equations are obtained in exactly the same manner
from the cotree joint hy.

To obtain the dynamic equations of the system, the cutset equations for each
branch are projected onto the motion space for that branch. This is why, in the pre-
vious example, the cutset equation for the capacitor mass ms was projected onto the
unit vector 2 defining its motion space.

Note that one can also generate the dynamic equations by combining linear graph
theory with analytical mechanics, e.g. the principle of virtual work. This approach
is very useful for incorporating flexible bodies into the multibody system model
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[30]. It has been implemented using the Maple symbolic programming language
into a multibody dynamics program called DynaFlex?®, which can reduce the DAEs
to ODEs by means of symbolic coordinate partitioning. DynaFlex can be also be
used to model electromechanical multibody systems, as shown in the next section.

3.2.3 Linear Graph Model of Robot

For the PD-controlled robot manipulator in Figure 4, the linear graph representation
is shown in Figure 16.

Fig. 16. Linear graph model of robot manipulator

The mechanical subgraph is obtained by applying the systematic procedure de-
scribed in the previous section:

e one node is added for each body-fixed reference frame, e.g. a center of mass
frame, joint connection point, or force application point;

e these nodes are connected by edges corresponding to different physical compo-
nents (rigid body m, revolute joint h, rigid arm r).

In a similar manner, the electrical subgraph is directly obtained by drawing an edge
for each physical component in the electrical circuit, on a one-to-one basis (e.g. volt-
age source V). As described previously, the two physical domains are coupled by
the DC-motor transducer elements (M), which have an edge associated with each
domain. The constitutive equations for the electrical and mechanical edges are de-
fined by equations (6) and (7), respectively.

Note that many of the contributing terms in these transducer constitutive equa-
tions could be modelled by separate elements in the electrical and mechanical sub-
graphs, as was done in the bond graph model; here, they are combined into this
“subsystem” representation of the DC-motor, for modelling convenience [29].

3 http://real.uwaterloo.ca/~dynaflex/
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To generate a minimal set of system equations, all rigid arms and revolute joints
were selected into the tree of the mechanical subgraph. For the electrical subsystem,
the voltage sources were selected into the tree and a current formulation was applied.
The system equations were automatically generated in symbolic form by DynaFlex;
these ODEs are explicit functions of the joint angles 6; and 6;_- and the two motor
currents 77 and ig. These 4 ODEs were exported to Matlab and solved using a stan-
dard numerical integrator. As shown in Figures 10 and 11, the DynaFlex results are
in exact agreement with those from the independent software package Electran.

3.2.4 Linear Graph Model of Gate System

Figure 17 depicts the linear graph representation of the parking gate system shown
in Figures 5 and 6. The mechanical subgraph consists of components discussed in
previous sections, plus three new components: a weld joint (w), a flexible body (fb),
and an induction motor (¢m). The weld joint, as its name suggests, simply locks two
reference frames together.

[htbp]

Fig. 17. Linear graph model of parking gate

The flexible body element represents the flexible parking barrier. Details regard-
ing the constitutive equations for the flexible body can be found in [30]. To summa-
rize, a Rayleigh beam model is used in conjunction with polynomial shape functions
that represent the axial and torsional deformations, as well as bending about two
lateral axes.

For this planar mechanism, only the in-plane bending was considered; 5 elastic
variables were used to model this bending deflection. The value of 5 was obtained by
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progressively adding more deformation variables until the simulation results con-
verged. It was also found that including axial deformations in the flexible beam
model had no effect on the simulation results.

The mechanical domain is coupled to the electrical domain by the induction mo-
tor. The constitutive equation for the mechanical edge (¢mog) of this transducer is
defined by equation (8).

The graph for the electrical domain is almost identical to the circuit shown in
Figure 6, the only difference being that the inductors have been replaced by mutual
inductance components. Note that the induction motor transducer has multiple edges
in the electrical subgraph. The constitutive equation for each one of these MI edges
is defined by equation (10).

By selecting an appropriate tree (shown in bold in Figure 17) and using a current
formulation, DynaFlex was used to generate 14 ordinary differential equations in
symbolic form: 5 for the rigid multibody system in terms of joint coordinates Fo5 —
(B24, 5 for the deformation variables of the beam, and 4 for the electrical system in
terms of the cotree resistor currents s, ¢g, ¢g and ig. These ODEs were exported to
Matlab and solved by a standard numerical integrator.
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Fig. 18. Angular displacement of input link

Shown in Figures 18 and 19 are the numerical results from DynaFlex and Elec-
tran for the angular displacement of the input link and the current through a rotor
inductor, respectively. The plots on the right of these figures are over a shorter time
scale, in order to show the slight differences between the DynaFlex and Electran re-
sults that are not visible in the plots on the left. These results have been obtained
using a 1:53 gear ratio between the motor and the 6-bar mechanism.

The results from the two software packages are nearly identical, with only slight
differences in the currents. There are two possible sources of this difference:

e DynaFlex uses a Rayleigh beam model, while the Electran results were generated
with a flexible beam model that consisted of several rigid bodies connected by
rotational springs.
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Fig. 19. Current through rotor inductor Lo (M I15)

o the Electran results were generated with a different set of joint coordinates than
those used by DynaFlex.

Note that the input link rotor oscillations shown in Figure 18 are damped. The only
dissipative elements in this model are the electrical resistance; changing the resis-
tance value has an effect on the damping of these mechanical oscillations. This illus-
trates the tight interaction between the electrical and mechanical subsystems in this
multidisciplinary application.

4 Conclusions

The two most prominent unified theories for modelling multidisciplinary systems —
linear graph theory and bond graph theory — have been examined in detail. Although
similar in their decomposition of a system into a collection of discrete component
models that are combined using topological equations, they are quite different in
their graphical representation, the variables that they use, and the range of problems
for which they are suited.

A bond graph model provides a single, unified representation of a multidisci-
plinary application, in which the coupling between physical domains is represented
explicitly by a transducer element in the graph. Associated with each element are ef-
fort and flow variables, the product of which is the power flowing through the graph.
Bond graphs are very powerful for modelling systems governed by scalar variables,
e.g. electrical networks and 1-dimensional mechanical systems, and a number of
software packages are available for simulating bond graph models. However, they
were not designed to use tensor variables or mechanical displacements, and are there-
fore not very well-suited to the modelling of planar or spatial mechanical systems.
Furthermore, the popular use of the force-effort analogy leads to a discrepancy be-
tween the multibody system topology and the junctions used to model this topology,
the use of absolute coordinates in bond graph models leads to relatively large systems
of DAEs, and systems with several bodies require many tedious manual calculations
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of kinematic transformations. Further research is needed to address these issues in
bond graph modelling of multibody systems.

A linear graph model also provides a single, unified representation of a multidis-
ciplinary application. However, the coupling between domains is not as evident in the
graph, which consists of separate parts for each domain; this coupling is embedded in
the constitutive equations for transducer elements, which have an edge in each of the
two connected domains. Graph-theoretic modelling is supported by very few soft-
ware products, but it is very well-suited to the modelling of multi-dimensional mul-
tidisciplinary applications. This can be attributed to the use of mechanical displace-
ments as across variables, the ability to use tensors as through and across variables,
and the existence of models for a variety of mechanical joints and rigid or flexible
bodies. A unique and powerful feature of a graph-theoretic model is that, by select-
ing a tree, one can control the variables that appear in the final system equations.
For multibody systems, these variables can include absolute or joint coordinates, or
some combination of the two.
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