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ABSTRACT

Mpyoelectric signals from the human motor control system
can improve the real-time control and neural-machine interface
of robotic leg prostheses and exoskeletons for different locomo-
tor activities (e.g., walking, sitting down, stair ascent, and non-
rhythmic movements). Here we review the latest advances in
myoelectric control designs and propose future directions for re-
search and innovation. We review the different wearable sensor
technologies, actuators, signal processing, and pattern recogni-
tion algorithms used for myoelectric locomotor control and intent
recognition, with an emphasis on the hierarchical architectures
of volitional control systems. Common mechanisms within the
control architecture include 1) open-loop proportional control
with fixed gains, 2) active-reactive control, 3) joint mechanical
impedance control, 4) manual-tuning torque control, 5) adaptive
control with varying gains, and 6) closed-loop servo actuator
control. Based on our review, we recommend that future research
consider using musculoskeletal modeling and machine learning
algorithms to map myoelectric signals from surface electromyog-
raphy (EMG) to actuator joint torques, thereby improving the au-
tomation and efficiency of next-generation EMG controllers and
neural interfaces for robotic leg prostheses and exoskeletons.
We also propose an example model-based adaptive impedance
EMG controller including muscle and multibody system dynam-
ics. Ongoing advances in the engineering design of myoelectric
control systems have implications for both locomotor assistance
and rehabilitation.

1. INTRODUCTION

Lower-limb prostheses and exoskeletons can be subcatego-
rized into passive, semi-powered, or powered devices [1, 2]. The
development of powered (also called robotic) prostheses and ex-
oskeletons for real-world applications requires that such devices
be self-contained (i.e., untethered), have similar dimensions and
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inertial properties as the biological limbs [3], and have differ-
ent joint mechanical impedances (e.g., stiffness and damping)
for different locomotion modes [4]. Unlike passive and semi-
powered devices, robotic leg prostheses and exoskeletons can
uniquely generate net positive mechanical power to accelerate
the human-machine (so-called biomechatronic) system using hy-
draulic, pneumatic, or electric actuators.

The optimal engineering design of an adaptive and robust
controller for these robotic devices, especially while physically
interacting with humans and real-world environments, remains a
significant challenge, to which researchers are actively working
on to better assist movement and rehabilitation [5]. To date, most
devices have used a hierarchical control architecture, including
high-level and lower-level controllers. The high-level controller,
also called the supervisory controller, is in charge of recognizing
the user’s locomotor intent (e.g., walking upstairs). The lower-
level controllers are used to control the robotic device based on
the high-level control decisions [5, 6].

Traditionally, individual controllers have been designed and
optimized for variety of locomotion modes like level-ground
walking, ramp ascent and descent, stair ascent (see Fig.1), and
sit-to-stand [7-9]. Finite state machines using mechanical and/or
inertial sensors have struggled with effectively transitioning be-
tween different locomotor activities [10]. Consequently, these
systems have typically limited the user’s mobility and overall
quality-of-life [10]. Errors in identifying the user’s locomotor in-
tent can be reduced by incorporating myoelectric signals into the
robot control system [10, 11]. Surface electromyography (EMG)
has been the most commonly used sensor for myoelectric con-
trol. Motivated to inform the design of next-generation locomotor
control systems, we reviewed the state-of-the-art in myoelectric
(EMG) controllers for robotic leg prostheses and exoskeletons,
with an emphasis on the hierarchical architectures of volitional
control systems.
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FIGURE 1: STAIR CLIMBING WITH A ROBOTIC PROSTHESIS USING
MYOELECTRIC CONTROL. PHOTO COURTESY OF HELEN HUANG
(UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND NORTH
CAROLINA STATE UNIVERSITY, USA)

2. BACKGROUND OF CONTROLLERS

Before discussing the design and performance of different
myoelectric controllers, we first introduce the general control
approaches used by robotic leg prostheses and exoskeletons, in-
cluding echo control, finite-state machines, and volitional control.
Echo control systems mainly target users with unilateral mobility
impairments. This controller uses closed-loop position control
by which the robotic limb tracks the contralateral unaffected bi-
ological leg trajectories using mechanical and/or inertial sensors
with a one-half stride delay [12]. While echo control systems are
relativity straightforward and easy to implement, the controller
is not real-time and significantly limits the human-machine dy-
namic interactions (e.g., the user passively rides the robotic de-
vice during locomotion); this muscle inactivity can also result in
further weakening. In contrast, finite-state machines use kine-
matic and/or force information [13], and a pattern recognition
algorithm, to recognize the intended locomotion mode. Each
finite-state is predefined by system variables that adjust the de-
vice mechanics like robot joint kinematics [14, 15]. Historically,
myoelectric signals were mainly used to transition between dif-
ferent finite-state locomotion modes [14] and were not used for
direct volitional control.

Myoelectric controllers can allow robotic prostheses and ex-
oskeletons to respond reliably to the user’s locomotor intent, even
for small nonrhythmic movements like driving a car or reposi-
tioning the legs while seated [2, 16]. Since improper operation
can lead to falls and potentially severe injuries, EMG controls
should be especially safe, predictable, real-time, and robust to
disturbances. Recently, researchers have used biological muscle
activations from the residual limb for neural control of robotic
prostheses [8, 10, 13, 15, 17-21]. Incorporating EMG signals into
the robot control system has been shown to significantly reduce
misclassifications of locomotion modes in lower-limb amputees
[22, 23].

3. CONTROL REQUIREMENTS

Here we review the different wearable sensors, signal pro-
cessing, pattern recognition algorithms, and actuator technolo-
gies used by myoelectric locomotor control systems.

Wearable Sensors. Control systems for robotic leg pros-
theses and exoskeletons have used different wearable sensor tech-
nologies, including mechanical, inertial, vision, and myoelectric
(EMG). Mechanical sensors can provide position, velocity, ac-
celeration, force, and torque measurements of the joints and/or
limbs. Some examples include rotary potentiometers for angle
measurements, uniaxial load cells for force measurements [13],
inertial measurement units (i.e., combined accelerometers and
gyroscopes), and vertical-axis force-sensing resistors to measure
foot-ground contact [11, 16, 24]. Some researchers have recently
used computer vision for sensing and classifying human walking
environments [25-29].

Unlike mechanical and inertial sensors, EMG signals can
sense the joint movement in advance since muscles have a small
amount of bioelectrical delay [30], therein allowing for predictive
control. EMG signals from residual muscles [13], combined with
aneuromuscular reflex model, have been used to control a robotic
ankle prosthesis directly and reliably [10]. However, EMG signals
are sensitive to electrode positioning, skin-electrode impedance,
movement artifacts, muscle fatigue, and perspiration [18, 24].
Consequently, the performance of myoelectric control systems
can deteriorate [31]. A method for adapting the controller to
contain these changes is required before a viable EMG control
uses in clinical environments. Kinematic and force and/or torque
information can be used to complement myoelectric signals via
multisensor data fusion [11, 32].

EMG Signal Processing. To achieve high-quality EMG sig-
nals, the electrodes should remain fixed to the skin [22]. Raw
EMG signals should be amplified, filtered, and digitized before
use in the robot control algorithm. The amplitude of the signal is
generally measured in millivolts (mV) and a differential amplifier
with desired gains is used. Since high accelerations can occur
during ambulation (e.g., especially during foot-ground contact),
movement artifacts can corrupt the myoelectric signals. High-
pass filters are often used to reduce the effects of such artifacts.
The signals are then digitized and sent to an onboard micropro-
cessor. Myoelectric signals are rectified since human muscles get
positive tension by activation [10].

Pattern Recognition Algorithms. To estimate the desired
joint trajectory, the user’s locomotion mode can be predicted us-
ing myoelectric signals and a pattern recognition algorithm. By
identifying patterns in the EMG signals, the intended locomotor
activity can be predicted [22] (i.e., since different locomotor ac-
tivities can be estimated by specific joint trajectories). Along
with EMG signals, mechanical signals can be processed and
used for pattern recognition [22]. Pattern recognition algorithms
like linear discriminant analysis and dynamic Bayesian networks
[11, 22]) have been used to identify patterns in myoelectric sig-
nals. However, these algorithms can cause long delays, especially
when transitioning from one locomotor activity to another [35].
Successful intent classifiers have been developed using human-
socket junction forces, foot-ground contacts, myoelectric signals,
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FIGURE 3: HIGH-LEVEL PROPORTIONAL MYOELECTRIC CONTROL AND LOW-LEVEL SERVO CONTROL WITH KINEMATIC FEEDBACK [18].

and the kinematics of contralateral limb [24]. Including EMG
signals and time history data into the control system has been
shown to significantly lower classification errors during human-
prosthesis locomotion [22, 24]. Researchers have demonstrated
that unilateral transtibial amputees can predict locomotor activi-
ties using myoelectric signals from the unaffected biological knee
joint [36].

Robotic Actuators. Modeling the actuator dynamics can
play an important role in designing a high-performance robot
control system [25]. There are three broad categories of actu-
ators used in robotic leg prostheses and exoskeletons, includ-
ing electric motors, pneumatic artificial muscles, and hydraulic
cylinders. Brushed DC motors coupled with precision ball-screw
assemblies have been the most common actuation system used
in robotic prostheses [18, 25]. In pneumatic artificial muscle
systems, one actuator supplies flexion torques while another gen-

erates extension torques [17]. The oldest actuation system used
in robotic prostheses and exoskeletons is fluid-powered technolo-
gies. However, hydraulic systems suffer from slow response times
and require cumbersome hydraulic equipment [37].

4. CONTROL ARCHITECTURES

Combining data from onboard mechanical and/or inertial
sensors with surface EMG can accurately interpret the user’s in-
tended movement [11]. Such “neuromuscular-mechanical data
fusion” has been shown to provide more robust and intuitive
control during human-prosthesis ambulation with seamless tran-
sitions between different locomotion modes and the ability to
volitionally reposition the lower-limbs [7, 10, 11, 34]. This con-
trol system design uses the summation of EMG and kinematic
measurements (i.e., joint angles and angular velocities [11]) with
a constant controller gain as the command torque for the robotic
system. The amount of gain is usually determined by experimen-
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FIGURE 4: VOLITIONAL MYOELECTRIC IMPEDANCE CONTROL WITH A HIGH-LEVEL CLASSIFICATION AND REFERENCE OF ANGLE BY

INTEGRATION OF VELOCITY [9].
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FIGURE 5: IMPEDANCE CONTROLLER USED TO GENERATE JOINT TORQUE COMMANDS BY COMPARING A VIRTUAL ENVIRONMENT (LOW-
LEVEL) WITH REFERENCES FROM A PATTERN RECOGNITION ALGORITHM (HIGH-LEVEL) [34].

tal trial-and-error. The controller then regulates the actuator joint
torques proportional to the processed EMG signals in real-time
[33, 38]. Experimentally, proportional myoelectric controllers
have been shown to reduce muscle activities and metabolic costs
during walking compared to control systems that used recorded
biological torque profiles [39].

The most straightforward control algorithm is an open-loop
feed-forward torque control model. This robot controller does not
include kinematic or kinetic feedback and only uses proportional
myoelectric signals. The output torque 74 is typically based on
the least-squares fit during walking, which is a summation of
the lower-limb joint angles, angular velocities, and processed
EMG signals with specific gains [13], which has limitations. In

contrast, active-reactive control algorithms have been used to
simulate the underlying control mechanisms of the biological
joints. The “active” actuation of the joint simulates the user’s
effort to drive the joint and the “reactive” response simulates the
joint’s reaction to the motion due to mechanical impedance. In
this controller design, the EMG signals are represented as a sign
signal or an on-off switch. This control system allows for direct
neural control over the robotic device and dynamic interactions
with the physical environment by modulating the joint mechanical
impedance according to the combined muscle activations of users
[16].

Rather than using a constant controller gain on EMG sig-
nals, manual-tuning torque controllers allow the user to manu-
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FIGURE 6: PROPOSED MYOELECTRIC ADAPTIVE-IMPEDANCE CONTROL ALGORITHM USING HUMAN MUSCULOSKELETAL MODELING.

ally increase or decrease the actuator gains in real-time [15, 20].
However, this method opposes the automatic control system de-
sign philosophy of robotic leg prostheses and exoskeletons for
real-world deployment. By adding low-level servo controls to
decrease error torque 7., researchers can significantly improve
the controllability of the robotic device (see Fig.2) and decrease
errors in the actuator control resulting from external disturbances
[33]. An alternative application is low-level feedback servo-
actuator control and high-level feed-forward myoelectric torque
control (Fig.3). The high-level controller outputs to the servo-
actuator are the desired joint torques 4. The low-level control
outputs are the desired motor currents i in Fig.2-5, which are
generated using an actuator model, motor torque constants, and
servo amplifier gains. To improve the actuator transient response,
the system can include torque feedback with a small proportional
gain [18, 33].

There are several limitations to using fixed controller gains
for mapping EMG to actuator joint torques. Designing an in-
telligent system that dynamically adapts the controller gains to
the EMG signal amplitudes can result in better volitional control
performance via incorporating the nonlinear relation between
biological muscles and the generated movement dynamics. Re-
searchers have shown that using such adaptive controllers can
decrease human-exoskeleton walking metabolic costs compared
to using fixed controller gains, thereby improving the overall lo-
comotor efficiency [40].

Impedance control is the most common low-level controller
used by robotic leg prostheses and exoskeletons. This method
controls the joint mechanical impedance such that the robotic de-
vice accepts flow inputs 6, (motion) and produces effort outputs
74 (forces). The architecture of the control is typically based
on healthy biomechanical data. The sum of muscle activations
can determine the joint mechanical impedance. Therefore, when

both the flexion and extension muscles are strained, the joint me-
chanical impedance is high, and when the muscles are relaxed,
the joint mechanical impedance is low. Researchers have esti-
mated actuator joint torques using a linear two-state impedance
control (low-level) and a form of proportional myoelectric torque
control united with a joint mechanical impedance (high-level)
[13,41-45].

The control architecture in Fig.4 shows an example of me-
chanical impedance control. The motorized joint is controlled
with a virtual stiffness and damping that simulates the non-
impaired biological joint mechanical impedance properties. Vo-
litional movement of the robotic device is then controlled by the
stiffness set-point angle of the mechanical impedance controller
as a function of the measured myoelectric signals [9]. Using this
control framework, Ha et al. modeled the human knee joint as
a virtual spring-damper system to distinguish how a robotic leg
prosthesis responds to forces and torques transmitted by the user
and physical environment [9].

Impedance control has been used to control a virtual knee-
ankle prosthesis independently and an experimental robotic knee
prosthesis with structure of real-time feedback [34]. The con-
troller predicted the user’s desired ambulation mode (high-level),
which in turn, managed the joint mechanical impedance (low-
level) [34]. Since joint mechanical impedance between different
locomotor activities can sometimes be relatively similar (e.g.,
ramp descent and level-ground walking), some misclassifications
went unnoticed by the amputee user (Fig.5). Many users have pre-
ferred to start with lower proportional controller gains on EMG
signals [17, 20]. Then, as users adapted their muscle activa-
tions and became more confident with practice, they gradually
preferred higher controller gains. Evidence of learning and adap-
tation suggests that volitional EMG control systems may have
distinct advantages over other high-level controller designs for
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robotic exoskeletons and prostheses (e.g., activity recognition-
based controllers). Note that users typically required visual feed-
back to volitionally control the robotic device [17, 20].

5. DISCUSSION AND FUTURE DIRECTIONS

Myoelectric control of robotic leg prostheses and exoskele-
tons is an active but challenging area of research. Each of the con-
trol system designs described here have advantages (e.g., model-
less, straightforward implication, and structure) and drawbacks
(e.g., inaccurate control signals and EMG-torque relations, and
require manual adjusting gain). Based on our review, it seems un-
likely that one approach would satisfy all real-world applications,
and thus combining different controllers seems more appropriate.
Previous studies have typically assumed a simple proportional
relationship between the myoelectric signals and actuator joint
torques. Future work should consider incorporating muscle kine-
matics and dynamics from musculoskeletal simulations into the
control system design to improve accuracy and robustness [46]. In
such an approach, identifying and validating the dynamic model
(e.g., body segment parameters, foot-ground contact, and mus-
cle dynamic parameters) would be required. Researchers could
identify the muscle parameters using optimal control theory (e.g.,
the muscle activities and joint torques could be the optimization
inputs and the muscle dynamic parameters could be the variables
[47D.

Two methods of modeling biological muscles include math-
ematical models from biomechanics (as previously mentioned)
and machine learning algorithms. Mathematical muscle mod-
els typically consist of “Hill-type” muscle models. Although
researchers can develop and use dynamic models of the human
lower-limbs, solving the forward dynamic computations of such
musculoskeletal models can be time-consuming and thus impede
real-time control of the robotic device. Alternatively, machine
learning algorithms like artificial neural networks can automati-
cally and efficiently compute the nonlinear relationships between
myoelectric and kinematic and kinetic signals [48, 49]. However,
additional research is warranted to determine the efficacy of using
machine learning algorithms for this novel application.

A mixture of top-down volitional control and bottom-up re-
flex control can allow for seamless locomotion mode transitions
and direct neural control over the robotic device during nonrhyth-
mic movements. To reiterate, the high-level controller estimates
the user’s intended locomotor activity in real-time based on my-
oelectric signals (and/or mechanical and inertial data) and the
low-level controller ensures the actuator joint torques produce
the desired motion [6]. Future research could consider using
an adaptive gain or a model-predictive controller approach. By
using this control system design and musculoskeletal modeling
and simulations (i.e., instead of simple proportional EMG-torque
mappings), robotic leg prostheses and exoskeletons may achieve
actuator dynamics and control that are more similar to their bio-
logical counterparts (Fig.6).
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