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Abstract: Recently, robotic exoskeletons are gaining attention for assisting industrial workers. The 1

exoskeleton power source ranges from fully-passive (FP) to fully-active (FA), or a mixture of both. 2

The objective of this experimental study was to assess efficiency of a new active-passive (AP) shoulder 3

exoskeleton using statistical analyses of 11 quantitative measures from surface electromyography 4

(sEMG) and kinematic data, and a user survey for weight lifting tasks. Two groups of females and 5

males lifted heavy kettlebells while a shoulder exoskeleton helped them in modes of fully-passive 6

(FP), fully-active (FA), and active-passive (AP). The AP exoskeleton outperformed the FP and FA 7

exoskeletons because the participants could hold the weighted object for nearly twice as long before 8

fatigue occurred. Future developments should concentrate on developing sex-specific controllers as 9

well as on better-fitting wearable devices for women. 10

Keywords: Exoskeletons; Wearable robots; Active-passive; Electromyography; sEMG; Fatigue 11

1. Introduction 12

Workers in Canada frequently get musculoskeletal diseases (MSDs) from their jobs, 13

often in their upper extremities, notably, their shoulders [1]. One recent solution is the 14

exoskeleton, which is a wearable device that can augment the wearer’s natural physical 15

abilities [2]. Robotic exoskeletons allow the user to carry heavier objects or mitigate physical 16

limitations [3]. Exoskeletons for the industrial workforce are being created, researched, and 17

used more often on a global scale [4]. Exoskeleton design may be divided into three groups 18

based on the source of assistance: FP [5], FA [2], and AP [6]. 19

Prior to practical exoskeleton deployment across diverse work situations, several 20

technical, physical, and psychological factors require evaluation. Analysis of these factors is 21

not standardized and varies according to application domain, focused research objectives, 22

and types of studies performed (simulation [7] or experiment [8]). For example, Hodson 23

[9], Kim et al. [10], Alemi et al. [11] have used maximum voluntary isometric contractions 24

(MVICs) [12] for exoskeleton evaluation. The other evidence-based metric are muscle activ- 25

ity measured through surface electromyography (sEMG) [13–16], fatigue/endurance using 26

mean power frequency [16–19], muscle metabolic energy expenditure (MMEE) [11], task 27

completion or time [10,20], subjective feedback [10,20], or discomfort feedback [11,20,21]. 28

However, to the best of our knowledge, there have been limited efforts to employ an inverse 29

dynamic skeletal model integrated with machine learning-based muscle models that exhibit 30

kinematic closed-loop interaction with exoskeletons. Specifically, some prior studies have 31

relied on simplifications in terms of the human-exoskeleton kinematic closed-loop interac- 32

tion and have employed different (e.g., Hill-type) muscle models. For example, Marinou 33

et al. [22], Sharafi and Uchida [23], and Shushtari et al. [24] conducted simulation-based 34

evaluation of human skeletal system with exoskeleton (without experimental evaluation), 35
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and Kuo et al. [7] and Li et al. [25] carried out experimental evaluation using detailed 36

Hill-type muscle model within musculoskeletal models and simplified exoskeleton without 37

closed-loop interaction. 38

Despite the numerous distinctions between male and female functional and static 39

anthropometrics [26], generally, sex has been disregarded when analyzing exoskeletons [9] 40

or the tests had male-dominated samples [10]. The majority of industrial and physically 41

demanding jobs are held by males, which may explain the male predominance in sam- 42

ples. Nevertheless, exoskeleton sizes and designs may be suboptimal for female anatomy 43

[21]. Only a few investigations report on how exoskeleton use affected muscle activation 44

according to sex [9,11,20,27]. Females had remarkably more median sEMG at the right 45

triceps brachii with the exoskeleton compared to those without exoskeleton and males 46

with the exoskeleton [20]. A few researchers showed that the MVICs are inconsistent for 47

each muscle and for each sex, which should be added in sex-specific exoskeleton design 48

and control [11,27]. Another difference is the time discrepancies in the donning and taking 49

off of the exoskeleton by sex, with women taking much less time than men [28]. Kim 50

et al. [10] anticipated that sex will cause variations in exoskeleton effectiveness evaluation. 51

Further research is needed to characterize the interaction of sex and exoskeleton use [4,10]. 52

Furthermore, there is an increased frequency of discourse regarding sex-based variations 53

in body morphology and their correlation with exoskeleton fitting, as documented in the 54

study by Sposito et al. [29]. 55

In the context of exoskeletons, efficiency refers to the optimal utilization of energy and 56

resources by the wearable robotic system to assist and enhance human movement. This 57

encompasses factors such as biomechanical assistance, metabolic expenditure reduction, 58

and mechanical advantage, all of which contribute to the overall effectiveness and perfor- 59

mance of the exoskeleton in aiding the wearer’s mobility and physical tasks. The study 60

investigates how these efficiency metrics are influenced by sex differences, shedding light 61

on potential variations in exoskeleton performance between male and female users. 62

The main goal of this study was to discover the relative efficiency of wearable ex- 63

oskeleton devices with regard to sex. Specifically: 64

I. Comparing efficiency of FP, FA, and AP shoulder exoskeleton in human-in-the-loop 65

(HITL) experiments; 66

II. Evaluating with 12 criteria within categories of 1) sEMG channels, 2) kinematic 67

data, and 3) survey; 68

III. Reporting and assessing the influence of sex on these criteria. 69

First, the experimental setup and test protocol are introduced in section 2. Second, 70

the evaluation metrics are developed and discussed in section 3 using independent sub- 71

component models. Finally, the results for different criteria and sex are presented and 72

discussed in section 4. 73

2. Methodology 74

To evaluate the assistance provided by the exoskeletons, twenty healthy participants 75

lifted an object (5 lb kettlebell) and held to exhaustion while wearing the exoskeleton 76

(Figure 1(a)) as the sEMG sensors measured their muscle activity. They repeated the test 77

with different exoskeleton support modes until fatigue occurred. While the object’s weight 78

may fall within the lighter range of loads encountered in certain industries, it symbolizes 79

the sustained nature of tasks that workers often face. By examining the exoskeleton’s 80

performance under such conditions, we aim to shed light on its potential to alleviate fatigue 81

and enhance endurance, which are vital considerations for preventing workplace injuries 82

and improving overall efficiency in various occupational settings. 83

20 participants (mean±Standard deviation (STD): 25 ± 3.3 years; 64 ± 12.9 kg mass; 84

1.74± 0.09 m height; 2.0± 1.8 workout session per week; 18 right-handed and 2 left-handed) 85

participated. 10 of the participants were female (mean±STD: 24 ± 3.0 years; 59 ± 10.6 kg 86

mass; 1.65 ± 0.07 m height; 3.0 ± 1.9 workout session per week; 9 right-handed and 1 left- 87

handed) and the rest were male (mean±STD: 27± 3.1 years; 74± 11.7 kg mass; 1.78± 0.06 m 88



Version March 21, 2024 submitted to Sensors 3 of 15

LiftingStart

Holding
Resting

and Phase
Change

LoweringFinish

(a) Experimental task

#1
#2

#3

#4

Posterior view

#5

#6

Anterior view

(b) Sensor placement

Exoskeleton

Adaptor

Active Component Evo Structure

Human

Hierarchical Control
Computer (MATLAB)

Low-level Controller:
Field Oriented
Control Unit

Motor

MotionAbsolute Position Sensor

Disturbance

Noise

Wearable Device

Passive Mechanism

Neuromusculoskeletal
System

Central
Nervous
System

Electromyography and
Inertial Mea-

surement Unit

Delsys
Wireless
System

Base

High-level Controller:
Control-oriented Predictive

Robust MuscleNET

Desired
Strength

Mid-level Controller:
Assist-as-needed

Computed Torque Method

CAN-
bus

Shield

Arduino

i

ϕ

CAN
bus

Serial
Peripheral
Interface

Serial
Comms

Active
Torque Passive

Torque

Reaction
Wrench

Kinematic
Constraint

Bluetooth

Transmission
Control
Protocol

Muscle
Excitation

Body
Motion

Perception

(c) Control system block diagram [8]
Figure 1. (a) The subject is doing a weight-lifting exercise in the sagittal plane while wearing the
exoskeleton and sensors; (b) The placement of wireless sEMG-inertial measurement unit (IMU)
sensors to the skin at sites of #1 upper trapezius (UTRA), #2 middle trapezius (MTRA), #3 middle
deltoid (MDEL), #4 posterior deltoid (PDEL), #5 anterior deltoid (ADEL), and #6 brachioradialis
(BRD) located on the right forearm, shoulder, and upper trunk musculature; and (c) Block diagram
showcasing the primary components of the control system and the connection protocols utilized [8].

height; 1.0± 1.7 workout sessions per week; 9 right-handed and 1 left-handed). Participants 89

were between the ages of 20 and 50 and without a recent injury or history of discomfort in 90

their upper extremities. Each participant signed a written waiver of informed consent. The 91

University of Waterloo’s Office of Research Ethics approved the experimental protocol. 92

Participants completed activities according to Table 1. In the first phase, the participant 93

performed MVIC tasks for normalizing the sEMG signals and calibrating the brushless 94
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Table 1. The 6 steps of the test process, data collection, and exoskeleton calibration.

Phase Name
Source Tasks

Pa
ss

iv
e

A
ct

iv
e

W
ei

gh
tL

if
ti

ng

Fr
ee

M
ot

io
n

Sensor Calibration ✓
Data-gathering ✓ ✓
IE ✓
FP ✓ ✓
FA ✓ ✓
AP ✓ ✓ ✓

direct current (BLDC) motor home angle. Participants performed free motion with a weight 95

during the second phase. The information from this phase was used to generate training 96

data for the machine learning mapping electromyography to kinematic and dynamic 97

biomechanical variables (MuscleNET) model [30]. To evaluate the various modes of support 98

(inactive exoskeleton (IE), FP, FA, and AP assistance), the participant repeated the weight- 99

lifting task for each support mode. The participant was instructed to maintain the kettlebell 100

at a 90o elevation angle (Figure 1(a)); however, precise control of the elevation angle 101

was not enforced, relying instead on vocal feedback provided by the researcher. Further, 102

there were no specific constraints imposed regarding movement velocity, and participants 103

were encouraged to lift the object at a comfortable pace. Following each repeated task, 104

participants were mandated to observe a minimum resting interval of 10 minutes to mitigate 105

the onset of fatigue. 106

sEMG sensors and a custom adapted commercial shoulder exoskeleton were the two 107

main devices used: 108

I. The Delsys Trigno wireless compact system (Delsys Inc, Natick, MA, USA) is 109

equipped with two integrated sensors designed for the measurement of sEMG 110

to assess muscle activity and an IMU to capture kinematic data, including Euler 111

angles and angular acceleration. To collect data, these wireless compact units 112

were affixed to the skin at six specific anatomical sites (Figure 1(b)): #1 UTRA, #2 113

MTRA, #3 MDEL, #4 PDEL, #5 ADEL, and #6 BRD located on the right forearm, 114

shoulder, and upper trunk musculature. The data obtained from these sensors, 115

encompassing both surface muscle activity and Euler angles, were utilized as inputs 116

for the MuscleNET framework, with further details about MuscleNET available in 117

reference [8]. 118

II. Motorized EVO (Ekso Bionics Holdings Inc, California, USA) upper limb exoskele- 119

ton with built-in three-level passive assistance was used to assist the shoulder 120

elevation joint. The motor was an AK80-9 KV100 BLDC motor (Cubemars, Jiangxi 121

Xintuo Enterprise Co., China) with built-in relative encoder, 0.485 kg mass, 9 Nm 122

rated torque, and 9 : 1 gear ratio has been used for the active component. The ex- 123

oskeleton was optimally designed in [6] after being modeled, including its passive 124

torque-angle function. The active assistance (motor) is controlled with a hierarchi- 125

cal control structure (Figure 1(c)) that used a subject-specific MuscleNET-driven 126

intention prediction model [8,31]. 127

The exoskeleton configuration encompasses four distinct modes, each serving a specific 128

purpose in the augmentation of human movement: 129

• Inactive exoskeleton (IE) setting: In this mode, the exoskeleton remains dormant, 130

providing no assistance to the user. This setting serves as a baseline for evaluating the 131

unaided human performance during the task. 132

• Fully-passive (FP) setting: The exoskeleton operates in a passive manner, employing 133

a spring mechanism to generate assistive torque in correlation with the angle of the 134
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user’s shoulder elevation. This assists the wearer in counteracting the gravitational 135

forces acting on the lifted object. 136

• Fully-active (FA) setting: Activating the lightweight BLDC motor, this mode delivers 137

targeted assistance based on the user’s muscle contribution and intent. The motor’s 138

engagement is calibrated to provide a measured level of support, enhancing the user’s 139

lifting capability. 140

• Active-passive (AP) setting: This setting synergistically combines both the passive 141

spring mechanism and the active BLDC motor to jointly deliver assistive torque 142

throughout the user’s exoskeleton elevation angle. The collaboration between these 143

elements aims to optimize the wearer’s performance by harmonizing mechanical 144

support and motorized assistance. 145

3. Evaluation criteria 146

The utilization of multiple criteria for assessing exoskeleton performance is crucial 147

for providing a comprehensive and holistic understanding of its effectiveness. Relying 148

on a single criterion might oversimplify the evaluation process and potentially overlook 149

nuanced insights into their performance across different contexts and functionalities. By 150

incorporating a diverse set of criteria, our study aims to capture the multifaceted nature 151

of exoskeleton efficiency, enabling a more nuanced analysis that accounts for a range of 152

factors influencing their overall performance and impact on users. This approach enhances 153

the robustness of our findings and provides a deeper level of insight into the interplay 154

between various parameters and their implications for practical applications. 155

We used 12 criteria to statistically analyze the efficiency of the exoskeleton assistance 156

modes. These criteria are categorized into the following three groups. For statistical 157

analyses, we used JMP 16.0 (SAS Inc., NC, USA). 158

3.1. Surface electromyography (sEMG) data 159

Processing of sEMG signals has become widely used during the last four decades 160

to assess local muscle exhaustion [12]. In addition to processing this signal, we used the 161

MuscleNET model [30] to estimate the joint torque from sEMG signal and kinematic signals 162

(IMU and BLDC motor angle). Six assessment measures are based on recorded sEMG 163

signals. 164

Measure 1 A measure of sEMG amplitude employed in contemporary digital systems is 165

the mean absolute value (MAV), also known as the average rectified value 166

(ARV) (defined by Equation (1)) which is used as a time domain fatigue 167

evaluation method [12]. 168

Measure 2 The power spectral density of an examined sEMG signal (Instantaneous 169

median frequency (IMDF), defined in Equation (2)) changes towards lower 170

frequencies during fatigue-inducing contractions [12,32]. 171

Measure 3 Increase of median power spectral frequencies in comparison to the initial 172

recording is another indicator of fatigue [33]. 173

Measure 4 Equation (3) describes accumulated muscle activations during motion, and 174

the square of muscle contractions is a fatigue metric frequently employed 175

in neuromechanical models [34,35]. Here, filtered sEMG signals represent 176

muscle contractions. 177

Measure 5 Each phase and participant had different sEMG channel amplitudes and 178

pattern. We used the trained machine-learning model MuscleNET [30] to 179

estimate shoulder elevation torque. 180

Measure 6 The instantaneous power of a human joint is the instantaneous torque esti- 181

mated by MuscleNET [30] times the instantaneous angular velocity measured 182

by the angular rotational sensor attached to the BLDC motor. 183
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MAV =
1
N

N

∑
i=1

|xi| (1)

∫ IMDF(t)

0
P(t, ω)dω =

∫ ∞

IMDF(t)
P(t, ω)dω =

1
2

∫ ∞

0
P(t, ω)dω (2)

FAT = ∑
m

∫
T

σ2
mdt (3)

where 184

MAV the mean absolute value
x the amplitude of sEMG signal
N total number of signal points
P(t, ω) time dependant power spectrum density of the sEMG signal
ω frequency of the signal
IMDF the IMDF
σ the muscle activations
m the total number of sEMG channels
FAT the fatigue (Measure 4 or Measure 7)

185

3.2. Kinematic data and inverse dynamic simulation 186

Here, we used a validated scalable musculoskeletal MapleSim model [36] to simulate 187

and analyze the participants’ motion with the recorded kinematic data (joint angle, velocity, 188

and acceleration). 189

Measure 7 By using the recorded joint kinematics and known external force/weight 190

(e.g., exoskeleton assistance torque, the mass of the manipulated object, 191

or the gravitational acceleration), we did an inverse dynamic simulation 192

of the scalable musculoskeletal model (Equations (4-5)) [36] to estimate 193

the activation of the muscle torque generator (MTG). Equation (3) was 194

then used to calculate the computational fatigue. 195

Measure 8 Similar to Measure 5, the joint torque was calculated but from inverse 196

dynamic simulation of the scalable musculoskeletal model (Equation (4) 197

[36]. 198

Measure 9 Similar to Measure 6, the joint power was estimated with the inverse 199

dynamic simulation of the scalable musculoskeletal model (Equation (4) 200

[36] and the instantaneous angular velocity sensed by the sensor of the 201

BLDC motor. 202

Measure 10 The performance measurement of human motion is facilitated by the 203

MMEE model. Kim and Roberts [37] combined thermodynamic rules 204

with multibody system dynamics concepts to create a joint-space nu- 205

merical model of MMEE. The energy model for zero co-contraction of 206

MTG pairs is as Equation (6). 207

Measure 11 The participants were expected to hold the kettlebell as long as feasi- 208

ble. The time that the shoulder elevation angle was more than 80% of 209

the maximum angle (approximately 90o as detailed in Section 2 and 210

visualized in Figure 1(a)) was considered as the load tolerance duration. 211

This weight tolerance’s duration was quantitively compared after being 212

recorded during different modes. 213
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[
I2n×2n 0

0 Mn×n(θn×1, β)

][
ȧ2n×1
ω̇n×1

]
=

[
τ̇u2a(a2n×1, u2n×1, t, β)2n×1

Fn×1(ωn×1, θn×1, β) + Qn×1

]
(4)

Qn×1 = [a+τ+
ω (ω, β)τ+

θ (θ, β)τ+
0 (β) + a−τ−

ω (ω, β)τ−
θ (θ, β)τ−

0 (β) + τp(θ, ω, β)]n×1 (5)

E =
∫ tmax

0

[
ḣM|ω|(max)|τa|+ ḣSL|τaω|+ τaω

]
dt (6)

where 214

n the number of independent coordinates = 20
θ the column matrix of all joint angles
ω the column matrix of all joint angular speed
M the mass matrix
a the muscle activation signal
F Coriolis, centrifugal, and gravitational effects
Q the applied joint torques, a column matrix containing τh(t) for all joints
τu2a the excitation-to-activation signal ordinary differential equation (ODE) function
u the excitation signal
τω the active torque-angular-velocity scaling function
τθ the active torque-position scaling function
τ0 the peak isometric joint strength
τp the passive torque function due to viscous damping and nonlinear stiffness
τa the vector containing the active torques at the joints
+ the positive direction of joint
− the negative direction of the joint
β the subject adjustment variables: sex, age, body mass, height, dominant side, and

physical activity
ḣM the dimensionless heat rate for activation and maintenance, determined to be

0.054
ḣSL the dimensionless shortening lengthening heat rate, 0.283 for positive power, and

1.423 for negative power
ω(max) the maximum angular velocity over the entire motion

215

3.3. Subjective feedback 216

Measure 12 After conducting the exoskeleton performance test, participants en- 217

gaged in a structured survey to gauge their experience comprehen- 218

sively. This survey encompassed three key dimensions: participants’ 219

self-reported fatigue levels throughout different exoskeleton phases 220

(Table 1), identification of specific areas of fatigue, and an assessment 221

of comfort while wearing the exoskeleton, in scale of 1 to 10. The scale 222

ranging from 1 to 10 for assessing comfort was a deliberate choice aimed 223

at affording participants a broader spectrum of options to articulate their 224

comfort perceptions. This scale was selected for its capacity to offer 225

granularity in capturing the comfort levels expressed by participants, 226

in contrast to a binary scale that would provide only two options (e.g., 227

comfortable or uncomfortable). Through this user feedback survey, we 228

gained valuable insights into the interplay between exoskeleton assis- 229

tance modes and user experiences. The survey’s structured approach 230

allowed us to capture nuanced aspects of user interactions, offering a 231

perspective that informs the practical usability and impact of the ex- 232

oskeleton. This feedback enhances our understanding of how users 233

respond to diverse assistance modes. 234
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Table 2. Statistical measures for different criteria: RMSE, P-values, and R-Squared.

Criteria
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Measure 1 (a) ✓ 11.5 0.0021 0.95
Measure 2 (b) ✓ 52.7 0.0336 0.57
Measure 3 (c) ✓ 70.1 0.0167 0.60
Measure 4 (d) ✓ 29.7 0.0029 0.90
Measure 5 (e) ✓ ✓ ✓ 12.1 0.0307 0.91
Measure 6 (f) ✓ ✓ ✓ 30.9 0.0312 0.82
Measure 7 (g) ✓ ✓ 21.9 0.0033 0.90
Measure 8 (h) ✓ ✓ 8.0 0.0045 0.94
Measure 9 (i) ✓ ✓ 29.9 0.0115 0.82
Measure 10 (j) ✓ ✓ 28.2 0.0270 0.76
Measure 11 (k) ✓ 30.5 0.0244 0.78
Measure 12 (l) 18.1 0.0360 0.93

4. Results and discussions 235

4.1. Quantitative evaluation 236

The results of the quantitative evaluation criteria are shown in Figure 2. The criteria 237

for the average of all participants are shown as the solid bar, the median are shown as black 238

dots, as well as the male STD (blue line) and female STD (red line) from the mean value are 239

shown on the bar charts. 240

To determine normality, the histograms of the data were visually examined for skew- 241

ness and kurtosis. In Table 2, the criteria in Figure 2 were evaluated in terms of predicted 242

root mean square of error (RMSE), p-value (a statistical metric that calculates the likeli- 243

hood of getting the outcomes that were observed, supposing that the null hypothesis is 244

correct), and R-Squared (a statistical fit metric that quantifies the proportion of a dependent 245

variable’s variance accounted for by the independent variables in a regression model). 246

The general trend in Figure 2 and the following discussion are valid since the p-value is 247

less than 0.05 according to Table 2. The p-value is less than 0.001 considering the sex as a 248

random variable (or a within-participant variable) since obviously each participant tested 249

exoskeletons with one sex type and has not repeated it with another sex type. 250

To evaluate the effects of the fixed factors exoskeleton and exoskeleton condition 251

times sex, we conducted Least-Squares Mean Differences and computed Tukey HSD test 252

(using α = 0.050 and Q = 3.14619). For example, for metabolic energy expenditure in 253

Figure 2(j) the Tukey HSD is provided in Table 3. As can be seen, levels in Table 3 that 254

are not connected by the same letter differ greatly, which means FP-female, FA-male, and 255

AP-male are considered in the same category; the differences are minor but definitely, they 256

are better than IE and worse than AP-female. 257

Since the normalized RMSE by the mean value for Measure 2 and Measure 3 is high 258

in Table 2, we provided more details (each sEMG channels) for these measures in Figure 3. 259

For the majority of muscles, according to Figure 3, the following exoskeletons showed a 260

decline in median frequency and a rise in median power from low to high: AP, FA, FP, and 261

IE. This indicates that the AP exoskeleton reduced muscular fatigue. Nevertheless, a few 262

muscles did not exhibit the same tendencies as the majority of the other muscles (Figure 3). 263

For example, the sEMG signals from the BRD location showed no signs of fatigue. Since, 264

BRD is for elbow flexion/extension (EFE), these muscles and the joints they pass through 265

were unaffected by the exoskeleton. 266
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Table 3. A sample of Tukey HSD letters of metabolic energy expenditure for exoskeleton condition
times sex factor. Levels not connected by the same letter are significantly different.

Category Connections Least Sq MeanExoskeleton setup Sex
IE Male A 1.451
FP Male A 1.333
IE Female A B 1.236
FP Female A B C 1.067
FA Male B C D 0.816
AP Male B C D 0.710
FA Female D 0.473
AP Female D 0.463

According to Figure 2, the most efficient exoskeleton types from powerful to weak are: 267

AP, FA, FP, and IE. According to Figure 2(a-c,g,j), using the AP exoskeleton can decrease 268

the fatigue level compared to using the FP exoskeleton. 269

As seen in Figure 2(k), participants could lift the object for more time (until they 270

became fatigued) by using the AP exoskeleton. The AP exoskeleton can be helpful for 271

almost 2 times longer than the FP exoskeleton. In fact, the AP exoskeleton is adaptive to 272

the task and can provide variable assistive torque instantly, as compared to the FP torque 273

that can only provide fixed assistive torque at one specific angle, as mentioned in [38]. 274

The participants scored the AP exoskeleton to be more effective than other exoskeletons 275

(Figure 2(l)). Regarding the subjective feedback aspect, it is important to acknowledge 276

that this section is primarily reliant on participants’ self-reported feelings and perceptions. 277

Given our study’s sample size of 20 participants, we must be cautious when drawing 278

concrete conclusions based on subjective assessments, particularly in areas involving 279

mental and emotional aspects. The limitation stems from the relatively small sample size 280

for such subjective evaluations, where larger participant groups would be more ideal to 281

establish robust conclusions. 282

4.2. Sex difference perspective 283

From the sex differences perspective, a detailed evaluation of Figure 2(a-d, g) and 284

Figure 3(a-c), reveals that females tend to experience more pronounced fatigue than their 285

male counterparts when engaged in heavy lifting tasks. This observation underscores 286

the importance of considering sex-specific ergonomic factors, particularly in strenuous 287

industrial settings that involve heavy lifting. To help mitigate the risk of MSDs among 288

female workers and, consequently, enhance their overall well-being, the implementation of 289

exoskeleton technology is strongly recommended. 290

It is noteworthy that female participants in our study exhibited shorter stature com- 291

pared to their male counterparts, resulting in relatively shorter arm lengths. This anatomical 292

distinction has biomechanical implications, as shorter arms require less joint torque to lift 293

objects of the same weight, a phenomenon supported by previous research [26,39]. Fur- 294

thermore, shorter and lighter individuals tend to possess less muscle mass, contributing 295

to produce less joint torque [26,39]. Consequently, females required less joint torque than 296

males (Figure 2(e,h)). 297

Surprisingly, despite the lower joint torque requirements, females in our study demon- 298

strated a significantly faster lifting pace compared to males. Actually, they required more 299

shoulder adduction/abduction (SAA) power than males. This unique characteristic under- 300

scores the need for specialized considerations in exoskeleton design for females. Manufac- 301

turers should focus on optimizing exoskeleton joint stiffness to accommodate the increased 302

speed of movement. Additionally, the control algorithm for such active exoskeletons should 303

be tailored to effectively manage the specific biomechanical demands associated with rapid 304

object manipulation. 305

It is important to note that in general, females tend to have a lower body mass 306

and shorter stature compared to males. As depicted in Figure 2(j), , these anatomical 307



Version March 21, 2024 submitted to Sensors 11 of 15

F M

20

25

30

F M

50

60

70

80

90

F M

1.6

1.7

1.8

1.9

F M

0

2

4

6

Figure 4. Depiction of a one-way analysis of variance conducted on the sample data of F: female
versus M: male participants, with respect to their (a) age, (b) weight, (c) height, and (d) activity.
Notably, the figure highlights an outlier through a red plus sign, while the median is represented
by a red bar at the center. The minimum and maximum values are denoted by black minus signs at
the bottom and top, respectively, and the 25th and 75th percentile values are enclosed within a blue
bounding box.

differences contribute to a commensurately lower MMEE for females when compared to 308

males. This characteristic highlights the significance of tailoring exoskeleton technology to 309

accommodate diverse body types. 310

During the course of our study, several female participants expressed concerns regard- 311

ing the fit of the exoskeleton belt. More precisely, regardless of the seated test condition, 312

the exoskeleton belt was fastened over the female abdomen while a hip placement may 313

have been preferred. 314

This feedback offers valuable insights for the future development of exoskeleton tech- 315

nology. Manufacturers can significantly benefit from considering the unique body shape 316

and biomechanical requirements of female users when designing the kinematic fitting of 317

exoskeleton attachments. By incorporating sex-specific design considerations, exoskeletons 318

can be better optimized to enhance comfort and functionality for a broader range of users, 319

ultimately promoting their adoption and effectiveness in various applications. 320

It is important to remember that male and female have natural physical differences. 321

These differences, like how muscles are distributed [40], the effects of hormones [41], 322

and physical strength [26], can affect how people respond to the exoskeleton and how 323

well they do in tasks [9]. Second, although this study did not select participants based 324

on characteristics (e.g., height, weight, race, age, dominance side, hormonal levels, mus- 325

cle distribution, or physical strength), the standard deviations of participants’ features 326

(mean±STD: 25 ± 3.3 years; 64 ± 12.9 kg mass; 1.74 ± 0.09 m height; 2.0 ± 1.8 workout 327

session per week; 18 right-handed and 2 left-handed) were within an acceptable range of 328

deviation. To be more specific, employing a one-way analysis of variance, as illustrated 329

in Figure 4, it is discerned that the median values for age, weight, and activity within one 330

sex align closely with the main distribution of the corresponding attributes in the other 331

sex. To be precise, the F-value (variation between sample means per variation within the 332

samples) is 1.83, 3.51, and 0.96 for age, weight, and activity, respectively. It is noteworthy 333

that despite females typically exhibiting shorter body height than males, their upper-limb 334

length in proportion to body height is greater than that of males [42]. Furthermore, it 335

is crucial to underscore that the test specifically entailed the lifting of a kettlebell with 336

arms extended in a straight position, emphasizing the greater significance of upper-limb 337

length over body height in this context. Third, the study’s primary goal was to selectively 338

consider participant sex while treating all other participant features as random variables 339

with minimal deviation. It is essential to note that adopting a selective approach, such 340

as matching an overweight female with an underweight male to attain identical weight 341

profiles, would compromise the consistency of the study cohort. Furthermore, it is worth 342

noting that Hodson [9] and Rubio et al. [43] have previously deliberated on the concerns 343
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related to sex-based exoskeleton evaluation and advocated for a non-selective approach to 344

participant recruitment. 345

4.3. Limitations 346

The present study rigorously assesses the performance of an AP shoulder exoskeleton, 347

and the ensuing evaluation and discussion are specific to this particular exoskeleton model. 348

While the participant cohort was substantial and well-suited for objective statistical and 349

scientific comparisons, it is important to acknowledge that the sample size may not have 350

been sufficiently large to facilitate comprehensive subjective emotional comparisons, as 351

elaborated upon in the survey section. 352

While, to the best of our knowledge, there exists only one AP shoulder exoskeleton 353

worldwide, it is worth noting that a broader evaluation encompassing various AP shoulder 354

exoskeleton models may yield a more comprehensive assessment. 355

Furthermore, in cases where a particular exoskeleton system can adjust torque in 356

response to varying velocities, a comprehensive experiment involving different velocity 357

settings, in addition to the examination of weight lifting scenarios, could provide valuable 358

insights and a more holistic understanding of the system’s performance. 359

5. Conclusions 360

Robotic exoskeletons are becoming a more common tool for assisting industrial work- 361

ers. The assisting source range from FP to FA. The effectiveness of four support modes were 362

evaluated using the following types of assessment criteria: I) sEMG-based, II) kinematic- 363

based, III) survey. The participants could hold the weighted object for nearly twice as long 364

before becoming exhausted, indicating that the AP exoskeleton was superior to the FA and 365

FP exoskeleton. 366

Future improvements should focus on proposing sex-specific controllers, accommo- 367

dating anthropometric and joint demand differences, as well as the kinematic fitting of the 368

wearable device for females. 369
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The following abbreviations are used in this manuscript: 388

ADEL anterior deltoid. 389

AP active-passive. 390

ARV average rectified value. 391
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BLDC brushless direct current. 392

BRD brachioradialis. 393

EFE elbow flexion/extension. 394

FA fully-active. 395

FP fully-passive. 396

HITL human-in-the-loop. 397

IE inactive exoskeleton. 398

IMDF instantaneous median frequency. 399

IMU inertial measurement unit. 400

MAV mean absolute value. 401

MDEL middle deltoid. 402

MMEE muscle metabolic energy expenditure. 403

MSD musculoskeletal disease. 404

MTG muscle torque generator. 405

MTRA middle trapezius. 406

MuscleNET machine learning mapping electromyography to kinematic and dynamic biomechanical 407

variables. 408

MVIC maximum voluntary isometric contraction. 409

ODE ordinary differential equation. 410

PDEL posterior deltoid. 411

RMSE root mean square of error. 412

SAA shoulder adduction/abduction. 413

sEMG surface electromyography. 414

STD Standard deviation. 415

Tukey HSD Tukey honestly significant difference. 416

UTRA upper trapezius. 417
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