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Abstract A machine learning model for regression of

interrupted surface electromyography (sEMG) signals

to future control-oriented signals (e.g., robot’s joint an-

gle and assistive torque) of an active biomechatronic

device for high-level myoelectric-based hierarchical con-

trol is proposed. A recurrent neural network (RNN) was

trained using output data, initially obtained from of-

fline optimization of the biomechatronic (human-robot)

device and shifted by the prediction horizon. The in-

put of the RNN consisted of interrupted sEMG sig-

nals (to mimic signal disconnections) and previous kine-

matic signals of the assistive system. The RNN with a

0.1-second prediction horizon could predict the control-

oriented joint angle and assistive torque with 92% and

86.5% regression accuracy, respectively, for the test dataset.

This proposed approach permits a fast, predictive, and
direct estimation of control-oriented signals instead of

an iterative process that optimizes assistive torque in

the inverse dynamic simulation of a multibody human-

robot system. Training with these interrupted input

signals significantly improves the regression accuracy

in the case of sEMG signal disconnection. This robust

predictive control-oriented machine learning (Robust-

MuscleNET) model can support volitional high-level

myoelectric-based control of biomechatronic devices, such

as exoskeletons, prostheses, and assistive/resistive robots.

Future work should study the application to prosthesis

control as well as the repeatability of the high-level con-

troller with electrode shift. The low-level hierarchical

controller that manages the human-robot interaction,

the assistance/resistance strategy, and the actuator co-

ordination should also be studied.
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1 Introduction

The state-of-the-art control of biomechatronic devices,

such as robotic exoskeletons, prosthesis, and rehabilita-

tion systems, employs a hierarchical design (high and

low-level controllers [1–3]) for rehabilitation, power aug-

mentation, and artificial replacements of body segments

[4–7]. The high-level controller is in charge of interpret-

ing the user’s motion [7–11] or the wrench employed

by the user (torque and force) [2, 8, 12]. The low-level

controller considers the determined intended motion

or wrench from the high-level controller and regulates

the biomechatronic actuators according to the human-

robot interaction model and assistive/resistive regula-

tions [3, 8].

The high-level control system may use human mo-

tion prediction as one of the feedback signals [2, 9, 13,

14]. To predict human motion, the three main cate-

gories of signals used are kinematic (position, veloc-

ity, or acceleration) [15], kinetic (force or torque) [13,

14, 16], and bioelectric signals (cognitive human-robot

interaction) [7–9, 11]. Bio-signals are one of the prin-

cipal inputs of high-level controllers embedded within

biomechatronic devices, rehabilitation robots, prosthe-

ses, and exoskeletons [1, 5, 8, 9]. Amongst bio-signals,

surface electromyography (sEMG), the measurement of

the electrical activity generated to produce muscle con-

traction, has demonstrated potential in illuminating hu-

man motion intention for controlling biomechatronic

devices [1, 7, 8, 14, 17].

https://doi.org/10.1007/s42235-023-00453-8
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Using wearable myoelectric sensors for daily living

activities has challenges and limitations discussed in the

following paragraphs. One challenge with using myo-

electric sensors is that signal disconnection or the wear-

able sensors losing contact from the skin is inevitable

[18]. sEMG signals may have signal loss due to elec-

trode disconnection, battery loss, muscle artifacts, or

impractical for deep muscles [18, 19]. In these cases,

the myoelectric-based control would likely fail. Thus,

preparing a robust prediction model for signal discon-

nection is necessary.

The second challenge relates to the delay of map-

ping the sEMG signals to the outputs in the control

algorithm. Specifically, recording delay, transmitting,

digitizing, filtering raw signals, and employing complex

equations or mapping via a multilayer neural network

to the output signal is time-consuming [20–22]. Hav-

ing a model that can predict future human intent can

help in predictive control [11]. Theoretically, the elec-

tromechanical delay phenomenon is defined as the time

delay between the onset of the sEMG and the onset of

the human motion [23, 24]. In other words, since the

muscle activation signals are generated before the pro-

duction of torque at a joint, it is possible to use sEMG

signals to predict motion intent [21, 25]. Thus, it is hy-

pothetically possible to predict future motion from the

current sEMG signal [22]. A solution to predict motion

intention or future joint torque using sEMG signals is

beneficial in myoelectric control.

The third challenge emerges from differences in the

configuration of robotic joints compared with human

joints and a requirement of extra conversion. For ex-

ample, a shoulder exoskeleton may have one joint for

the elevation angle, although a human shoulder joint

may be defined by shoulder flexion/extension (SFE)

and shoulder adduction/abduction (SAA) [4, 26, 27].

Therefore, transferring the human joint variables to

robot joint variables is necessary and sometimes uses

time-consuming iterative calculations [26, 27]. To sat-

isfy the mentioned objective of the control-oriented model,

we propose to have a model with outputs of the control-

oriented variables (robot assistive torque or joint angle)

instead of human variables (human joint torque or joint

kinematics). The conversion should be done offline, and

the resultant variables are the mapping target of a ma-

chine learning model.

Determining the optimal assistive wrench profile sup-

plied by biomechatronic devices throughout human mo-

tion is an ongoing challenge [28]. Most researchers have

used a time-consuming optimization method in offline

simulation [29–31]. For example, Zhang et al. [32] in-

troduced an iterative process that optimizes the assis-

tive torque profile for one stride of walking in one hour

of computation to minimizes human energy cost dur-

ing walking. Additionally, the human-robot system has

redundant actuation, and finding the optimum torque

profile is complicated. Although fast online optimiza-

tion methods have been suggested [28, 33, 34], they

struggle to run in real-time with sufficient model fi-

delity. Thus, the control loop of active biomechatronic

devices should preferentially use the offline optimized

result of an iterative optimization process. Consequently,

inefficient online optimization for assistive control loops

is not necessary. Recently, the regression of sEMG sig-

nal to biomechanical signals (human joint angle, veloc-

ity, acceleration, and torque) has been studied using

machine learning models [13, 35–38]. We used the pro-

posed machine learning model in [8], specifically the re-

current neural network (RNN); this model’s inputs and

outputs were adjusted to mitigate the aforementioned

challenges with sEMG signal loss and delay.

The myoelectric-based control should be fast in terms

of computation costs and robust in terms of respon-

siveness to myography challenges [39]. The controller

should predict the future state, define the assistive torque

profile, and require no extra conversion of human to

robot metrics. In this work, we propose a machine learn-

ing model with three features:

1. Robustness: The model is robust to sEMG signal

disconnections and trained to anticipate signal loss,

a common challenge in sEMG signal recording [19].

2. Predictive: The output of the proposed model is fu-

ture or shifted signals, which are helpful in predic-

tive control.

3. Control-oriented: The output signals are the robot’s

joint angle and joint assistive torque instead of hu-

man biomechanical signals, eliminating time-consuming

iterative conversion [29–31].

In total, the proposed RNN model, robust predictive

control-oriented machine learning (RobustMuscleNET)

model, regresses the interrupted sEMG signals to the

robot’s future joint angle and assistive torque. Criti-

cally, the configuration of RNN should be optimized to

meet the new input-output signals. In summary, this

work’s distinguishing characteristics are:

1. regression-based mapping for predicting the future

motion of a biomechatronic device;

2. estimating the control-oriented torque without ad-

ditional iterative optimization in the control loop;

3. using a data preparation algorithm for robust map-

ping of interrupted sEMG signals;

4. evaluating machine learning-driven control in human-

in-the-loop (HITL) experiments; and

5. proposing a volitional myoelectric-based control of

biomechatronic devices, such as exoskeletons, pros-

theses, and assistive / resistive robots.
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The main novelties of this work are a robust mapping

of interrupted sEMG signals and using future control-

oriented signals instead of the current human biome-

chanical variables. Combining the mentioned solutions

produces RobustMuscleNETmodel for myoelectric con-

trol of biomechatronic devices. To the best of our knowl-

edge, using interrupted sEMG signals to train a ma-

chine learning model, along with the offline optimiza-

tion of the required assistive torque profile as the out-

put, has not been studied yet.

It is noteworthy that the assistive / resistive regu-

lation and human-robot interaction model in the low-

level hierarchical controller is out of the scope of this

research. Although the electrode shift from one sub-

ject to another is evaluated using different subjects for

machine learning estimation and testing, the electrode

shift challenge of one specific subject is out of the scope

of this research.

In this paper, firstly, the configuration of the ma-

chine learning model is described. Secondly, the ini-

tial data collection steps are explained. Thirdly, the

novel data preparation for the robust predictive ma-

chine learning models is introduced. Finally, the results

and evaluations of the model are discussed.

2 Recurrent neural network (RNN)

The machine learning model for estimating the con-

trol signal in this research is a RNN model [8]. Specif-

ically, a nonlinear autoregressive with external input

neural (NARX) network configuration was selected as

the RNN model to map the sEMG and delayed kine-

matic signals to the predicted robot’s elevation joint

angle and assistive torque. The NARX network has a

feedback connection and is generally used in time-series

modeling. The primary equation of the NARX model

is provided in Equation (1). A schematic of the RNN

model with one hidden layer is demonstrated in Fig-

ure 1.

y (t) = f [ y (t− 1) , y (t− 2) , · · · , y (t− ny) ,

u (t) , u (t− 1) , · · · , u (t− nu)]
(1)

where
y (t) current output signal

u (t) current input signal

nu number of prior values of the input signal

ny number of prior values of the output signal

2.1 RNN configuration

The configuration of the RNN model plays an essential

role in modeling performance and regression accuracy.

Table 1: The optimization variables of RNN configu-

ration (90 different RNN configurations as a full com-

bination of all variables).

Variable (Symbol)

M
in
im

u
m

M
a
x
im

u
m

S
te
p

hidden layers (nl) 1 2 1
nodes in each hidden layer (nn) 10 50 10
input signal previous values (nu) 1 5 2
output signal previous values (ny) 1 5 2

This configuration should be tuned for the nature of in-

puts (sEMG and exoskeleton’s kinematic signals) and

outputs (control-oriented signals). The variables of the

RNN configuration contain nu, ny, the number of lay-

ers (nl), the number of nodes in each layer (nn), and

the activation functions. This research tested 90 differ-

ent RNN configurations, assessed the estimation accu-

racy, and adopted the superior configuration. The min-

imum variables, maximum variables, and step changes

are presented in Table 1. Since the output signals are

normalized by the maximum signal value and are al-

ways between 0 and 1, we have employed a symmetric

saturating linear transfer function for the output acti-

vation function (Figure 1).

2.2 Model training and evaluation

In this research, 17 participants’ empirical data sets

were used. Two different participants’ data sets (11.7%)

were used to validate and extract the general model. In

addition, one participant’s data set (5.9%) was used to
test the estimation capability of the model. The number

of samples was 561000 = 17×60×50×11, since the data

used was recorded from 17 participants, in 60 seconds,

re-sampled at 50 Hz, and interrupted 11 times. The

Levenberg–Marquardt backpropagation algorithm was

used to train the RNN model. The backpropagation

algorithm calculates the Jacobian of the training per-

formance regarding the bias and weight variables of the

RNN network. The initial adaptive mu, mu decrease

factor, mu increase factor, and maximum mu values

were 0.001, 0.1, 10, and 1e10. The epoch was set to

1000, and the training time was limited to less than

one hour. The training was terminated when the epoch

or the time reached the maximum values. Although the

network is not deep, the model was configured to be

closed-loop instead of open-loop for the training pur-

poses of time-series data, which requires ten times the

amount of training time. Additionally, the data is mul-

tiplied by the number of signal disconnection possibil-

ities. For example, for 1, 2, and 3 disconnections, the
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Layer 1

Layer 2Input Data u (t):
• Filtered sEMG

• Delayed Robot’s Kinematic

Tap-
Delayed
Line

[1 : nu]

Tap-
Delayed
Line

[1 : ny]

IW1,1

LW1,2

b1 +
Sigmoid
Function

f1

b2

LW2,1

+

Symmetric
Saturating
Linear

Function
f2

Output Data y (t):
Robot’s Future
• Joint Angle

• Assistive Torque

Hidden Layer nlNeurons nn

Output Layer

Feedback Connection

Fig. 1: A schematic of a RNN model with one hidden layer. u (t) and y (t) are the input and the output signals,

respectively. nu and ny are the number of prior values of the input and output signal, respectively. IW , LW , and

b are the input weight, layer weight, and bias of one neuron, respectively.

data volume is multiplied by 11, 110, and 990, respec-

tively. We found the training time selection relevant to

the computation capability of the PC to be reasonable.

The training performance was assessed using the mean

squared normalized error (MSE) function. The linear

regression of targets relative to outputs (R) was used for

reporting and evaluating the regression performance.

Using a subject that has not participated in the

training and validation process for estimation evalua-

tion purposes provided the opportunity for electrode

shift evaluation, which is another challenge for daily

prosthesis use [40–42]. Electrode placement, human body

characteristics, muscle strength, and skin thickness dif-

fer from one participant to another. Generally, when
using different participants for validation and testing

in a machine learning model with a wide configuration

network, the electrode shift is assessed between partici-

pants, and the full estimation accuracy is estimated via

data of a random participant.

3 Data collection

– Participants: Nine female and eight male healthy

right-handed individuals (23±4 years; 72.25±29.85 kg

mass; 1.66 ± 0.16 m height) gave informed consent

and performed proscribed object manipulation tasks.

The experimental protocol was in accordance with

the Declaration of Helsinki. The university office of

research ethics approved the data collection study

(ORE #: 21246).

– Instrumentation: 3D position data of bony land-

marks of the torso, upper arm, and forearm seg-

ments were obtained using eight Vicon MX20+ cam-

eras (Vicon Motion Systems, Oxford, U.K.) at a

sample rate of 50 Hz [43]. The task targets and load

positions also had reflective markers.

Surface electromyography of the serratus anterior,

deltoid (anterior, posterior, middle), supraspinatus,

infraspinatus, trapezius (upper, middle, lower), latis-

simus dorsi, and pectoralis major muscles were mea-

sured using Noraxon Bipolar Surface Ag-AgCl elec-

trodes with a fixed 2 cm inter-electrode distance

(Noraxon Inc, Arizona, USA) and a Noraxon T2000

telemetered system, TeleMyo, (Noraxon Inc, Ari-

zona, USA). The skin overlying these muscles (a

total of 11 sites) was shaved and wiped with an

alcohol swab prior to placing the electrodes. Elec-

trode placement followed previous work and was

confirmed through palpation [44, 45]. A reference

electrode was placed over the clavicle. Subsequently,

the raw signals were amplified (common-mode re-

jection ratio ≥ 100 dB at 60 Hz, input impedance

100 MΩ), sampled at a rate of 1500 Hz, and digi-

tized (16-bit A/D card, maximum ±10 V).

– Task protocol: The individuals were asked to lift

a weighted bottle from the lower target, place it

on the upper target, and contrariwise 15 times in

60 seconds following the beat of a metronome [43,

46]. Participants were requested to rest/pause for

around 2 seconds at the targets. The pose of the

participants is shown in Figure 2(a). The weighted

object was a 14.9± 6.6 N weight, scaled to the par-

ticipant’s shoulder elevation strength [46].

During data collection, participants had no inter-

action with an assistive biomechatronic device (Fig-

ure 2(a)) since the device impacts human behaviour,
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(a) Measurement [8, 46]

(b) MapleSim human musculoskeletal model [50]

(c) MapleSim human-exoskeleton biomechatronic model [51]

(d) Human-exoskeleton free movement experiment

(e) Human-exoskeleton lifting experiment

Fig. 2: A depiction of the data collection process

where participants delivered and returned a weighted

object between target locations (a). A sample of the

human musculoskeletal (b) and human-exoskeleton (c)

MapleSim models. A sample of the human-exoskeleton

experiment for free movement (d) and weight lifting (e).

decreases measurement accuracy, and the human

adapts to the assistive wrench [47–49]. However,

the exoskeleton dynamic model (Figure 2(c)) can be

added to the human model (Figure 2(b)) via sim-

ulation. The human-exoskeleton model is explained

in detail in section 4.1.

4 Data preparation

The data preparation information regarding the objec-

tive of RobustMuscleNET model has been presented

in the following section. The machine learning model’s

target output is the future exoskeleton elevation joint

angle and the assistive torque, which would be used

in lower-level controllers of exoskeletons. The inputs of

the machine learning model are the interrupted sEMG

signals and the delayed kinematic signals of the robot.

One of the objectives of the model for controlling

biomechatronic devices is to provide a fast mapping.

From a control viewpoint, it is better to have mini-

mal kinematic and dynamic computation in real-time

controlling. Thus, providing a control-oriented model

instead of a human-oriented model plays a vital role in

decreasing the computation cost. These extra kinematic

and dynamic computations are due to the kinematic

structure, joints, links, and constraints of biomecha-

tronic devices, leading to biomechatronic joints that are

not co-axial with human joint axes. Consequently, it is

impossible to lump the assistive / resistive robot link

inertial properties with that of the human segmental

body and therefore intractable to use ordinary differen-

tial equations (ODEs). Since the human-mechatronic

devices may have closed kinematic chains in the multi-

body model, we must solve differential-algebraic equa-

tions (DAEs), which requires time-consuming optimiza-

tion loops. Thus, conversion from human joint variables

to robot control command is not required in assistive

robots’ real-time high-level control. However, the con-

version should occur a priori via an offline simulation

to prepare the control-oriented model’s training data.

The offline simulation can be obtained by optimizing

the robot’s assistive torque through the multibody dy-

namic model simulation.

4.1 Output 1: Future assistive torque

The multibody system consists of six sub-systems:

– The central nervous system (CNS) (comprised of

the brain and spinal cord that controls, coordinates,

and manages the musculoskeletal (MSK) system)

was modelled using nonlinear model predictive con-

trol (NMPC) [4, 48]. NMPC combines features of

motion prediction and error correction using an in-

ternal model (IM) to estimate measures such as ef-

fort and feasibility. The CNS controller optimizes a

cost function (Equation (2)), subject to biomechan-

ical limitations (Equation (3)). More information on

the weights and the prediction horizon is available

in [48];
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– The muscular system was created using muscle torque

generators (MTGs) that include four torque sub-

functions as shown in Equation (4) [52]. The sub-

functions are: (I) the passive torque (τp), (II) peak

joint strength (τ0), (III) active-torque-angle scaling

(τθ), and (IV) active-torque-angular-velocity scaling

(τω). These sub-functions are considered separately

for positive and negative directions and are scaled

by sex, age, body mass, body height, dominant side,

and physical activity;

– The skeletal system was created using body segment

inertial parameters (BSIPs) and was developed to

have 20 degrees of freedom (DoFs), which were de-

fined according to International Society of Biome-

chanics (ISB) standards [53];

– The wearable/biomechatronic structure was designed

such that any device could be considered. Here, we

selected the EVO (Ekso Bionics Holdings Inc, Cal-

ifornia, USA) upper limb exoskeleton model as our

biomechatronic system. The EVO’s model was ex-

perimentally verified in [4]. The skeletal system and

the exoskeleton’s frame (Figure 2(c)) form a closed

kinematic chain in the multibody model (which con-

sists of position (Equation (6)), velocity (Equation (7)),

and acceleration (Equation (8)) level constraints);

– The assistive torque optimization system was de-

signed to reduce muscle tension and human joint

torque. An optimization loop was defined to solve

for the exoskeleton’s assistive elevation torque by

minimizing a cost function (Equation (9)) [54];

– The actuator or the motor’s torque-producing abil-

ity was expressed using Equation (10), which is how

the torque production is typically expressed without

considering the motor-armature inductance.

Simulation of the aforementioned multibody model

has the following four steps. The resultant simulation

computes assistive torque (Td) and the robot kinematic

data (ϕt, ϕ̇t, and ϕ̈t).

1. The human joint angle measurements (θd) were fil-

tered with a 10 Hz low-pass filter (minimizing high-

frequency noise in the measurements). The human

joint velocities (ωd) were obtained using numeric

derivatives and a 20 Hz low-pass filter;

2. These processed kinematic data were used as the

reference trajectory for the cost function in Equa-

tion (2) and as the CNS-NMPC coordinates for the

human body to determine the activation signal (a)

with respect to Equation (3). The activation signal

was fed to the MTG model in Equation (4) to cal-

culate the human joint torque (τh);

3. The cost function used for assistive torque optimiza-

tion (Equation (9)) was applied to minimize the hu-

man joint torque (τh), especially shoulder joint, by

providing exoskeleton assistive torque (Td). Then,

the assistive torque was used in Equation (10) to

consider the motor dynamics.

4. The human (τh) and exoskeleton (T ) torques were

used as inputs for forward dynamic simulation of the

model in Equation (5). Equation (5) is solved with

respect to the position, velocity, and acceleration

constraints in Equations (6-8), which form a DAE

and require a high computation cost compared to

an ODE.

JCNS =
∫ t+tp
t

[ WT
1 (θ − θd)

2
+WT

2 (ω − ωd)
2
+

WT
3 (a)

2
+WT

4 (ȧ)
2
]dt

(2)

θmin (β) ≤ θ ≤ θmax (β)

ωmin (β) ≤ ω ≤ ωmax (β)

−1 ≤ a ≤ 1

ȧmin ≤ ȧ ≤ ȧmax

(3)

τh = a+τ+
ω (ω, β) τ+

θ (θ, β) τ+
0 (β)+

a−τ−
ω (ω, β) τ−

θ (θ, β) τ−
0 (β) + τp (θ,ω, β)

(4)

Mṗ+CTλ = F+Q (5)

Φ(q, t) = 0 (6)

Ψ(p,q, t) = 0 (7)

χ(ṗ,p,q, t) = 0 (8)

JA =

∫ tf

0

[
wτ 2

h

]
dt (9)

T = NTd −
(
N2Imφ̈+N2bmφ̇

)
(10)

where
JCNS CNS-NMPC cost function

tp prediction horizon

W CNS cost function weights

θ human joint angles

ω human joint instantaneous angular velocities

a activation signal

ȧ rate of activation signal

d desired value or trajectory

min minimum variable

max maximum variable

β subject adjustment variables: sex, age, body

mass, height, dominant side, and physical ac-

tivity

τh human joint torque
+ positive direction of joint
− negative direction of the joint

τω the active-torque-angular-speed-scaling func-

tion
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τθ the active-torque-position-scaling function

τ0 the peak isometric joint strength producing

capability

τp the passive torque function due to viscous

damping and nonlinear stiffness

n number of joints

m number of constraint reactions

M n× n mass matrix, a combination of the hu-

man and the exoskeleton models

C m× n constraint Jacobian (maps reaction

forces/torques to generalized forces)

λ m× 1 reaction forces and torques in the cotree

joints that enforce the kinematic constraint of

human-exoskeleton connection

F n× 1 right-hand side of dynamic equations

Q n× 1 generalized force vector containing the

applied wrench (torque/force) at the joints,

which consists of the human joint torque (τh)

and the robot joint torque (T )

Φ m× 1 position-level kinematic constraint

equations

Ψ m× 1 velocity-level kinematic constraint

equations; if the generalized speeds are equal

to the coordinate derivatives, then Ψ = Φ̇

q n generalized coordinates of the multibody

system, which consist of the human joint an-

gles (θ) and the robot joint states (φ)

p n generalized speeds of the multibody system,

which consists of the human joint angular ve-

locities (ω) and the derivative of robot joint

states (φ̇)

JA assistive torque optimization cost function

tf final simulation time

w the cost function weights

T the net motor output torque

N the motor’s gear ratio

Td the assistive torque applied to the rotor

Im the motor rotor inertias

bm the rotator viscous friction coefficients

4.2 Output 2: Future kinematic output signal

The electromechanical negative delay phenomenon [23]

can compensate for the control system computation or

actuation delay. We parameterized this phenomenon to

predict the joint angle or motion intention using sEMG

signals and a machine learning method. The predictive

output signal can be obtained through two possible sce-

narios: (A) the future joint angle in the t+∆t time or

(B) the future joint acceleration using the Euler series.

Both possible outputs are defined in the following para-

graph.

For the current sEMG set in the time of t, the future

joint angle ϕt +∆t in the time of t+∆t was calculated

by straightforward 1-D data extrapolation.

Similarly, since human motion (acceleration) is ac-

tuated by muscle contractions measured by the sEMG

technique, the reference joint or task space acceleration

can also be calculated from sEMG. The predicted ac-

celeration ϕ̈′
h can be calculated by the Euler series for

t+∆t time in Equation (11) by using the current joint

angle ϕt and joint velocity ϕ̇t.

ϕt+∆t ≈ ϕt + ϕ̇t∆t+
1

2!
ϕ̈′
h∆t2 (11)

The prediction horizon ∆t plays an essential role in

the accuracy of motion prediction. Therefore, we stud-

ied different values for the prediction horizon along with

the possibility of the future joint angle ϕt+∆t or the

predicted acceleration ϕ̈′
h as an output of the Robust-

MuscleNET model.

The assistive torque was shifted with t+∆t as the

prediction horizon to obtain the future assistive torque

τt +∆t.

4.3 Input 1: sEMG signal

– sEMG filtering: To prepare sEMG signals, raw sig-

nals were filtered in the following six steps (Fig-

ure 3):

Step #1 Band-pass filter with a normalized cut-off fre-

quency of 20 − 500 Hz to reduce the movement

artifacts [55] and to remove the minor power

spectral density [56] (Figure 3(c));

Step #2 Band-stop filter with a 55 − 65 Hz normalized

cut-off frequency (to reduce the 60 Hz impact

from the measurement system) (Figure 3(e));

Step #3 Rectification of the signal value with the abso-

lute function since muscles produce positive ten-

sion by activation [57] (Figure 3(g));

Step #4 A low-pass filter with a normalized cut-off fre-

quency of 7 Hz to ignore extra frequency infor-

mation outside the maximum human motion fre-

quency [58, 59] (Figure 3(i));

Step #5 Normalization to the trial maximum signal am-

plitude for each participant. Additional filter-

ing and analysis were unnecessary for a machine

learning model for mapping signals (not a math-

ematical muscle model) [59] (Figure 3(k)).

Step #6 Sample rate reduction to 50 Hz, thus decreasing

the computational cost of the model.

– Interrupted sEMG signal: As mentioned, one chal-

lenge with using myoelectric sensors is that signal

disconnection or the wearable sensors losing contact
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Fig. 3: Samples of the time and frequency domains of

the raw and filtered sEMG signals.

from the skin is inevitable [18]. sEMG signals may

have signal loss due to electrode disconnection, mus-

cle artifacts, or the impracticality of measuring deep

muscles [18, 19]. In these cases, the myoelectric-

based control would likely fail. Thus, preparing a

robust prediction model for signal disconnection is

necessary. The intention for producing interrupted

sEMG signals is to simulate this sEMG signal dis-

connection. Although in some situations, the sig-

nals’ amplitude may only be reduced, we have con-

sidered the worst-case condition, which is complete

disconnection. In this section, each input sEMG sig-

nal disconnects, and the output signals are intact.

The volume of data samples is equal to the volume

of the recorded data multiplied by the number of

disconnections.

The dataset for training the robust model was pro-

duced according to the algorithm in Figure 4 and

using the following steps:

i Initially set i = 1.

sEMG Pool
(Ui)

i = 1

i ≤ dimR {N}

u′ = Input set
y = Output set

u′
i = 0

new U = [U ;u′]
new Y = [Y ; y]

new i = i + 1

Training RobustMuscleNET with
U Interrupted sEMG Signals Input and

Y Future Control-oriented Signals Output

Robust RNN Model

Yes

new i

No

Fig. 4: Schematic of interrupting sEMG input signal

algorithm.

ii For the new input signal, multiply the input chan-

nel index i by zero.

iii If i ≤ N is satisfied, the index will be changed

(new i = i+1), and step (ii) will be repeated; if

not, go to step (iv).

iv Train RobustMuscleNET model using the inter-

rupted input signals and intact output signals.

Repeating steps (ii-iii) is similar to finding all com-

binations of N sEMG numbers, taking N − 1, and

setting one signal at a time to a zero value (mim-

icking a disconnected signal). The zero value persist

for each signal for whole trial and consequently the

volume of training data increases by the number

of sEMG channels. Multiplying more channels (e.g.,

the index i and j) by zero and applying the same

strategy of assuming more sensors are disconnected

is possible. After completing the described strategy,

we have all common conditions which would likely

happen to the input signals. As the RobustMuscle-

NET model was trained with this dataset, theoret-

ically, it can estimate the output signals using less

than N input signals.
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4.4 Input 2: Delayed kinematic signal

The muscle model depends on the sEMG signals as well

as kinematic signals. Thus, one of the muscle-based con-

trol model inputs was kinematic signals, including joint

angle, velocity, and acceleration. The joint angle can

be measured through rotary encoders or a rotary poten-

tiometer, although the signal may have an electrical de-

lay due to the connection speed and the sampling rate.

Commonly, a low-pass filter with a computation delay

of 0.025 seconds is used for filtering joint angle noises.

The joint velocity and acceleration are estimable via

the first and second derivatives using the current joint

angle values, which have computation delays. Thus, we

selected 0.025 seconds for the electrical delay modeling,

and 0.025, 0.05, and 0.075 seconds for the computation

delay of the joint angle, velocity, and acceleration sig-

nal. In total, the joint angle, velocity, and acceleration

had delays of 0.05 seconds (0.025 electrical + 0.025 com-

putation delay), 0.075 seconds (0.025 electrical + 0.05

computation delay), and 0.1 seconds (0.025 electrical

+0.075 computation delay), respectively.

5 Experimental evaluation framework

– Participants: 21 healthy participants (12 males and

9 females; 25± 3.3 years; 66± 13.0 kg mass; 1.75±
0.09 m height; 2.5 ± 1.9 workout session per week;

15 right-handed and 5 left-handed) gave informed

consent and performed the pick-and-place task. The

custom exoskeleton was inspected by the safety of-

fice and the test protocol was given ethics clearance

by the Research Ethics Board of the University of

Waterloo (REB: #43980).

– Instruments: The Delsys Trigno wireless sEMG sys-

tem (Delsys Inc, Natick, MA, USA) was used to

measure the participants’ muscle activity. The EVO

(Ekso Bionics Holdings Inc, California, USA) upper

limb exoskeleton structure was used as the biomecha-

tronic system interacting with the human. An AK80-

9 KV100 brushless direct current (BLDC) motor

(Cubemars, Jiangxi Xintuo Enterprise Co., China)

was augmented to fit the exoskeleton structure. The

built-in motor driver communicated with the con-

trollers through a controller area network (CAN-

bus) and was calibrated through serial communica-

tion. An Arduino Uno and a CAN-bus Shield V2.0

(Seeed Technology Inc., Shenzhen, China) were used

for communication between MATLAB and the mo-

tor. The mid-level controller from [48] was used to

strengthen the RobustMuscleNET model’s output

and command the low-level controller of the motor’s

field-oriented control (FOC) unit.

– Task: Participants were allowed to move freely (Fig-

ure 2(d)) and lift a 5 pound kettlebell (Figure 2(e))

with their right arm while wearing the shoulder ex-

oskeleton.

6 Results and discussion

The optimized configuration of the model and model

performance evaluation are presented in the following

paragraph. A personal computer with an Intel® CoreTM

i7-3370 CPU @ 3.40 GHz processor and 16.0 GB mem-

ory was used to prepare the data and train the machine

learning model.

6.1 Control-oriented output

Using the control-oriented signals (the exoskeleton’s joint

angle and assistive torque) as the output of the Robust-

MuscleNET model decreased the calculation cost com-

pared to using human biomechanical variable outputs

(Figure 5). The conversion of the human biomechanical

variables to the robot’s kinematic and kinetic variables

alternatively would require iterative time-consuming vari-

ables calculation (the algorithm shown in Figure 5(b))

with 0.1 s per frame of data for an assistive torque.

This time-consuming iterative calculation is helpful for

offline design [26]. However, this calculation cost is re-

moved here since the model’s output is the future ex-

oskeleton’s assistive torque and joint angle.

6.2 RobustMuscleNET model optimization

The RobustMuscleNET model was trained, validated,

and tested with the 90 different configurations (sec-

tion 2.1). Firstly, the top regression accuracy was ob-

tained when the number of hidden layers (nl) was 1.

While having more hidden layers is possible, the train-

ing was limited to one hour, and the mapping slowed

and required more memory as the number of hidden lay-

ers increased. Secondly, the optimal number of nodes in

each layer (nn) was approximately 30. With inadequate

or spare nodes in each layer, the regression accuracy re-

duced or required more time for training, respectively.

Thirdly, the number of input signal former values (nu)

was 3, which indicates that the history of biomechani-

cal signals is essential for mapping. Finally, the number

of the output signal former values (ny) was required

to be 3 for the optimum configuration. With more of

the output signal’s former values, the output becomes

smoother. This result is quite similar to the configura-

tion of the RNN model proposed as a machine learning

muscle model [8].
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(b) Muscle-oriented MuscleNET Application

Fig. 5: Comparison of the control-oriented (a) and muscle-oriented (b) MuscleNET application for controlling

biomechatronic systems while interacting with a human body. ϕ, θ, T , and τh are the robot joint angle, human

joint angle, robot joint torque, and human joint torque, respectively.

6.3 Prediction horizon

The accuracy of the predictive model was assessed for

two methods: angle prediction and acceleration predic-

tion. The angle prediction ϕt +∆t used a time-shifted

joint angle, and the acceleration prediction ϕ̈′
h used

Equation (11). The shift, the positive delay range, or

the prediction horizon was assessed between 0 and 0.5 seconds

(Figure 6).

For the angle prediction in Figure 6, the regression

accuracy dropped under 92% for a prediction horizon

of more than 0.1 seconds. Thus, we recommend a pre-

diction horizon of less than 0.1 seconds for the joint

angle. This result approximates the electromechanical

delay phenomenon [23]. For the acceleration prediction

in Figure 6, the accuracy of the acceleration estimation

was insufficient. Besides that, Equation (11) requires

an accurate joint angle and velocity to predict the fu-

ture joint angle. Thus, we do not propose to use Equa-

tion (11) for the joint prediction. If the biomechatronic

device’s current joint angle and velocity were measured

with the highest accuracy and the estimation criteria

were less than 92% regression accuracy for the valida-

tion and test datasets, Equation (11) could be used suc-

cessfully.

The joint angle prediction was successful and had

adequate accuracy (more than 90%) for less than 0.1 seconds

(Figure 6). The amount is similar to the electrome-

chanical delay phenomenon, defined as the time de-

lay between the onset of the sEMG and the onset of

the human motion [23]. Using this positive delay, the

machine learning model could successfully predict the

output signals for the next 0.1 seconds. The amount

of electromechanical delay or prediction horizon may
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100
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Fig. 6: The regression accuracy of the training, valida-

tion, and test data set for angle prediction and acceler-

ation prediction.

differ depending on individual body characteristics [24]

and different tasks and can be evaluated using the same

method.

For the assistive torque prediction in Figure 6, the

regression accuracy dropped under 86.5% for a predic-
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tion horizon of more than 0.1 seconds. This assistive

torque prediction can be used in high-level predictive

control of assistive devices. Using the future signals as

the output of machine learning allows for real-time vo-

litional high-level control of the biomechatronic system,

and having the future intent provides the mechatronic

device with the opportunity to be ready [7]. For exam-

ple, the actuation system can run to serve in advance

whenever the mapping system indicates a high amount

of assistive torque for future steps.

6.4 Robust model evaluation

The estimation ability of normal and RobustMuscle-

NET models were also evaluated using interrupted sig-

nals (Figure 7). The input into the models was the in-

terrupted sEMG and kinematic signals. For the evalu-

ation, eleven sEMG signals were disconnected one by

one. Two normal and RobustMuscleNET models were

trained using different input signals and the same tar-

get signals. Specifically, the normal RNN model was

trained with the ideal input signals without any discon-

nection. Subsequently, the RobustMuscleNET model

was trained using the interrupted input signals.

The normal model had more error and sometimes

misestimated the target signals (Figure 7), especially

for the normalized assistive torque (regression of 71%).

The RobustMuscleNET model handled the disconnec-

tion of input signals and estimated the output signals

with regression accuracy of 92.3%. The higher regres-

sion accuracy of the RobustMuscleNET model indicates

that the robust model is more suitable for practical ap-

plication.

The normal and robust model with interrupted sEMG

signal were also compared (Figure 8). All test partic-

ipants’ data was used to assess the estimation profi-

ciency of the normal and robust model in the presence

of sEMG disconnection. The robust model had 5−15%

more regression accuracy than the normal model when

there is an interruption. This robust model thus ad-

dressed the issue of sEMG signal disconnection [18, 19].

An example of the estimation ability of normal and

RobustMuscleNET models for a random participant is

displayed (Figure 9).

The sEMG signal disconnections in section 4.3 are

extended from 1 to 10 disconnections (for 11 sEMG

channels in total), and the robust model was trained

and compared to the normal model performance in the

top part of Figure 8. The regression of the robust model

with more disconnections generally decreases, but still

is greater than the normal model. The regression accu-

racy for both robust and normal models drops below

50% for eight signal disconnections. This means that

at least 4 sEMG signals should maintain connected for

the shoulder exoskeleton device for more than 50% re-

gression accuracy. The shoulder exoskeleton assists the

3-DoFs shoulder joint and requires 4 sEMG signals from

at least 4 muscles to control the joint. This result of a

minimum of 4 signals for a 3-DoFs joint is similar to

what is seen in muscle synergies [60].

In the bottom part of Figure 8, the signals’ impact

was evaluated using sequential backward signal analy-

sis. Each signal was deleted from the signal bank in the

analysis, and the machine learning model was trained.

Then, the deleted signal with the maximum regression

was reported as the non-important signal. For exam-

ple, the maximum regression was achieved with the

lower trapezius (LTRA) deletion from the 11 signals

database for the first analysis loop. The second anal-

ysis achieved the maximum regression with the LTRA

and upper trapezius (UTRA) ignoration from the 11

signals database. In total, the order of least to most

essential signals is: 11. LTRA, 10. UTRA, 9. middle

trapezius (MTRA), 8. anterior deltoid (ADEL), 7. latis-

simus dorsi (LATS), 6. pectoralis major (PECC), 5.

posterior deltoid (PDEL), 4. infraspinatus (INFR), 3.

supraspinatus (SUPR), 2. middle deltoid (MDEL), 1.

serratus anterior (SERR). For the mentioned task of

sagittal pick-and-place with the mentioned sEMG record-

ing unit, the results show that SERR and MDEL di-

rectly relate to the output of the machine learning model.

This analysis should be done for different tasks and dif-

ferent measurement units before controlling wearable

robots.

The electrode shift, which is a common challenge

for daily prosthesis use [40–42], has been evaluated us-
ing different participants for estimation evaluation. In

Figure 9, a participant was eliminated from the train-

ing pool, the regression accuracy was estimated, and

finally, the mean regression was reported as well as the

minimum and maximum regression accuracy of differ-

ent participants.

Since the output data (joint angle and assistive torque)

was normalized in Figure 7 and Figure 9 to show fair es-

timation assessment, it may seem as if the data strictly

follows a specific pattern and that it is possible to pre-

dict with time series analysis. However, there are sev-

eral explanations as to why the data is not following an

exact pattern with constant frequency. First, although

the 30 cm2 area of the lower and upper targets were

similar for all participants, the participants had differ-

ent body heights and segment lengths, which required

different postures to complete the task. In addition, the

participants were not restricted to exact trajectory pat-

terns. Further, the motion timing was not dictated to



Pr
ep
rin
t

12 Ali Nasr et al.

Fig. 7: Evaluation of the normal model and robust model with interrupted sEMG signals. The target output is

the normalized joint angle (a) and assistive torque (b).

all participants, and participants had complete control

of triggering the task.

As a further depiction of estimation ability, Fig-

ure 10 shows a section of estimation with higher resolu-

tion. The prediction horizon in Figure 10 is 0.1 seconds

into the future, which means that the RNN model esti-

mated the target that was shifted by 0.1 seconds. This

RNN estimation has 0.1 seconds of shifted data com-

pared to the synchronized mapping of biomechanical

variables with sEMG signals [8]. In addition, the assis-

tive torque is highly reliant on anthropometric data of

participants, external wrench due to the object mass,

and trajectory of motion. Without having information,

especially the object mass, it is impossible to solve the

dynamic motion Equation (5) and predict the assistive

torque with time series analysis of patterns. Using the

sEMG signals provides information on the activation of

muscles and how the participant controls the arms ac-

cording to the external object mass. For the volitional

control of biomechatronic devices for non-periodic mo-

tion [7, 57], e.g., pick-and-place an object, it is practical

to use sEMG signals for estimation instead of predicting

using only previous kinematic data. The reasons behind

this phenomenon are explained in section 1, with spe-

cific focus on the electromechanical negative delay phe-

nomenon of sEMG signals [23] and volitional prosthesis

control for amputees [40, 41].

Another point to consider regarding the RNN model

application and evaluation is that this recurrent ma-

chine learning model relies highly on input and out-

put data history. Specifically, for an RNN configura-

tion with input signal former values (nu) of 3 and out-

put signal former values (ny) of 5 (section 6.2), starting

the estimation requires some previous data that is not

available at t = 0 seconds. This study feeds the RNN

model with random data at the start phase. It then con-

tinues with experimental data from when the data was

available. Random input data at the beginning leads to

inaccurate estimation at the beginning phase. This esti-

mation was used as the output signal former values for

further estimation. The RNN model converges in less

than 2 seconds. For evaluation, a section of the estima-

tion and target data for four participants were shown

in Figure 10.

Additionally, the estimation was accomplished with

the strict conditions of normalized input data (e.g., Fig-

ure 7 and Figure 9) for all participants and no sEMG in-

formation provided for the validation participant. Specif-

ically, the maximum and minimum joint angle, veloc-

ity, acceleration, and assistive torque differed from one

participant to another. The RNN model had no infor-

mation on a participant’s exact data (only normalized

data was used) and had no information about the mus-

cle strength and sEMG pattern of the validation par-
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Fig. 8: Comparison of the robust and normal model

with the number of interrupted sEMG signal inputs

evaluated for all test participants’ data (a). Signal im-

pact versus maximum regression with sequential back-

ward signal analysis for 11 signals (b).

Fig. 9: Evaluation of the normal model and robust

model with interrupted sEMG signals for a random par-

ticipant.

ticipant, which differs from one person to the other.

However, the RNN model could successfully estimate

the data with regression accuracy similar to previous

work [8].

6.5 Experimental evaluation

RobustMuscleNET was used for controlling the active-

passive shoulder exoskeleton. Figure 11 shows the data

of a participant who completed the task voluntarily. Ro-
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Fig. 10: A section of four participants’ time-series data

estimation for normalized future joint angle and assis-

tive torque using a prediction horizon of 0.1 seconds.

These participants had fairly similar anthropometric

data (body height and mass) that was close to the av-

erage.

bustMuscleNET assisted in increasing the control loop

speed as the human to robot variables did not require

converting, resulting in an output with a 200 milliseconds

prediction horizon. The prediction feature helps ensure

that the systems are cooperating. Specifically, consider

a scenario when the system is estimating the current

joint angle and torque while the connection system has

a small delay. The delayed assisting torque may oppose

the desired user intention, resulting in a lack of coop-

eration between the robot and human. An example of

this is if the user is holding a weight and wants to lower

the arm while the delayed estimation system still esti-

mates holding. The system would therefore inhibit the

user from lowering their arm.
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Fig. 11: (a-f) the raw and filtered sEMG signals #1-6: UTRA, MTRA, MDEL, PDEL, ADEL, and BRD; (g)

the predicted exoskeleton elevation angle, (h) the predicted exoskeleton elevation angular velocity, (i) the human

contribution torque estimated by RobustMuscleNET model, (j) the robot passive torque, (k) the robot feedforward

torque, (l) the total robot torque.
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Fig. 12: The schematic for controlling an exoskeleton, prosthesis, or rehabilitation robot using RobustMuscleNET

as a model for mapping the raw sEMG, joint feedback position ϕf , velocity ϕ̇f , and acceleration ϕ̈f to future

assistive torque τt+∆t and future joint angle ϕt+∆t. The mid and low-level controller are responsible for regulating

the assistive torque and decreasing the actuator error, respectively.

6.6 Application

The robust predictive control-oriented model can be

used for the high-level control of biomechatronic de-

vices, such as exoskeletons, prostheses, and assistive / re-

sistive robots. This high-level controller predicted the

user intent based on the sEMG signal and the robot’s

kinematics. Since sEMG signals may disconnect in prac-

tice, the robust model supersedes a normal model in a

human-in-loop control system. Since the model output

was normalized to the maximum value, it is recoverable

by multiplying by the maximum value. This proposed

volitional myoelectric-based control loop using the ro-

bust mapping (as high-level control) is displayed in Fig-
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ure 12. For the preparation of this model, offline sEMG,

kinematic, and kinetic data was used.

Although this model has been evaluated for a 1-DoF

exoskeleton, it can be used for multi-DoFs biomecha-

tronic systems. In this case, the model’s input should

be enriched with more signals, data, and complex tasks

relevant to more degrees of freedom when training the

RNN.

It is noteworthy to mention that the low-level con-

troller in Figure 12 is responsible for

1. adjusting the command according to the strength

and goal of the biomechatronic devices,

2. considering the human-robot adaptation phenomenon,

3. maintaining the applied wrench according to the de-

sired command [7, 8].

For example, a rehabilitation robot may require hav-

ing a resistive torque instead of assistive torque, or a

power augmentation device may require more assistive

torque than the human portion [5]. This low-level con-

troller would require further study, which is out of the

scope of this paper.

For a prosthesis, since the amputated limb cannot

be used for offline modeling and training of the Ro-

bustMuscleNET model, the intact mirrored limb may

be used for data recording and training the model given

that the use of sEMG signals from the remaining limb

has been studied further [40, 41]. However, the idea of

training the RobustMuscleNET model with interrupted

input sEMG signals and future control-oriented output

signals still contributes to prosthetics control.

7 Conclusion

A recurrent neural network developed a successful ro-

bust predictive regression-based model for mapping in-

terrupted sEMG signals to future control-oriented sig-

nals. The output of the machine learning model im-

plemented control-oriented biomechatronic signals in-

stead of human biomechanical signals. This control-

oriented model decreases computational cost and elim-

inates the optimization loop for assistive torque com-

putation. Besides that, using future variables instead

of the current variable raises the opportunity of high-

level controlling the system without delay. Using an

interrupted sEMG signal for model training increases

the robustness of modeling in the case of disconnection

and associated signal loss during online sEMGmeasure-

ment. The robust predictive control-oriented regression

model offers the potential to transform practical voli-

tional myoelectric-based control of biomechatronic de-

vices, such as exoskeletons, prostheses, and assistive / re-

sistive robots.

In future work, training the model with random

movements of varying velocities, application to prosthe-

sis control for phantom motion intent interpretation,

the repeatability of the high-level controller for elec-

trode shift, and the low-level hierarchical control, which

manages the human-robot interaction, assistance/resistance

strategy weight, and coordinates the actuator, requires

further study.
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