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ABSTRACT

A musculoskeletal (MSK) model is an important tool for analysing human mo-
tions, calculating joint torques during movement, enhancing sports activity, and
developing exoskeletons and prostheses. To enable biomechanical investigation of
human motion, this work presents an open-source lower body MSK model. The
MSK model of the lower body consists of 7 body segments (pelvis, left /right thigh,
left /right leg, and left/right foot). The model has 20 degrees of freedom (DoFs) and
28 muscle torque generators (MTGs), which are developed from experimental data.
The model can be modified for different anthropometric measurements and subject
body characteristics, including sex, age, body mass, height, physical activity, and
skin temperature. The model is validated by simulating the torque within the range
of motion (ROM) of isolated movements; all simulation findings exhibit a good level
of agreement with the literature.

KEYWORDS
Musculoskeletal system model; Dynamic simulation; Biomechanics; Muscle torque;
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1. Introduction

A musculoskeletal model is a useful tool for analyzing complex biomechanical issues
[1, 2], simulating and analyzing injuries [3], designing and controlling exoskeletons [4—
6], prostheses [7], and rehabilitation robots [8], estimating joint torques in a particular
posture or during motion [2], predicting the results of orthopedic procedures [1, 9],
optimizing or enhancing movement or tools in sports engineering [10], and researching
the central nervous system (CNS) for optimal performance [1, 11-13]. The muscu-
loskeletal system is mechanically complex; thus it is necessary to utilize computer
models that are both adequately accurate and relatively efficient [2, 3, 8].

The musculoskeletal system is divided into two subsystems: skeletal and muscular
elements [3]. The skeletal system is made up of bones and connective tissues (e.g.
ligaments and cartilage). Skeletal muscles are arranged in layers over the bones, and
tendons attach them to the bones such that forces produced by the contractile elements
of the muscle fibers cause the motions of the body [1].

The majority of musculoskeletal models cannot be easily applied to mechanical tool
design challenges that involve human-tool interaction (e.g., golf clubs [10], robotic
mechanisms [6], exoskeletons [14], or bicycles [15]) because they are primarily used
for biomechanical simulation [3, 9] and not biomechatronics. A more useful model
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includes control frameworks for wearable robotic systems [4, 8], biomechanical analysis
and synthesis of designed mechanisms [9], and incorporating sensor data (e.g., surface
electromyography, electroencephalography, inertial measurement unit, or camera) into
control algorithms [4]. Additionally, an musculoskeletal model might be used for real-
time data gathering, simulation, and visualization in virtual reality applications with

the patient in the simulation loop [16]. One of the objectives of this paper is to develop

a user-friendly adjustable model to aid the aforementioned applications.

Biomechanical population-speci ¢ models are based on measured data of the pop-
ulation [3, 17]. Therefore, the model should only be used or studied for the specic
population [18]. To date, multivariate studies have been conducted to determine the
impact of subject variables on peak strength. As a result, regression models for the
prediction of strength from anthropometric variables have been proposed [19]. These
values, coupled with the properties of the subject body are what the biomechanical
model is based on, for example, sex [20], age [20{23], body mass [20, 24, 25], body
height [20, 24, 26], dominant side [21, 27], physical activity [28], skin temperature
[29{33], impact strength of muscles, anatomical locations, the center of mass (COM),
and inertia parameters [34, 35].

In addition, the maximum generated joint moment is limited by the muscle vari-
ables (e.qg., velocity, and length), tendons, and joint constraints. The nonlinear passive
resistive force owing to ligaments and connective tissue around a joint, and muscle ac-
tivation dynamics are muscular constraints. These biomechanical restrictions may be
approximated using either anatomically-detailed muscle tension [36] or muscle torque
generators (MTGS) [2, 37]. MTGs enable the reduction of anatomically-detailed mus-
cle complexity models by directly estimating joint constraints [37]. The MTG models
have been modi ed here to take into-account anthropometric data and subject body
features, similar to [2].

Several commercial (e.g., AnyBody, ADAMS-LifeMOD, MuJoCo, SIMM, SimMe-
chanics, MapleSim) and open-source (e.g., OpenSim, MSMS, RBDL, BiomechZoo)
multibody dynamics modelling programs-have been used to model and simulate mus-
culoskeletal systems [1]. It is dicult to use the aforementioned software, with the
exception of SimMechanics and MapleSim, to augment the human model with sport-
ing equipment, active prostheses, or exoskeleton models [1, 38], particularly when
using hydraulic, pneumatic, or exible components like bike tires [15] or golf shafts
[39]. While the other stated programs are focused on numerical calculation, MapleSim
is based on symbolic computation and o ers analytic derivatives when necessary, such
as for optimization or sensitivity assessments.

The distinctive qualities and contributions of this work are, in brief:

A. A exible, open-source, user-friendly, and simple to add-on (as an external tool)
musculoskeletal (MapleSim Biomechanics) model that can extract the lower limb
model equations symbolically.

B. A 20-degree of freedom (DoF) lower body skeletal dynamic model that may be
adjusted for: (1) sex, (1) body mass, and (lIl) body height.

C. Modeling of biomechanical joint torques using modi ed MTGs in accordance
with anthropometric values and subject body characteristics, including: (1) sex,
(1) age, (lI) body mass, (IV) body height, (V) physical activity, and (VI) skin
temperature.

D. A generic model for a range of applications, including motion analysis, sports
engineering, and the design and control of biomechatronic devices.

This research presents an elucidation of the lower limb model, designed to comple-



ment the existing upper body model introduced in the work by Nasr et al. [2]. This
model constitutes an open-source musculoskeletal framework, tailored for the biome-
chanical analysis of human motion. Notably, this adaptable model can be readily cus-
tomized to accommodate diverse anthropometric measurements and subject-speci c
characteristics, encompassing variables such as sex, age, body mass, height, dominant
side, physical activity levels, and skin temperature.

In sections 2.1 and 2.2, this study gives the positions and inertia parameters of the
lower body model scaled by anthropometric parameters. Second, section 3 introduces
the biomechanical joint torque model as a function of biomechanical kinematic factors,
anthropometric parameters, and subject body features. The incorporation of a ground
reaction model is not within the intended scope of this research. Our primary objective
is to o er an evaluation of feasible methodologies in section 4. Following that, the
symbolic model extraction is introduced in section 5, two simulation techniques of
inverse and forward dynamics are presented in section 6, and the model is validated
with the literature data in section 7. An example is given along with a description
of the model simulation technique. The discussion of the o ered model's applications
concludes at section 8.

2. Skeletal dynamic model

2.1. Locations of anatomical landmarks

The global frame is attached to the ground, then, the rst segment (the pelvis) has
6-DoF. The torso (a single segment) represents for thorax and abdomen because there
does not exist a good estimate for the thoracic joint center [34]. All coordinate frames
are de ned according to the anatomical landmarks with respect to the International
Society of Biomechanics (ISB) standard [40]. Speci cally, the joint centres are estab-
lished in accordance with the literature using the designated anatomical landmarks,
and the orientations of the segment coordinate systems are constructed (Figure 1)
[34, 40]. The terms and acronyms for the segment anatomical landmarks are taken
from [34, 40]. The segment anatomical coordinate systems are established using these
important landmarks [34, 35, 40] and presented in Table 1.

The COMs and segment anatomical marker placements for the right body side in
Figure 1 are taken from [34]. Following that, the raw location data were scaled to
re ect the mean height of each sex (male mean stature X7 m, female mean stature
1:61 m), and they are shown in Table 2.

It is assumed that the right and left limbs are symmetrical. Similar to [2], the matrix
in Equation (1) transforms the position of anatomical landmarks and segment COMs
from the right limb (presented in Table 2) to the left limb.

2 3
4 5 (1)

RRroL =

([oNeN
(ol o)

0
0
1

2.2. Body segment inertia parameters

It is common practise to calculate body segment inertial parameterss using published
linear or non-linear regression formulae [34, 35, 41, 42]. In Table 3, the mass of each
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Figure 1.: Locations of speci c anatomical landmarks of lower limb and the resulting
segment coordinate system orientations in accordance with ISB standard [34, 40].

segment (M) is shown as a proportion of the body's overall mass [35]. The inertia
tensor is determined according to the origin of segment coordinate axes. Speci cally,
similar to [2], Equation (2) expresses the segment inertia matrix () in relation to the
segment length () and the segment mass 1) for the right limb. In Table 3, scaling
factors (rjj ) for the inertia matrix are shown together with scaled segment lengths ()
to body height and (M) to body mass.

2 2 2 2
rXX r)?/ rXZ
lr = ML?4r2 r2 2)

y Ty T
r ryz rZZ

Xz

By converting the equivalent right limb inertia matrix of Equation (2) by Equa-
tion (3), which uses the matrix of Equation (1), it is possible to determine the segment
inertia matrix of the left lower limb.

IL = REo IRRR2L (3)
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Figure 2.. Depiction of lower body musculoskeletal model DoF and directions for (a)
HFE, (b) HAA, (c) HIER, (d) KFE, (e) ADPF, (f) AEI, (g) AAA.

2.3. Degrees of freedom

The provided lower body kinematic model has 20 DoF: 6 DoF for pose (position
and orientation) of the pelvis in 3D space, 3 DoF for each hip (hip exion/extension
(HFE), hip adduction/abduction (HAA), and hip internal/external rotation (HIER)),

1 DoF for each knee (knee exion/extension (KFE)), and 3 DoF for each ankle (an-
kle dorsi exion/plantar exion (ADPF), ankle eversion/inversion (AEI), and ankle
adduction/abduction (AAA)). The de nitions and motion of DoF in the lower body
kinematic model are shown in Table 4 (visualized in Figure 2). The left lower limb has
reversed directions for HAA, HIER, AEI, and AAA compared to Table 4 (right lower
limb information).

3. Biomechanical joint torque model

The amount of torque that can be created around each joint by human muscles is in-
uenced by a number of phenomena. The following is a list of the important variables
that in uence muscle force: the muscle velocity, the muscle length, the muscle exci-
tation delay, and nonlinear passive force generation due to ligaments and connective
tissues surrounding the joint.

Muscle modelling often use a 3-element Hill-type muscle-tendon unit (Figure 3a)

8
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(a) Anatomically detailed muscles (b) Muscle torque generators

Figure 3.: Schematic of the hip, knee, and ankle joint, actuated by (a) Hill-type
muscles and (b) MTGs. Note the complex muscle route geometry and redundancy
encountered when using detailed muscle models.

Figure 4.: Forward simulation of a multi-muscle musculoskeletal system.a; and F;
stand for the activation signal and the muscle force, respectively [2].

[36]. To approximate the muscle-tendon geometry, moving and wrapping points are
also utilised [36]. Each muscle model in Figure 4 consists of two components: an
active contractile piece (which generates active force) and a passive parallel-elastic
element (with viscoelasticity). The model is completed with a nonlinear series-elastic
component that describes the mechanical properties of the tendon. It is challenging to
obtain parameters for complicated muscle models of this kind. Additionally, because in
vivo human studies are required for the parameter identi cation (for example, muscle
force cannot be measured directly), they cannot be empirically tested.

As asserted by Yeadon et al. [54] and Inkol and McPhee [55], muscle ber lengths
exhibit a direct correlation with joint angles. Additionally, muscle ber velocities are
intrinsically linked to joint angular velocities. Both of these factors exert a notable
in uence on muscle forces. Furthermore, the transformation of muscle forces into joint
torque necessitates intricate geometric modeling of muscle attachments to the skeletal
structure. Without the requirement to represent muscle geometries and forces, an
MTG model provides a joint torque that mimics the biomechanics of muscles and
joint limitations (Figure 3b) [37]. Speci cally, the torque-angle () and torque-speed
( 1) relationships, as seen in Figure 5, are two explicit examples of how the MTG
model mimics muscle force generation. In torque-driven simulation, the MTG models

10



Figure 5.: Diagrams of forward simulation of a musculoskeletal system using MTGs.
Two active components for two excitation signals (positive and negative directions)
and one passive component make up the MTG model [2].

provide torque at each joint based on the kinematics of that joint (monoarticular
assumption) [56].

Every MTG model has a distinct set of properties, including an active component
(creates the active torque as a function of the joint's angle and angular velocity) and
a passive component (mimicking the joint's minimal viscosity or friction and limiting
the joint ROM). The human joint torque ( ) as determined by the MTG model is
illustrated in-Equation (4) [10, 37].

h®=a" ut (1) T()gt+ta ust (1) ()ot p(l) @)
where

a(u;t) the activation signal (computed from excitation-to-activation ordinary dif-
ferential equation function), which is illustrated in section 3.5 and Equa-
tion (9)

1 (1) the active-torque-angular-speed-scaling function, which is illustrated in sec-
tion 3.4 and Equation (8)

() the active-torque-position-scaling function, which is illustrated in section 3.3

and Equation (7)

p(;! ) the passive torque function due to viscous damping and nonlinear sti ness,
which is illustrated in section 3.1 and Equation (5)

0 the peak isometric joint torque-producing capability

The net active joint torque, which the biomechanical model produces, is

11



Figure 6.: Examples of MTG curves that represent tendon and muscle forces:
excitation-to-activation signal conversion (a), the active-torque-angular-speed scaling
curve (b), the active-torque-angle scaling curve (c), and the passive torque curve (d)

2].

a(u;t) 1 (') () o- The activation signal a(t) or the excitation signal u (t), which
can have a value between 0 and 1 serves as the control input to the MTG model. The
examples of these four functions are depicted in Figure 6.

Each DoF (joint axis of rotation) was controlled by two active components of MTGs
(28 total products of a(u;t) + (! )~ () o): one for each of the two directions (negative
and positive) of joint rotation (two for each joint). Moreover, for each DoF (joint axis
of rotation), one passive component of MTG (20 total ,( ;! ))) was employed. As
a result, the - musculoskeletal system is over-actuated and needs to resolve actuation
redundancy, potentially with an optimization solution. Each active MTG component
was only allowed to operate within a maximum torque range of ; for positive MTGs
and  for negative MTGs.

By tting the functions to experimental data, one may determine the parameters of
Equations (4-8). To collect experimental data, a computerised robotic dynamometer is
often used in orthopaedic and sports medicine applications. The human dynamometer
is a tool used to gauge the net torque produced by a single isolated joint. Both isometric
(constant muscle length) and isokinetic (constant speed) joint conditions are suitable
for its application.

3.1. Passive torque function

When the surrounding muscles, tendons, and ligaments are stressed, passive torques
develop [57]. Moreover, close to anatomical joint limitations, passive joint torques
increase signi cantly [57{59] (exempli ed in Figure 6d). Usually, to mimic the viscous
damping and nonlinear sti ness of the joint a double exponential function is used,
similar to Equation (5) [60]. Accordingly, this function restricts the joint's location

12



inside its ROM [60]. Speci cally, a large restoring torque results from exceeding the
boundaries of the ROM (speci ed by breakpoints of ., and }..). Equation (5) also
includes the damping element to re ect viscoelasticity.

where

the joint angle
k the passive parameters identi ed from analysing experimental data and t-
ting the nonlinear function
max the maximum ROM for negative direction, which is illustrated in Table 4
max the maximum ROM for positive direction, which is illustrated in Table 4
c the linear coe cient of rotational damping

The nonlinear function is often tted to experimental data to get the passive pa-
rameters (ki), which range from 0.5 to 6 [10]. Based on our experimental ndings,k;
should be less for the weaker joints such as HIER, AEI, and AAA. It is advised that
the linear damping coe cient ( ¢) be about 0:1 Nm/rad [60] for most joints.

max for the HAA, HIER, AEI, and AAA of the left limb is the negative of the value
in Table 4 (which is for right limb).

3.2. Peak joint strength

The average peak isokinetic torque for non-athletic females and males, together with
the corresponding anthropometric measurements are provided in Table 5. Based on
the variables in Table 5, the mean maximum isometric joint torque for each non-
athletic adult male or female is estimated. Based on the anthropometric characteristics
presented in Table 5 the intercept ( 1) and sex ( 2) parameters were extrapolated.
Equation (6) re ects-the regression of the mean peak isometric torque.

0= (12t 2s%yga+ sh+ sm) 1 s+ d (1+&W

1+ 10 + 20arctan[(T_30) = 20] (6)
where
i the anthropometric and torque measurements shown in Table 5
s the subject's sex constant (for a male is 1 and for a female is 0)
a the subject's age in year
h the subject's height in meter
m the subject's body mass in kilogram
w the subject's physical activity in number of workout sessions per week
d the subject's dominant side constant (for a dominant side is 1 and for a
non-dominant side is 0)
T the subject's skin temperature in Celsius
the maximum strength di erence between dominant and non-dominant sides
& the impact of exercise on maximum muscular strength

13



the impact of skin temperature (0:03 for each degree between 200 40°)
(unit-less)

The joint torque is shown for the average of both sides in Table 5. Particularly, the
dominant side can o er a mean value of 9% greater strength than the non-dominant
side [61, 62]. As a result, 0.09 is chosen as the side parameter) (for the lower limb.
The joint torque for healthy non-athletic participants ( w=0) is shown in Table 5. A
mean value supplied by [63] for training time per week is represented bgand is equal
to 0:065. According to Ekblom and Bergh [32], the peak muscle torque increases 3%
for each skin temperature more than 20, no more than 4¢°. We used arctan instead
of simple slope to limit the maximum of impact of skin temperature.

3.3. Active-torque-angle scaling function

The joint isometric torque is inconsistent across the whole ROM due to the non-linear
tendon force-length relation (exempli ed in Figure 6¢). The active-torque-angle curve
is generally represented in the literature using second-order or fourth-order polynomial
functions [54, 72{74] using the summation notation in Equation (7).

1
()= ramp p ! (7)
k=1
where
the joint angle
Px the coe cient of the polynomial, which is provided in Table 4
n the order of polynomial functions

and () is normalized by the peak isometric torque of each joint. As a result, the
value of () at the optimum angle is 1.

The maximal isometric torque should be accessible for every ROM in order to t
the polynomial functions to the experimental data. Due to a lack of available data
for all ROMs, the tted polynomial function may be zero or even negative for ranges
outside of the speci ed angle ROMs. One solution is that the edge torque, which is
estimated or assumed joint torque at the maximum ROM, is assumed as the average
of tted polynomial and interpolation with nearest joint torque.

The left limb has reverse positive and negative directions for HAA, HIER, AEI, and
AAA. In Table 4, the even index of px for the HAA, HIER, AEI, and AAA DoF of
the left lower limb has a reversed sign.

3.4. Active-torque-angular-speed scaling function

Muscular velocity a ects muscular strength. Consequently, the joint angular velocity
(') scales the active torque () (active-torque{angular-speed correlation, exempli ed
in Figure 6b). According to [75{78] and adopted from a linearized Hill model structure,
a rational piecewise instantaneous isokinetic torque function of joint angular velocity

14
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is implemented:

Jl max ]+ !

v (1) = (8)

8

% P max
! !
Jmax] !max<!< O

(1 R)j! max j+S!R (+1)
@ R e # ST (+D) t< 0

where

! the joint's instantaneous angular velocity

i' max] the absolute value of the joint's maximum angular velocity that results in
no torque generation, as shown in Table 4
the shape factor a ecting the curvature of the torque-velocity hyperbola
concentric relationship

S the slope of eccentric to concentric phase transition (at zero angular velocity)
de ned by [77]
R the maximum eccentric isokinetic torque ( o) divided by maximum isometric
torque ( o)
In Equation (8), for the ! 0 condition, (! ) has a potential singularity as !

proceeds toward j ! maxj= instantaneous angular velocity. Consequently, the force-
velocity scaling relationship di ers from Hill-type's model [36] when the force is greater
than the isometric tension ( o); it also has di erent output when ! < 0 [77, 79]. As a
result of | (! ) normalization by the maximal isometric torque of each joint, the value
of | (!)is 1 at zero velocity.

is valued around 3, according to [39]. the value for S ranges from roughly 2 [10, 77]
to 3 [80]. Additionally, the value of R ranges from 14 [76] to 15 [77]. Equation (8)
utilised a negative ! ‘to represent motions in negative directions.

3.5. Excitation-to-activation signal function

Excitation-to-activation signal function, sometimes referred to as activation dynam-
ics, serves as a representation of the muscle bre recruitment state [81]. The period
between receiving a signal (neural excitation) and turning it into action potentials
to activate muscle bres via electrochemical processes in the muscle tissue is delayed
by the activation dynamics [81] (exempli ed in Figure 6a). Data from trials' post-
processed electromyography can be utilised to create a collection of activations [82].
According to this, an excitation-to-activation function is used for muscle groups
near joints to imitate the activation signal produced by a brain drive (regardless of
joint angle) [80]. Theoretically, when the torque generator engages and disengages, the
activation signal function combines the period at which the muscles are active and in-
active, respectively. Logically speaking, the time lag brought on by the electrochemical
activity produced by the action potential that causes muscle contraction is equivalent
to the excitation-to-activation signal function. Equation (9), which was adapted from
the Hill-type muscle model, is a modi ed function for an excitation-to-activation sig-
nal [83]. A nonlinear function and a linear rst-order di erential equation make up
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the excitation-to-activation dynamic model [84, 85]. The CNS's excitation signalu (t)
is transformed into the activation signal a(t), which represents the level of muscle
activation, via the rst-order di erential equation.

8

u a
R L (O5+1say Y @

a= o (9)
~ (u a)(0:5+1:5a) u a

Tdeact

where
u the excitation signal
a the activation signal
tact the muscle activation time constants

tdeact the muscle deactivation time constants

In the case of an adult subject,t,: may have a value of 40+025 age ms, according
to [86], andtyeact is taken to be equal to 4 ,¢;. For monoarticular muscles, the excitation
signal falls within the range of [G 1].

4. Ground reaction model

The inclusion of a ground reaction madel falls beyond the scope of this study; our
focus here lies in providing a review of potential methodologies in this regard. Con-
tact models used in multibody human models are explored, with a primary focus on
foot-ground contact, crucial for simulating walking, running, and jumping. Other con-
tacts of interest include posterior-seat contact [87], crutch-ground contact [88], and
exoskeletons [6, 13, 89].

4.1. Normal force models

The normal force models are categorized based on complexity, starting with rigid
joint representations suitable for continuous contact, like foot-ground contact during
squatting [90]. For intermittent contact, kinematic constraints and reaction forces are
applied during contact phases. Rigid contact models in 2D use two point constraints
for each foot [91, 92], while 3D models may use one [93] to six [94] point constraints
per foot, depending on the foot model.

Deformable contact models are introduced in [1], with point-contact models being
the simplest, using linear or non-linear springs and dampers at one point on the con-
tact surface. To accurately model foot-ground contact, one can utilize multiple point
contacts distributed across the surface. Another approach involves a single point of
contact that moves relative to the foot, which is based on a geometrical representation
of the contact surface using models such as spheres, superellipsoids, or disk-plane con-
gurations [95]. Volumetric contact models, which utilize elastic foundation theory to
represent contact loads distributed across a surface, have also been investigated [96].
Foot-ground contact has been studied using nite element contact models; however,
these models are computationally demanding in comparison to alternative approaches
[97].
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4.2. Friction force models

Friction may be modeled using penalty functions to limit friction forces [91]. For de-
formable contacts, velocity-based friction models approximate Coulomb friction using
non-linear functions of velocity [96, 98, 99]. However, they may not accurately repre-
sent low-velocity scenarios, common in human motion. Position-based friction models,
like bristle friction models, use tangential springs and are more accurate in cases of
stick-and-slip behavior [100]. Existing models have not thoroughly explored the lat-
eral exibility of the contact surface, which is in uenced by soft tissues in the human
body. This aspect could be e ectively addressed by incorporating position-based fric-
tion models. Another potential model is the Maw friction model [101], suitable for
modeling stick and slip conditions in di erent regions of the contact surface, applica-
ble to biomechanical models like foot contact during gait.

5. General structure of dynamic equations

The dynamic musculoskeletal model can be exported in one of four ways, as illustrated
in Figure 5: () joint-torque-driven, (Il) active-torque-driven, (lI1) activation-signal-
driven, and (IV) excitation-signal-driven. Only the dynamic model of the skeletal
system is present at the joint torque-driven level. The skeletal system and the passive
torque function are the two components of the active-torque-driven level. The dynamic
model of the skeletal system and the MTG model without the excitation-to-activation
dynamic model make up the activation-driven level. The skeletal system and the whole
MTG model with the excitations as input make up the fourth form of the model.

5.1. Joint-torque-driven model

Given that the selected n generalised coordinates and generalised speeds are inde-
pendent, the dynamic equations regulating the musculoskeletal system response are a
collection of ordinary di erential equations. The equations of motion are transformed
into optimised-code by employing the "Multibody Dynamic Exports" and "Optimised
Code Generation" modules of MapleSim [102, 103]. Equation (10) represents the joint-
torque-driven (MTG-excluded) dynamic model.

Mnn(noln1=Fn 2(!n 1 n 1)+ Qn 1 (10)
where

n the number of independent coordinates including the 6 absolute coordinates
for the pelvis with respect to ground (3 translations, 3 rotations)
the column matrix of generalized coordinates

! the column matrix of generalized speeds

M the mass matrix

F the right-hand side of the dynamic equations, which consist of Coriolis,
centrifugal, and gravitational e ects

Q external loads, including joint torques
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5.2. Active-torque-driven maodel

With the introduction of the passive torque function from section 3.1, the active-
torque-driven dynamic model is in the form of Equation (10). By using Equa-
tion (11), the active torques are transformed to human joint ideal torques. Basically,
the activation-driven model incorporates Equations (10, 11).

Qm 1=[a*+ p( "), 1 (11)
where

m n 6 or the number of human joints (excluding the 6 absolute coordinates
for the pelvis with respect to ground (3 translations, 3 rotations))

5.3. Activation-signal-driven model

Equation (10) represents the activation-signal-driven (MTG-included) dynamic model.
Equation (12), which is derivable from Equation (4), converts the activation signals
of positive and negative directions into human joint torques. The activation-driven
model merges Equations (10,12).

Qm 1= a" (1) "()g+ra () ()o+ p(:),, @12
where

* the positive direction of joint
the negative direction of the joint

5.4. Excitation-signal-driven model

As illustrated in Equation (13), adding the rst-order dierential equation of
excitation-to-activation (established in Equation (9)) results in the introduction of
a new state to the system. Some studies avoid this additional state by using a di er-
ent formulation (such as the exponential gain formula), but their alternative strategy
ignores the time delay between excitation and activation [83].

lom 2m 0 am 1 _ u2a(azsm 1;U2m 1,5, 1 (13)
0 Mnn(n 1) 'n1 Fn1(!'n 15 n 1)+ Qn 1

Qm 1= a" () "()g+ta (1) ()o* p(i!) 4 (14)
6. Simulation method

6.1. Inverse dynamic simulation

Inverse dynamics is the process of computing the forces, moments, activations, and
excitations that emerge at particular joints after solving the torque-driven equations
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Figure 7.: Components of a typical musculoskeletal simulation within MapleSim
Biomechanics are responsible for orchestrating movement through the interactions of
neural, muscular, and skeletal systems. MapleSim Biomechanics encompasses compu-
tational models of these systems, enabling prediction and analysis of human movement.
Neural commands in the form of excitations are directed towards the MTGs and can be
estimated using either optimal controller models or experimental data, such as surface
electromyography with the assistance of machine learning mapping electromyography
to kinematic and dynamic biomechanical variables (MuscleNET) [82]. The MapleSim
Biomechanics MTG models, which translate these excitations into biomechanical joint
torque, incorporate features like passive torque, active torque angle scaling, and active
torque angular velocity scaling that simulate the biomechanical behavior of the joint.
These MTG models are established from experimental data. Additionally, MapleSim
Biomechanics accounts for factors such as age, height, body mass, dominant side,
athletic activity, and skin temperature to determine the peak joint strength of an in-
dividual [2],.

of motion (given in section 5.1) and MTG model [104]. For a single joint, the MTG
models have various positive and negative torques. This over-actuation necessitates
the elimination of actuation redundancy, mostly through optimisation techniques. To
calculate positive and negative active MTG torques, static and dynamic optimisation
are two variations employed. Static optimization is regarded as an inverse technique
since it uses time-marching to optimise MTG torques, which implies that time frames
are solved independently of each [11]. Once the positive and negative active MTG
torques are calculated, the inverse dynamic simulation can determined the positive
and negative MTG activation signals.

6.2. Forward dynamic simulation

Basically, the human CNS, which consists of the brain and spinal cord, regulates the
movement of the body [105, 106]. The CNS concurrently maintains the kinetics and
kinematics even in the presence of complex muscle dynamics and uncertain/unknown
trajectories [106, 107]. According to experimental studies on human mobility [1, 108{
110], the CNS organises human motions in an optimal way. Numerous research suggest
that the CNS controls the human by minimising a cost function that may involve jerk
[111], torque [112], muscle activation [98], metabolic energy [113], and muscle fatigue
[114].
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The CNS controls human movements through a sophisticated signal that involves
two main processes: motion prediction and corrective command [106]. To achieve this,
the CNS utilizes an internal model of the musculoskeletal system for feed-forward con-
trol, enabling motion prediction. Additionally, sensory organs provide feedback control,
rectifying errors arising from model uncertainty, external disturbances, or unfamil-
iar environments. A method known as nonlinear model predictive control replicates
this multi-purpose control system with a limited time horizon, integrating both feed-
forward and feedback control [106] (see Figure 7). nonlinear model predictive control
utilizes a learned internal model [115, 116] that emulates human dynamics to fore-
cast optimal motion (feed-forward) and correct prediction errors (feedback) [106]. The
evaluation of the ideal motion involves a cost function that considers joint angle errors
( d), joint angular velocity errors (! I 4), model inputs and their derivatives,
as well as weights (V). For the activation-signal-driven model with input a, this cost
function can be represented as Equation (15).

z t; h i
J= WI(  o)?+W3( 1g?+Wi@F+Wi(@°d (15
0
min max
! min ! ! max
0 a 1 (16)

Amin a  @max

The nonlinear model predictive control controller optimizes the cost function (15)
considering the system dynamics presented in section 5 and the constraints outlined
in Equation (16).

The excitation or activation of the musculoskeletal MTG model can be achieved
through three methods:

i) A forward static optimization approach, which approximates the musculoskeletal
system behavior by statically reducing a physiological cost functional (essentially
a 1-step nonlinear model predictive control).
i) A forward dynamic optimization approach, which models the musculoskeletal
system behavior by dynamically minimizing a physiological cost functional.
ii) Utilizing experimental surface electromyography data from a subject, which can
be mapped to MTG inputs using a machine learning model [82].

7. Model validation

We evaluate the model's performance by comparing the estimated moments at speci ¢
joints with the measured moments obtained during various predicted movements. The
experimental study involves the use of dynamotor measurement devices, which re-
strict joint motion and enable the measurement of joint moments. During these tests,
subjects are instructed to exert maximum exion or extension against the device's
resistance, and the resulting isometric and isokinetic torques are recorded. The max-
imum isometric test is conducted with zero joint velocity, while the isokinetic test is
performed with the dynamotor measurement system controlling the joint velocity. To
simulate the isometric and isokinetic tests, we use the MapleSim Biomechanics model
and forward dynamics. When determining the maximum isometric moment-generating
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capability, we consider the model's maximum activation for MTG.

As mentioned in section 3.2, the peak isometric torque at the joints is in uenced by
various factors, including age [20, 22, 23], height [20, 24, 26], body mass [20, 24, 25],
as well as sex, dominant side [27], athletic activity [63], and skin temperature [32].

7.1. Isometric test

The maximum isometric joint moments obtained from the MapleSim Biomechanics
model incorporate data from numerous published experiments. As the validation ex-
periments utilized in these publications involved a small number of subjects (fewer
than 10), our comparison with the experimental literature concentrates on identifying
trends and patterns in the maximum isometric joint torques.

The trend of the maximum isometric torques produced by the hip exor (HFE) as a
function of exion angle aligns well with the data reported by previous studies [45, 57,
117, 118] within the ROM of the hip exor (see Figure 8a). Speci cally, the maximum
torque of the hip exor decreases as the hip exion angle increases, consistent with
the provided experimental data.

Regarding the maximum isometric moment generated by the HAA, Figure 8b
demonstrates a pattern that corresponds to the study conducted by Venter [47] for the
ROM of the HAA. However, it does not precisely match the ndings of Welsh et al.
[119], Cahalan et al. [120] or Neumann et al. [121].

Figure 8c shows similar trends between the estimated isometric torque of the HIER
by the MapleSim Biomechanics model and the experimental data from Guilhem et al.
[45], Lindsay et al. [49] and Gupta et al. [122]. The MapleSim Biomechanics model
generates the HIER torque at approximately  hip internal rotation angle, which
aligns with the experimental data.

The model re ects the observed trends in the literature data for KFE strength, as
the knee extension angle increases (see Figure 9a). The KFE torque reaches its peak at
approximately 65° rotation, similar to the experimental data reported by Guilhem
et al. [45] and Knapik et al. [123]. Furthermore, the model successfully reproduces the
experimental trend in ADPF strength as the ankle dorsi exion angle changes (see Fig-
ure 9d). The ADPF torque peaks at approximately 1C° rotation angle, which aligns
with the experimental data. Additionally, the model's moment-generating capacity
for AAA and AEI decreases at a rate consistent with the ndings in the literature
[50, 53, 126], as the ankle angle increases (see Figure 9c & d).

7.2. lIsokinetic test

The study compares the maximum isokinetic joint moments calculated using the
MapleSim Biomechanics model with experimental data from the literature, as de-
picted in Figure 11 and 10. However, due to di erences in subject types, not only
the amplitude of the isokinetic torque but also the maximum possible torque for the
highest reported angular velocity is not compared in this research.

As shown in Figure 11, for the concentric isokinetic test of joints, both the exper-
imental and MapleSim Biomechanics estimations demonstrate a decrease in torques
as the angular velocity increases [64, 120, 124, 127{138]. Similarly, for the eccentric
isokinetic test, both the experimental data and MapleSim Biomechanics simulation
show an increase in torques with an increasing angular velocity. In conclusion, the
maximum isokinetic torque of joints estimated by the MapleSim Biomechanics model
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Figure 8.: Maximum isometric torque generated by (a) hip exors (+) and extensors
(-) versus hip exion, (b) hip adductors (+) and abductors (-) versus hip adduction,
and (c) hip internal (+) and external (-) axial rotator versus hip internal rotation. The
model estimates are highlighted in colored solid lines and are compared to experimental
data from Guilhem et al. [45], Venter [47], Lindsay et al. [49], Anderson et al. [57],
Jiroumaru et al. [117], Waters et al. [118], Welsh et al. [119], Cahalan et al. [120],
Neumann et al. [121] and Gupta et al. [122]. HFE, HAA, and HIER were determined
with a straight leg in the neutral position. M: Male, F: Female, Height is in meter (m),
Weight is in kilograms (kg), number of workout sessions per week shown with W.

follows the same trend as the experimental data reported in the literature.

8. Discussion

We developed a musculoskeletal model for the lower body of humans, including the hip,
knee and ankle joints. The model is based on average experimental data for biome-
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