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Abstract Much of the previous research on modeling

and simulation of cycling has focused on seated ped-

aling, modeling the crank load with an effective resis-

tive torque and inertia. This study focuses on model-

ing standing starts, a component of certain track cy-

cling events in which the cyclist starts from rest and

attempts to accelerate to top speed as quickly as pos-

sible. A ten degree-of-freedom, two-legged cyclist and

bicycle model was developed and utilized for predictive

dynamic simulations of standing starts. Experimental

data including crank torque, cadence, and joint kine-

matics were collected for a member of the Canadian

Olympic team performing standing starts on the track.

Using direct collocation optimal control to maximize

the simulated distance traveled, the predictive simula-

tions aligned well with the experiments and replicated
key aspects of the standing start technique such as the

drive and reset. The model’s use in “What-if?” sce-

narios presents interesting possibilities for investigating

optimal techniques and equipment in cycling.

Keywords predictive simulation · forward dynamics ·
optimal control · direct collocation · track cycling ·
standing start · bicycle

1 Introduction

Researchers have put significant work into optimizing

cycling performance by studying various bicycle designs,
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equipment modifications, cycling techniques, and pac-

ing strategies. One aspect of cycling that has been rela-

tively unexplored is the track cycling standing start. In

certain track cycling events, such as the team sprint, the

cyclist starts with the bicycle fixed in a gate and then

accelerates to top speed as quickly as possible once the

gate is released. During the standing start, the cyclist

rises from the seat and attempts to use the additional

degrees of freedom to maximum advantage. There is a

desire to better understand the optimal kinematics for

the standing start.

Previous researchers have utilized experimental anal-

ysis to better understand the standing start [1–4]. One

of the drawbacks, as with many experimental studies,

is the number of experiments required to understand

the technique and test different variations. Predictive

computer simulation with forward dynamics is useful

in this regard because it allows for numerous trials un-

der various controlled conditions in a relatively short

period of time.

In predictive simulation, the optimal force or torque

activations are found using a representative objective

function, such as achieving the maximum distance in a

fixed time duration. This can be contrasted with “data

tracking” simulation, which is not predictive in nature.

Such simulations require collecting experimental data

and then driving the model to track this data. Several

researchers have used data tracking or similar meth-

ods in pedaling applications [5–9]. For certain research

questions, predictive simulation is more useful because

no experimental data is used to drive the simulation,

and therefore, it does not require the detailed data col-

lection needed for data tracking. Additionally, numer-

ous “What if?” simulations can be run to to study how

the optimal technique is affected by changes to model

parameters such as the gear ratio or handlebar position.
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There are two main ways to actuate a biomechanical

model when using forward dynamics. One is to include

individual muscles and to activate them using muscle

excitations. This can become computationally intensive

for predictive simulation using optimal control methods

because of the increased number of state variables. An

alternative is to use applied torques to represent the

net effect of muscle forces at a joint. This reduces the

number of variables and simplifies the optimal control

problem. Muscle torque generator models have been im-

plemented previously in predictive simulation of human

movement, including various sports applications [10–

13].

A commonly used approach for finding the optimal

inputs in predictive simulations of human movement is

to employ direct methods of optimal control. In direct

methods, the control and/or state variables are approx-

imated with a polynomial function, and the optimal

control problem is transcribed to a non-linear program-

ming problem. Optimal control has previously been ap-

plied to forward dynamic simulations of pedaling. Ka-

plan and Heegaard [5] used direct collocation optimal

control for a data tracking simulation of ergometer ped-

aling. Raasch et al. used optimal control with a mus-

culoskeletal model for predictive simulation of maximal

seated start-up pedaling (i.e., starting with zero veloc-

ity) [14,15]. Zignoli et al. recently used optimal control

via indirect methods with a joint torque-driven model

for predictive dynamics of seated submaximal cycling

[11]. A common theme among previous dynamic mod-

els is that many have focused on seated ergometer ped-

aling or steady-state cycling and have used some form

of resistive torque or effective inertia to provide the re-

sistance at the crank [5–9,11,14–20]. They ignore the

upper body because, for seated pedaling, it does not

contribute to the pedaling motion. They do not model

the bicycle itself because, for steady-state cycling and

ergometer pedaling, the resistance at the crank can be

modeled more easily in the aforementioned ways. Mod-

eling the bicycle allows one to incorporate the bicycle

dynamics when examining the effects of shifting body

positions. This becomes important when considering

standing starts in track cycling.

Schwab and Meijaard [21] conducted a review on

previous bicycle dynamics research, which is largely fo-

cused on bicycle stability and control methods for bal-

ance and steering. In these models, the rider is often

ignored or only given upper body movement for stabil-

ity and not lower limb movement for propulsion. When

the cyclist dynamics have been included, it has often fo-

cused on the bicycle suspension such as in mountain bi-

cycles [22,23]. Researchers often use nonholonomic con-

straints for the wheel-ground contact and make the as-

sumption there is no tire slip, which may not be valid for

the accelerations seen in standing starts. For more de-

tailed wheel-ground contact, researchers employ a tire

model, with the Pacejka tire model [24] being the most

common for multibody vehicle dynamics. Partially due

to the difficulties of obtaining the necessary experimen-

tal tire force data, Bulsink et al. [25] is one of the few

to use the Pacejka tire model when they utilized the re-

sults of Doria et al. [26] to implement the Pacejka tire

model in their investigation of bicycle stability.

There is a lack of models that take into account

both cyclist and bicycle dynamics simultaneously. This

work covers the development of a combined cyclist and

bicycle model that can be utilized for predictive simu-

lations of maximal start-up cycling (i.e. a track cycling

standing start) using optimal control methods. A useful

model of a standing start needs to incorporate bicycle

dynamics, including tire models, and cyclist dynamics,

including the upper body. To our knowledge, there is

no previous modeling and simulation study of track cy-

cling standing starts. The goal is to use experimental

results and predictive simulations to gain a better un-

derstanding of what the optimal full body kinematics

might look like for standing starts.

2 Methods

2.1 Standing Start Experimental Data Collection

Six standing starts were performed on the track at the

Mattamy National Cycling Centre in Milton, Ontario

by a single male member of the Canadian track cycling

team who participates in the team sprint event. To mea-

sure joint kinematics, electrogoniometers (Biometrics,

Ltd.) with adapters for wirelessly transmitting the data

(Trigno Wireless EMG, Delsys Inc.) were attached at

the joints of interest in the model (both ankles, knees,

and hips, single elbow and wrist). Electrogoniometers

cannot measure shoulder angles reliably. Right and left

upper arm motion was assumed to be similar so addi-

tional electrogoniometers were not purchased for both

arms. The two ankle goniometers were damaged during

the cyclist’s warm-up, so the ankle measurements were

not successful. The ankle angle measurements displayed

here for comparisons with the predictive simulations are

from previous testing that was conducted to assess the

efficacy of electrogoniometers for track cycling standing

starts. These test conditions were not identical, but the

other joint angle ranges appear to be similar so it can

give an idea of what these ankle joint angles look like

in experiments. The electrogoniometers give a relative

angle between the endblocks so calibration measure-

ments were obtained by recording the offset when the
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joints were placed at zero-degree joint angles. Electro-

goniometers are not an ideal sensor for measuring joint

kinematics; however, there are limited tools available

for measuring joint kinematics in the field over a 30

meter distance.

Crank data was collected at 80 Hz using instru-

mented cranks from 4iiii Innovations, Inc. The crank

sensors operated independently of each other so inde-

pendent right and left side crank torques were collected,

which were then summed to get the total crank torque.

Inertial Measurement Units, or IMUs, (Mbientlab, Inc.)

collecting at 100Hz were placed on the crank and on the

frame. The IMU collected angular velocity of the crank

to get a high-frequency cadence measurement, which

was integrated to get the crank angle. Measurement

drift over time for the crank angle calculation was cor-

rected using a magnetic reed switch in the 4iiii’s system

triggered once per pedal stroke. The bicycle position

and velocity were approximated using the accelerome-

ter data from the IMU on the frame.

The cyclist’s feet were clipped into the pedals, as is

typical in track cycling. The bicycle started fixed in the

gate, which uses a pneumatic mechanism that clamps

the bike on the seat post, just below the seat. The bi-

cycle was then released automatically as the clock hit

zero. The automatic track timing system was used to

record time stamps at the gate release and at the next

track landmark 15 meters from the gate. The cyclist was

instructed to use his normal technique and give high ef-

fort up until the first turn (approximately the first 30

meters). Post-testing, the data streams were synchro-

nized by aligning accelerometer data from each of the

streams.

2.2 Model Development

The model was developed using the MapleSim soft-

ware (Maplesoft Inc.) because its multi-domain capa-

bilities allowed the bicycle and cyclist to be modeled in

the same software. Additionally, its symbolic processing

and optimized code generation capabilities make it an

excellent choice for developing and exporting computationally-

efficient forward dynamics models.

2.2.1 Bicycle Model

The bicycle model consisted of four bodies: the rear

wheel, the front wheel, the frame/fork/handlebars, and

the crank. Revolute joints connected the rear wheel to

the frame and the front wheel to the fork. The crank

was modeled as a single link connected to the frame by

a revolute joint. The rear wheel motion was connected

to the crank motion using an ideal gear with a 50:14

(3.57:1) gear ratio that was the same as the fixed gear

ratio used by the cyclist in the experiments. During a

standing start, the cyclist is in the straightaway of the

track and is traveling in a relatively straight path. To

simplify the model for straight-line cycling, a revolute

joint was not included between the frame and the front

fork/handlebars, and the bicycle was constrained to re-

main upright and follow a straight path. These simpli-

fications eliminated the need for a steering or balanc-

ing controller. Adding a steering or balancing controller

was not the main focus of the study and would have in-

creased computation time. With these simplifications,

the bicycle model had five degrees of freedom: crank

rotation, front wheel rotation, longitudinal and vertical

translation, and pitch (frame rotation).

The setup of the bicycle model, including overall

bicycle dimensions as well as handlebar position and

crank length, was set to match that of the Look L96

track cycling bicycle used by the cyclist in the experi-

ments. Moment of inertia and center of mass locations

were determined from a SolidWorks model of a bicycle

frame that was developed using the bicycle dimensions.

Aerodynamic drag was ignored, as it is not likely to

be a major factor when traveling at low speeds during

start-up cycling.

2.2.2 Tire Model

MapleSim contains built-in components for the Pace-

jka tire model [24] that were used for formulating the

tire force and moment equations. The Pacejka model

requires parameters that are determined from exper-
imental data, but Pacejka parameters have not been

reported for track cycling tires. Instead, parameters for

road tires reported by Bulsink et al. [25] were used,

with the exception of the rolling resistance coefficient,

which has been reported for track cycling tires to be

approximately 0.0023-0.0024 [27,28]. There are likely

noticeable differences in the longitudinal slip parame-

ters between road cycling tires and track cycling tires,

but it is unknown whether they would have a noticeable

effect on the results of the simulation.

For simplicity, the surface for the straights was mod-

eled as being flat in this study rather than the 13-degree

banked straights for an Olympic-category velodrome.

We assumed the camber forces and moments from the

banked track have minimal effect when the model was

constrained to remain upright. Zero-velocity maneuvers

(e.g. starting from rest) result in infinite slip, so relax-

ation lengths have to be included. For simplicity, con-

stant relaxation lengths of 0.3 were used in this study

[29].
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Fig. 1 The combined cyclist and bicycle model in MapleSim

2.2.3 Cyclist Model

The cyclist model consisted of ten rigid bodies: two feet,

two shanks, two thighs, upper arm, forearm, hand, and

the head + trunk (see Figure 1). The upper limb mo-

tion was assumed to be symmetric so the right and left

arms were lumped together. Revolute joints were used

to represent each of the joints (shoulder, elbow, wrist,

hips, knees, and ankles). The spine curvature was given

a fixed angle of 25 degrees between the abdomen and

the thorax in the trunk segment. The cyclist’s hands

were rigidly fixed to the handle bars at a 45-degree an-

gle. The cyclist’s feet were clipped into the pedals using

toe clips, thus allowing the foot/pedal to be constrained

to the crank with a revolute joint. Limb segment prop-

erties were set using anthropometric data from de Leva

[30], which were scaled to match the subject from the

standing start experiment. The cyclist and bicycle to-

gether form a closed kinematic chain due to the two feet

being fixed to a single crank and the hand being fixed to

the handlebars. Therefore, there are more coordinates

(14) than there are degrees of freedom (10), resulting in

a system of 18 differential-algebraic equations (DAEs)

for the dynamic equations.

The cyclist model was driven using nine muscle torque

generators (one at each of the cyclist’s joints), which

represent the combination of muscle forces acting on

a joint. Anderson et al. [31] developed a joint torque

model for the lower limb that was implemented here.

The active joint torque is scaled based on the joint an-

gle and angular velocity, representing the muscle force-

length and force-velocity relationship. The scaling func-

tion is piecewise to account for both concentric and ec-

centric muscle contractions. The parameters from An-

derson et al. were for “average” 18-25 year old males.

Olympic cyclists are far from average so it is not clear

how well these scaling parameters represent the force-

velocity and force-length relationships of their muscles.

Maximum torque values were determined from the re-

sults of Kordi et al. [32], who measured maximum iso-

metric joint torques for competitive cyclists. Each joint

had its own maximum torque rate of change that was

based on rate of muscle activation [33]. In addition to

the active joint torques, passive joint torques were also

included. Passive torques represent the passive forces

that are generated by the stretching of muscle tissue,

tendons, and ligaments. Riener and Edrich’s [34] model

for lower limb passive joint stiffness was chosen based

on its ability to take into account adjacent joint angles.

A simpler active joint torque scaling model that

only scales based on joint angular velocity was used

for the upper limb joint torques. This torque scaling

method has been implemented in previous upper limb

joint torque applications [12] and was based on the

work done by vanSoest et al. [35]. Maximum upper limb

joint torque values were taken from Garner and Pandy’s

study of the upper limb [36].

To assess the accuracy of the cyclist model, ergome-

ter pedaling simulations were compared against ergome-

ter pedaling experimental results for members of the

Canadian track cycling team. The results are contained

in a previous paper on the preliminary development of

the cyclist model [37]. Overall, the simulation results

were similar in nature to the experimental results, in-

dicating the cyclist model was an appropriate represen-

tation of an Olympic track cyclist.

2.3 Optimal Control Using Direct Collocation

The General Purpose Optimal Control Software, Ver-

sion II (GPOPS-II) optimal control package from Rao

et al. [38] was used together with an interior-point op-

timizer (IPOPT) to solve the optimal control problem

for the joint torque activations that achieve the max-

imum distance in a fixed amount of time. GPOPS-II

uses orthogonal collocation, which is a direct optimiza-

tion method.

The dynamic equations for the model, which were

a system of DAEs, were exported from MapleSim. In

GPOPS-II, the dynamic equations can be left as DAEs

with the algebraic constraint equations being handled

as path constraints. The differential equations with the

reaction forces are included as the dynamic constraints.

The derivatives of the reaction forces were treated as

controls, which allowed GPOPS-II to freely determine

the values that satisfy the dynamic equations and con-

straint equations at each time point, without needing to



Predictive Dynamic Simulation of a Track Cycling Standing Start 5

derive the equations for the derivatives of the reaction

forces.

Setting up the problem required specifying bounds

for the 43 states (generalized coordinates and their deriva-

tives, tire slip, active joint torques, and reaction forces)

and 13 controls (joint torque rates of change and the

reaction force derivatives). The bounds for the joint

angles and joint angular velocities were set at values

that would not restrict the natural motion of the cy-

clist. However, path constraints were placed on the po-

sition of the hip joint center that prevented it from

going through the seat or seat post. It is also required

to specify an initial and final guess for the control and

state variables, along with any intermediate guesses.

The initial and final guesses were set based on the ex-

perimental results, to give a reasonable starting point

for the optimization. No intermediate guesses were used

to avoid driving the simulation to a particular result.

The initial and final guesses only seem to influence the

CPU time and do not seem to influence the optimal

solution. There was a tuning process required in gen-

erating these simulations in order to find the bounds,

mesh numbers, tolerances, and other parameters in the

GPOPS-II setup. This was a time-consuming process

based on the simulation lengths so it is likely that simi-

lar results could be attained with shorter run time with

further tuning of the setup parameters.

The problem was formulated as a two-phase prob-

lem, separated into the pre-launch and launch phases.

To model the pre-launch phase where the seat post is

clamped in the gate, the bicycle is treated as being com-

pletely fixed, leaving the model with only the cyclist de-

grees of freedom. The time duration of the simulation
was 5 seconds in total, with the pre-launch designated

to last 1 second and then continuing into 4 seconds of

the launch phase.

The objective for the simulations was to achieve the

maximum distance in the given time period. This repre-

sents the objective on the track, where the cyclist wants

to cover the maximum distance possible in the initial

portion of the event, to get up to top speed as quickly

as possible. Therefore, the following cost function was

minimized, where xf is the final distance traveled.

J =
1

xf
(1)

Other components such as minimization of jerks or min-

imization of joint torques were considered, but ulti-

mately not used, because minimization of these led to

less distance covered, which was the ultimate goal. Effi-

ciency of the motion is not as much of a concern for the

first few seconds of the standing start. An additional

component of the objective function was considered for

Fig. 2 Right and left hip joint angles from the experiments.
0 degrees is for the joint in the neutral position (extension).

the pre-launch phase to help drive the solver to the op-

timal solution for the pre-launch. In the end, this was

not needed because the solver was able to discover that

launching forward at the end of the pre-launch helped

achieve maximal distance.

3 Results

3.1 Experimental Results

Figures 2 and 3 contain a selection of the experimental

results from the standing start trials 2-6. In trial 1,

the cyclist momentarily lost balance during the trial,

causing the bicycle to swerve and slow down. This was
not representative of an effective standing start so trial

1 was ignored for data analysis. In these figures, the

dashed lines correspond to the left leg and the solid

lines correspond to the right leg.

After many hours of practice, the cyclist has devel-

oped the “muscle-memory” to be able to consistently

repeat the technique, which was noted in all the exper-

imental results. Although the cyclist is consistent, there

are noticeable asymmetries between the right and left

side. In Figure 2, one can see asymmetries in the hip

joint angles. There are secondary peaks in the hip an-

gles corresponding to the cyclist thrusting the hips back

in the “reset” motion (see Section 3.2 and Figure 4 for

a description of this motion). These peaks were more

pronounced in the right side than the left side. In Fig-

ure 3, we can see that the right side is producing more

torque than the left side. The decrease in torque over

time is expected as the angular velocity increases; how-

ever, even in the directly subsequent pedal strokes, the

peaks for the right side are larger than the left.



6 Conor Jansen, John McPhee

Fig. 3 Right and left crank torque from the experiments.

Fig. 4 Comparison of the poses in four key stages of the
standing start technique. (a) Pre-launch (b) Gate release (c)
Drive (d) Reset

3.2 Simulation Results

Figures 4-8 contain the results of the simulation, with

comparisons to the experimental results where applica-

ble. The computation time was 279 minutes on an Intel

Core i7-6700 CPU at 3.40GHz with 16GB RAM for the

track standing start simulation.

Figure 4 contains still frames of the cyclist poses in

key stages of the standing start experiments and simu-

lation. Both rock their hips back in the pre-launch (Fig.

4a) in a similar nature, with the cyclist in the experi-

ment extending back slightly farther. One of the most

noticeable differences between simulation and experi-

ment is that the simulation tends to be farther forward,

with a more elevated hip position at gate release than

in the experiments (Fig. 4b). This difference is likely

due to the fact that the simulation can time the gate

release perfectly. In experiments, the cyclist tended to

err on the side of caution to make sure the gate is fully

released at the end of their pre-launch.

As they launch out of the gate, they drive their hips

forward relative to the bicycle. The “drive” position

(Fig. 4c) is fairly similar between the two, but this is

where the planar nature of the model results in some

differences. The actual cyclist tends to have a more out-

of-plane elbow flexion, coming from shoulder rotation.

While the trunk is in a similar position and orientation

for both, the arm kinematics to achieve it are different.

Furthermore, we can see the spine curvature changing

in the experiments, which cannot be captured by this

model.

As the crank approaches a vertical position (referred

to as top dead center), the cyclists enter a mechanically

inefficient position. To overcome this mechanically in-

efficient position, the cyclists shift their hips backwards

relative to the frame, in the process thrusting the bicy-

cle forward underneath them and propelling the crank

through the top dead center position. For the “reset”

position (Fig. 4d), the general pose is similar between

the simulation and experiment and occurs at a similar

45-degree crank angle. After passing through top dead

center, the cyclist drives forward again, repeating this

periodic motion several times; the amplitude less pro-

nounced with each pedal stroke.

The general notation for all plots in Figures 5-9

will be to use solid curves for simulations and dashed

curves for experimental results. The vertical dashed line

represents the gate release, separating the end of the

pre-launch phase and beginning of the launch phase. A

crank angle of 0 degrees corresponds to the right pedal

in the top dead center position.

Tables 1 and 2 give comparisons at the point in

the experiment when the cyclist crossed the track land-

mark 15 meters from the gate (t ≈ 3 seconds). Figure 5

contains the bicycle kinematics, including the position

and speed of the frame center of mass. The simulation

clearly outperforms the experiments, and this is pri-

marily due to the ability of the simulation to almost

perfectly time the gate release and transfer all of its

initial momentum generated in the pre-launch phase to
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Table 1 Comparison of results at t = 3 seconds

Distance Velocity Pedal Cadence
(m) (m/s) Strokes (rpm)

Exp. 15.0 7.16 2.01 61.8
Sim. 20.2 10.1 2.74 80.8

Table 2 Comparison of results at x = 15 meters

Time Velocity Cadence
(s) (m/s) (rpm)

Exp. 3.01 7.16 61.8
Sim. 2.45 8.84 71.5

Fig. 5 Bicycle kinematics

the bicycle.The peaks and valleys in the bicycle velocity,

which were also present in the crank angular velocity,

correspond to the cyclist drive and reset maneuvers.

The initial crank angle chosen by the simulation was

81 degrees compared to approximately 75 degrees for

the cyclist in the experiments.

Figure 6 contains the crank torque and power. The

simulations generate greater crank torque than in the

experiments at the beginning, peaking at approximately

550 N·m in the simulation compared to 450 N·m in the

experiment. Power is greater in the simulation because

it generates similar amounts of crank torque while at a

higher cadence.

Figure 7 contains the right and left leg joint an-

gles plotted versus the total crank angle. Making com-

Fig. 6 Crank torque (a) and power (b) for the standing start

parisons between experimental and simulated hip an-

gles can be difficult due to the differences between the

fixed spine curvature angle in the model and the varying

spine curvature in the experiments. In the simulations,

the intermediate peak in the hip angles corresponding

to the cyclist reset motion only occur twice, as opposed

to the several times that are seen in the experiments.

The main use of the ankle joint angle is for compari-

son of general trends of the joint kinematics, since it

came from a different experiment. There was more an-

kle dorsiflexion in the simulations. Overall, the simula-

tions appear to have more left-right symmetry than the

experimental results.

There were significant differences between the upper

limb joint angles in the simulations and in the experi-

ments. The physiological nature of the shoulder, elbow,

and wrist joints allows for significant movement out of

plane so the planar modeling is not a good represen-

tation for the upper body. These joint angles may be

significantly different between the simulation and ex-

periment, but that may not affect the hip joint center

position, which matters more than the individual up-

per limb joint angles when it comes to generating crank

torque. The same hip position could be obtained with

different combinations of upper limb joint angles de-

pending on how far out of the plane they go.
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Fig. 7 Lower limb joint angles versus total crank angle for
standing starts. For hip (a) and knee (b), 0 degrees is the
neutral position (full extension). For the ankle (c), 0 degrees
is perpendicular to the shank and positive angles correspond
to dorsiflexion.

Figure 8 shows the hip joint center kinematics. The

simulation starts by rocking the hips back and stretch-

ing the upper body so that the hips are above the seat

and almost as far back as possible. The simulation then

launches the body forward to its forward-most position.

It begins the reset motion at about 45 degrees prior to

reaching top dead center (crank angle of 315 degrees).

Looking at Fig. 8b, the simulation tends to reach its

peak reset position at approximately 45 degrees past

top dead center (TDC) with each leg, at which point

it is prepared for driving the hips forward again. The

experimental reset position also occurs when the crank

angle is approximately 45 degrees. The higher crank an-

Fig. 8 Hip joint center kinematics. (a) Hip position in the
sagittal plane including both the pre-launch and launch phase
(b) Hip position versus the crank angle relative to top dead
center for the first two pedal strokes after gate release

gular velocity in the simulation means we do not see the

same amount of hip movement as in the experiments.

At higher crank angular velocities, the drive-reset tech-

nique becomes less effective, as it is more difficult to go

through the motion at that speed.

Figure 9 contains the joint torques and torque acti-

vations for each lower limb joint. The torques are close

to maximally activated for most excitations of the hip

and knee joints. The hip joint torque has a different pro-

file in the first pedal stroke. Both legs have periods of

eccentric contractions. This is likely related to driving

the hip position backwards in the reset motion.

4 Discussion

The simulation gives an idea of the optimal standing

start technique. Based on the results of these experi-

ments and simulations, it seems that the standing start

technique being currently used is close to what was

found by the optimal simulation. Both seem to be per-

forming the drive and reset motion at similar points

in the pedal stroke. The simulations and experiments

are close enough in nature that any differences seen

can not be clearly distinguished as improvements that
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Fig. 9 Lower limb joint torques and activations. R and L
denote right and left side. Ts refers to the scaled torque, Tpre

refers to the pre-scaled torque activation, and Tiso refers to
the isometric torques for flexion and extension (i.e. torque
bounds).

should be made without questioning the effects of the

assumptions and simplifications that have been made

in the model.

After seeing some variability among the solutions

obtained during the process of tuning the optimal con-

trol parameters, the conclusion was reached that these

results may not have completely converged to an opti-

mal solution. There was not a sensitivity study or con-

vergence study to analyze how close these results are

to the global optimum. While it may not be a global

optimal result, the simulation still presents a highly-

effective method of completing a standing start. These

uncertainties with the results are largely due to the

lengthy computation time and the difficulties posed by

tuning the GPOPS-II setup. For a large problem such

as this, GPOPS-II seems to be fairly sensitive to the

bounds and parameters.

It is interesting to see the ability of the solver to find

key characteristics of a standing start solely based on

the goal of achieving maximal distance. Entering the

project, it was anticipated that more complex objec-

tive functions might be needed, but fairly representa-

tive simulations can be achieved with a simple objective

function. It should be noted that the optimal trajecto-

ries towards the end of the simulated trial are less re-

liable and less meaningful than those during the main

portion of the trial. Based on the objective function, at

the end of a trial, the model may attempt to maneu-

ver itself in a way that will increase the final distance

slightly at the expense of future performance (e.g. driv-

ing the bicycle frame forwards in the last second of the

simulation).

The aspect of the simulations that is most unrealis-

tic is the initial launch out of the gate. The transfer of

momentum is optimized because the simulation is able

to abruptly stop the upper body motion relative to the

frame. This is unrealistic due to the complicated nature

and difficult timing of such a maneuver. One difficulty

with predictive simulations is that the model can be

manipulated in very precise ways to maximize perfor-

mance that might not be feasible in real life due to the

precision that would be required for such a movement.

In general, caution must be taken in utilizing the re-

sults because the simulation can be quite precise with

its movements.

There are some limitations to the results presented

in this study. One is the use of muscle torque genera-

tors rather than a full musculoskeletal model for the

lower limbs, in the process ignoring individual mus-

cle properties and simplifying the activation dynam-

ics, force-length scaling, and force-velocity scaling. The

additional state variables required make a full muscu-

loskeletal model impractical for use in an optimal con-

trol problem of this scale. The primary simplification in

the development of the bicycle model was the constraint

to remain upright and follow a straight line. A con-

troller for steering and balancing would be difficult due

to the oscillating leg masses and the trunk oscillating

front to back. The tire models would also become more

complicated as they would require lateral dynamics and

camber forces to be included. While it was not entirely

accurate, the bicycle model as a whole was a reasonable

approximation of a generic track bicycle. The primary

limitation of developing a more complex and accurate

model is the computation time required.
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5 Conclusions

A two-legged cyclist and bicycle model was developed

for predictive simulations of start-up cycling using op-

timal control methods. The model replicated key fea-

tures of the standing start technique, including the pre-

launch, drive, and reset motions. A shortcoming of the

predictive simulation is long CPU times, which is ex-

pected for the optimal control solution of complex multi-

body dynamics. The overall modeling and simulation

approach, and more specifically using direct colloca-

tion for predictive simulation of human movements, is

effective in generating a standing start technique that

resembles that used in real life. The comparison of the

simulations and experiments did not indicate a need for

any major changes to the standing start technique. For

a sport that has been around for many years, it was ex-

pected that the technique is fairly well optimized, but

details might be refined and better understood.

The model can subsequently be used to examine the

effects of changing various aspects of the bicycle setup

(e.g. handlebar position, crank length, gear ratio, etc.)

as part of the optimization. There is the potential to

observe the effects of varying joint strengths and how

that affects the optimal technique. The key with these

applications is knowing that the solver has converged

and that the differences in the optimal solutions are due

to the change in parameter and not just that the solver

is converging to a different local optimum.
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