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Abstract Foot-ground contact models play an important role in the accuracy of predictive
human gait simulations, and there is a need for a computationally-efficient dynamic contact
model for predictive and evaluative studies. In this research, we generated symbolic
dynamic equations for a 2D torque-driven 11-DOF human model with a 3D ellipsoidal
volumetric foot-ground contact model. The main goal was to increase the prediction
accuracy and decrease the computation time for human gait analyses compared to the
previous studies that used numerical formulations and point foot-ground contact models.

A data-tracking optimization was developed to identify the contact parameters of the
human gait model using two optimization approaches: trajectory optimization and optimal
control. The first approach is developed with a global search algorithm based on inverse
dynamics. In this algorithm, a local optimizer is repeatedly run from multiple potential start
points to select the best start point while satisfying the constraints and reaching the lowest
cost function value. The second approach is developed using direct collocation based on
implicit dynamics. In this method, the optimization problem is solved using a variable-order
adaptive orthogonal collocation method along with sparse nonlinear programming.

Optimal control was superior to trajectory optimization for identifying a large number
of parameters; the simulated torques and ground reaction forces from the optimal control
correlated better with the experimental data. For the optimal control, the root-mean-square
errors of the resultant torques, tangential and normal ground reaction forces were 0.48
(N.m), 14.07 (N) and 26.44 (N), respectively. However, for the trajectory optimization,
these errors were 15.19 (N.m), 36.51 (N) and 234.57 (N). Thus, the optimized contact
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model from the optimal control, which was developed symbolically and based on
volumetric contact equations, is a suitable foot-ground contact model for predictive human
gait simulations. Additionally, we demonstrated that optimal control could be used to
predict the motion and torque for the metatarsal joints, which are not easily measurable in
practice.

Keywords Ellipsoidal volumetric contact - Foot-ground contact - Human gait simulation -
Contact parameter identification - Direct collocation - Trajectory optimization

1 Introduction

Predictive human task simulation is an interesting area of research due to its application in
evaluative studies (e.g., model-based assistive device controllers [11], surgical intervention
planning [41], athletic training [34], prosthesis and orthosis design [42,43]). Among human
tasks, gait is one of the most complicated and as a consequence, its predictive simulation is
challenging due to its highly nonlinear motion equations, nonlinear muscle dynamics, and
nonlinear foot-ground contact model.

The foot-ground contact can be modeled as kinematic constraints that restrict the
motion of discrete points along the bottom of the foot [1,19,21]. In these studies, the
complex geometry of foot is not required to be explicitly modeled since a number of
discrete points can approximately represent the complexity of the foot geometry. However,
To achieve a useful predictive human gait simulation, it is important to have an accurate
foot-ground contact model which is consistent with the complex geometry of foot and
computationally efficient. The main types of contact models commonly used in
biomechanics studies include point contact, finite element contact, elastic foundation
contact, surrogate contact, and volumetric contact:

— Point contact models are relatively simple and assume that contact between two
surfaces occurs at a point. Two different methods for point contact, Kelvin-Voigt and
Hunt-Crossley [16], are illustrated in Table 1 (No. 1 and 2). In the first method, the
transition between the contact and non-contact conditions is not continuous due to the
linear damper. The second method does not suffer from this discontinuity [10].
However, these two point contact models may not be accurate enough for conforming
surfaces.

— Finite element contact models [47] can provide a more detailed contact for complex
shapes (No. 3 in Table 1). However, this is not suitable for biomechanics optimizations
or real-time analysis due to the high computational time of finite element analyses.

— In elastic foundation contact models [9], the contact surface is discretized into a finite
number of springs. In other words, the bottom of the foot is modeled using a set of
discrete viscoelastic elements with Coulomb friction [31,33]. No. 4 in Table 1 shows
the schematic of the elastic foundation contact model.

— Surrogate contact models [20] are computationally efficient in comparison to finite
element models and elastic foundation models since they are developed based on
lookup tables rather than physical models. Surrogate models are trained to match
results from a high-fidelity model. However, they are only appropriate over the
conditions for which they have been trained.

— Volumetric contact model [14] is based on the concept of an elastic foundation model,
but the contact surface is modeled using a continuous collection of springs. Thus, it
would be more realistic than the elastic foundation model to model complex conforming
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Table 1: Contact models

No. method model formula

1 Kelvin-Voigt Fy=k&+dé
W@W -

2 Hunt-Crossley M F,=ad"+(bd")0
o

partial differential equations for
each element

. . { ) discrete force equation at each
4 elastic foundation \ ) X
spring element

5  volumetric contact { F,=kyV(1+ayve)

3 finite element

NV

F, is the normal contact force. § is the penetration of deformation depth. k and d are the spring and
damping constants, respectively. a and n are constants dependent on material properties and b is the
damping coefficient. ky and ay are the volumetric stiffness and damping constants, respectively. Also, V
is the volume of penetration and v, is the relative velocity of the two surfaces.

surfaces (e.g., foot). No. 5 in Table 1 shows the schematic of the model and the equation
for the normal contact force.

The application of these five contact models to biomechanical modelings has been
compared in detail in two review papers [12,40] to which readers are directed for more
information.

Some recent gait studies, instead of using volumetric contact equations, modeled the
complex geometry of the foot by a large number of spheres or ellipsoids to estimate the
penetration depth for Hunt-Crossley equations. This method can be called Hunt-Crossley
spherical/ellipsoidal contact model. Lin and Pandy [22], Lin et al. [23], and Porsa et al.
[34] utilized this method by modeling the foot-ground contact via six, six and eight spheres,
respectively. Lopes et al. [24] have also used six ellipsoids on the sole to model the foot-
ground contact. For a conforming surface like a foot, Hunt-Crossley spherical/ellipsoidal
contact models are more accurate than the point contact models since the penetration depth
is estimated using spheres or ellipsoids. However, the volumetric contact models, in which
a volume of penetration is used in the contact equations, can provide a better geometric
representation of a conforming surface than Hunt-Crossley spherical contact models. Hunt-
Crossley equations are most accurate for point contacts, but there are likely errors when
applied to a conforming surface.

Meyer et al. [27] employed the elastic foundation contact using a large number of springs
to approximate a continuous collection of springs. Thus, through their approach, the model
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takes advantage of the accuracy of volumetric contact as well as the computational efficiency
of the elastic foundation method.

In the contact models of [22-24,27,34], a finite number of contact points on the foot
have been used. These foot-ground contact models can be assumed as multiple-point
contact models, in which the normal contact force is evaluated via the depth of penetration
using the Hunt-Crossley method. Since the Hunt-Crossley method is restricted to the
contact points (not the contact surfaces), an unnatural foot shape may be obtained.
However, a Hunt-Crossley ellipsoidal contact model [24] is geometrically more natural
than the other multiple-point contact models.

Since the volumetric contact model provides a better representation of conforming
geometry in comparison to the point contact and elastic foundation models, some human
gait studies employed it to simulate the foot-ground contact. The common type of
volumetric contact model, generally used for foot-ground contact, is the spherical
volumetric contact model. Millard et al. [28] used a 2D two-segment foot model with three
volumetric sphere-plane contact pairs. Shourijeh et al. [39,38] developed that model into a
hyper-volumetric model. Mouzo et al. [30] also employed volumetric contact with a
polynomial representing the contact surface.

Brown and McPhee [5] have developed an ellipsoidal volumetric foot-ground contact
model that takes advantage of the features of ellipsoidal models and volumetric models. In
their approach, the foot is modeled by three ellipsoids and the volumetric contact equations
for an ellipsoid contacting a plane were employed. Since ellipsoids can match the complex
geometry of the foot surface better than spheres, they used only three ellipsoids to model the
foot-ground contact. However, there still exist some gaps in Brown and McPhee’s approach
that should be filled before being used in high fidelity human gait analyses.

The first gap is that the contact parameters have been identified by tracking the
experimental foot-ground reactions (i.e., the normal force, center of pressure and pressure
at the foot surface) measured for one foot during gait. Not only did they not include both
feet in the identification process, but they did not also consider the dynamics of the lower
extremities.

The second gap is that once they included friction in their model, the contact parameter
identification yielded inaccurate parameters and results. This gap is due to using a
continuous velocity-based friction model in an inverse dynamic identification.

The main contribution of this paper is to fill in these gaps of the ellipsoidal volumetric
contact model, so that it may be used as a computational-efficient and accurate foot-ground
contact model in predictive gait simulations. To this end, a 2D human model with lower
extremities was developed and the 3D ellipsoidal volumetric contact was applied on both
feet. To increase the accuracy and computational efficiency, the dynamic equations of the
multibody model were developed symbolically. Two approaches were used to identify the
contact parameters by tracking not only the experimental foot-ground reactions but also
the kinematics and dynamics of the lower extremities: Trajectory optimization and optimal
control. The contact parameters can be identified for a 3D volumetric contact model although
the human model is 2D. The reason is that the natural waking task is mainly done by humans
in the sagittal plane. Thus, we can restrict our study to a 2D human model in order to simplify
the dynamic equations while identifying the contact parameters for a general 3D ellipsoidal
volumetric foot-ground contact model.

The trajectory optimization approach is based on inverse dynamics and the optimal
control approach is based on implicit dynamic simulation (i.e., neither forward nor inverse
dynamics [7]). The approaches were compared and discussed. The other contribution of
this paper is that angle and torque of metatarsal joints, which are not easily measurable in



Parameter ID of an Ellipsoidal Contact Model for Human Gait 5

Table 2: Anthropometric data of all bodies except for the feet

body body weight/BM  COM/body length  ROG/body length ~ body length/BH

HAT 0.678 0.626 0.496 0.288
thigh 0.100 0.433 0.323 0.245
shank 0.0465 0.433 0.302 0.246

practice, were calculated. To the best of the authors’ knowledge, there is no human gait
simulation study reporting the results of the metatarsal torque and motion even though
metatarsal joints have an important role in gait analyses [8].

2 Model development

In this section, first, the human model is described and its properties are specified. Then,
the foot-ground contact model is briefly explained and the contact parameters, which will
be identified in Sect. 4, are introduced. Finally, the method to extract the symbolic dynamic
equations of the model is defined.

2.1 Human model

The human model is a 2D torque-driven model that moves in the sagittal plane. It includes 9
bodies and 11 degrees of freedom (DOFs). The bodies are head-arms-trunk (HAT), thighs,
shanks, hind-fore-feet, and toes. The DOFs are 3-DOF HAT-to-ground joint, 1-DOF hip
joints, 1-DOF knee joints, 1-DOF ankle joints, and 1-DOF metatarsal joints. The schematic
of the human model is shown in Fig. 1. The global coordinate system (GCS) is assumed to
be fixed to the ground exactly under the center of mass of HAT at the start of simulation.
Axes X, Y and Z are in the longitudinal, vertical, and lateral directions, respectively (as
shown in Fig. 1).

It is a common approach to assume head, arms and trunk as a single body (HAT) in
human gait analyses [29,42,43,38], since the effects of suppressing the arm swing on the
kinematics, kinetics, and energetics of human gait are less than 10% [45].

The anthropometric data of the HAT, thighs and shanks were extracted from [46] and
given in Table 2. In this table, BM and BH are the mass and height of the equivalent human
body, respectively. COM is the center of mass position of the body, measured from the
proximal head of the body. ROG is the radius of gyration around the COM and is used to
calculate the moment of inertia (MOI) of the body.

For the feet, reference [46] has only reported the mass and length of the whole foot
which are 0.0145BM and 0.152BH, respectively. There is no conventional anthropometric
data for each foot segment in the literature. The weights, COMs, and ROGs of foot segments
were estimated, consistent with the foot properties in [6,36] and the foot segment lengths
were calculated based on the optimized foot geometry presented in [37]. The foot segment
properties were scaled by BM and BH, shown in Table 3. Angle f3 in the picture inside Table
3 is the fixed angle between the fore-foot (AM) and the hind-foot (HA) and it was set to 106°
similar to the angle employed in [37].
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Fig. 1: 2D human model with nine bodies and eleven DOFs

Table 3: Anthropometric data of the feet

seoment body COM/body ROG/body body

€ weight/BM length length length/BH A
MT 2.1e-3 0.5 1.32e-2 4.3e-2 Mo
AM 6.2e-3 0.5 2.74e-2 6.5e-2 H %
HA 6.2e-3 0.5 2.74e-2 4.4e-2 :

2.2 Foot-ground contact model

To model the foot-ground contact, the most recent volumetric contact model [5] was
employed, in which the contact surface has been modeled by ellipsoids and the friction has
been generated by a continuous velocity-based friction model. In a velocity-based friction
model, it is assumed that sticking occurs at a very small transition velocity. In this study,
the transition velocity was set to 0.1 m/s, which is quite small in comparison to the
experimental gait speed (1.26 m/s). Each foot is composed of two bodies: hind-fore-foot
and toe. The hind-fore-foot was represented by two ellipsoids (i.e., ball and heel ellipsoids)
and the toe was represented by one ellipsoid (i.e., toe ellipsoid). Fig. 2 shows an
approximate schematic for the ellipsoidal contact model of the right foot. Using volumetric
contact, the rolling resistance, tangential friction and spinning friction are modeled in
addition to the normal force. For further information on the contact equations, readers are
directed to [4,13].

In this study, the GCS is different from that in [5]. To address this, several transformation
matrices were employed to locate the ellipsoids in a correct position and orientation with
respect to the GCS of this study. Additionally, in reference [5], the ellipsoidal contact model
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Fig. 2: Side and top views of the ellipsoidal contact model for the right foot (This figure is
only for visualization purpose. The positions, orientations and dimensions of the ellipsoids
are not to scale.)

Table 4: Contact model parameters

parameter description

ky, volumetric stiffness

a, volumetric damping coefficient
U static friction coefficient

1% dynamic friction coefficient
a,b,c dimensions

Ty, Ty, Tz position

7,8, a 3-2-1 body-fixed Euler angles

Parameters ry, ry, and r; specify the locations of the ellipsoid centroids with respect to the GCS;
parameters ¥, 8 and o represent 3-2-1 body-fixed Euler angles with respect to the GCS and parameters
a, b and c specify the ellipsoid radii in the local x, y and z axes, respectively.

was developed only for the left foot. The three ellipsoids of the left foot were reflected
with respect to the sagittal plane to develop the contact model for the right foot. Thus, six
ellipsoids (three ellipsoids on each foot) were used to model the contact.

Each ellipsoid contacting a plane has 13 parameters (Table 4). Since we have three
different ellipsoids (ball, heel, and toe), there are 39 parameters in total which will be
identified in Sect. 4. It should be noted that the human model is bilaterally symmetric and
in gait, the right and left legs perform similar motions but with a time shift. Thus, the
contact parameters of ball, heel and toe ellipsoids on the left foot are assumed to be
identical with those on the right foot.

2.3 Dynamics modeling

The human with foot-ground contact model was developed in MapleSim (2018. Maplesoft,
Waterloo, ON, Canada), as shown in Fig. 3. An advantage of using MapleSim is that the
motion dynamic equations are generated in a symbolic form; also, the velocity and
acceleration equations can be directly determined by symbolically differentiating the
kinematic expressions with respect to time. The resultant equations are more
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Fig. 3: Developed human model with the ellipsoidal foot-ground contact in MapleSim

computationally efficient than a numerical equivalent [26]. If the dynamic equations are
evaluated numerically during the optimization, the motion equations have to be
differentiated in each iteration of optimization, which leads to a more time-consuming
procedure and less accurate results than the optimization in which the symbolic equations
are used.

The final symbolic equations, extracted from the MapleSim model, were modified in
Maple (2018 Maplesoft, Waterloo, ON, Canada) to reduce the size of the simulation code
and get optimal symbolic equations for exporting to MATLAB (R2018b. Mathworks,
Natick, MA, USA) for use in the optimization process.

3 Gait experiments

Experimental gait data is required for parameterizing the contact model and validating the
results. To generate an accurate data-tracking optimization for this study, the motion data
for all 11 DOF of the model, joint torque data for all 8 joints of the model, and normal and
tangential ground reaction forces (GRFs) for both feet are used.

The experimental data processing is categorized into three subsections: (3.1) HAT and
right leg without metatarsal, (3.2) Right metatarsal and (3.3) Left leg. In each subsection,
it is explained in detail how the data corresponding to those specific bodies is extracted,
estimated or generated.

3.1 HAT and right leg without metatarsal

The experimental position of the HAT with respect to the ground, the experimental angles
and torques of right hip, knee and ankle joints and the GRFs of the right foot were extracted
from [3] for one gait cycle. A gait cycle is composed of two steps and in this study assumed
to start and end with the heel-strike of the right foot on the ground.

The orientation of the HAT with respect to the ground was set to zero as the initial
guess for the optimization because the variation of this orientation during natural-speed
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Left Stance phase

Leg Swing phase

Leg ©5 o o a o o o L. DSP 7
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Fig. 4: Phases of right and left leg during one gait cycle starting and ending with the right
heel-strike

gait is negligible (—1° < 6, < 1° [46]). This angle will be predicted when the other known
experimental data are tracked in the optimization.

In reference [3], 20 healthy young subjects (9 males and 11 females with an age of
10.8 £ 3.2 years, a mass of 41.4 4 15.5 kg and a height of 1.47 £ 0.2 m) have participated.
The experimental motions of the HAT, right hip, knee, and ankle have been collected for
natural-speed walking using the 9-camera SMART-E motion capture system (BTS, Milano,
Italy) and LAMB market set including 29 retroreflective markers. The experimental GRFs of
the right foot were measured using two force plates (Kistler, Winterthur, Switzerland). The
experimental torques of right hip, knee and ankle were calculated by solving the inverse
dynamics problem given the experimental motion and GRFs of the right leg.

3.2 Right metatarsal

To the best of our knowledge, there is no human gait simulation study using
experimentally-measured metatarsal joint data or reporting the resultant metatarsal joint
motion and torque from their simulation. There are only a few clinical and laboratory
studies measuring motion and pressure data for the different segments of foot (i.e. toe,
fore-foot and hind-foot) during the stance phase of gait [17,18]. However, it would be
unreliable to use experimentally-measured toe motion in the gait simulation studies
because the rigid body assumption for the foot and marker placement during the
measurement makes the toe motion data physiologically impossible for gait simulation
studies. Internal movement of the foot causes this inaccuracy in the measurement [5]. Thus,
for the angle of right metatarsal, We planed a meaningful trajectory using the method in [8]
and considering the measured angle for the metatarsal joint in [18].

The right metatarsal motion during one gait cycle was divided into six known postures:
heel-strike, toe-strike, heel-off, toe-off, toe-free and again heel-strike. Between every two
subsequent postures, a Sth-order polynomial was fitted given the six known boundary
conditions listed in Table 5. In this table, A6, is the range for the ankle angle and #55p and
tpsp represent the duration of single-support phase (SSP) and double-support phase (DSP),
respectively. During the SSP only one foot is in contact with the ground and in DSP both
feet are on the ground. One gait cycle is composed of two SSPs and two DSPs. For our
experimental data, each SSP and DSP are 10% and 40% of the gait cycle, respectively [3].
Fig. 4 shows these phases for both feet which are either in swing or stance phase during the
gait cycle. The planned trajectory for the right metatarsal angle is shown in Fig. 5.
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Table 5: Known postures for the metatarsal trajectory

heel-strike toe-strike heel-off toe-off toe-free heel-strike

t=0 t =tpsp t=tpsptitssp t=19psptitssp t=2tpspt+issp t=2tpsp+2tssp
6 =06 6 =06 6 =0.1246, 6 =0.4A6, 6 =6 6 =6

6=0 6=0 6=0 6=0 6=0 6=0

6=0 6=0 6=0 6=0 6=0 6=0

6, 6 and 6 are the angle, angular velocity and angular acceleration of the right metatarsal, respectively. 6y is
the metatarsal angle when the toe is free. A6, is the variation of the ankle angle (i.e., the difference between
the max and min values of ankle angle). 7psp and tgsp are the duration of DSP and SSP, respectively.

0.9f 1
0.8} 1
toe-off
o7 1
e
8o :
= 0.54 heel-off
’ toe-strike toe-free heel-strike
04Ff 1
0.3 1
0.2 1
0 20 40 60 80 100
Gait Cycle (%)
Fig. 5: The planned trajectory for the right metatarsal joint angle
3.3 Leftleg

The motions of legs were assumed to be bilaterally symmetric with a time shift during a gait
cycle. The time shift (7y;) is equal to tpsp + tssp based on Fig. 4. The data of the left leg
can be easily generated through the data of the right leg extracted/estimated in Sect. 3.1 and
Sect. 3.2.

Since human gait is a periodic task, a Fourier series can be used to generate data for the
left leg [25]. A Fourier series was fitted to the data of the right leg, with the Fourier basis
signal matrix and the coefficient vector defined as:

ao
[x1re g = [1 cos(ion;) Si”(iw’j)]nx(1+zm) X | ai (M

il (1+2m)x1

where, n and m are the number of data points and the order of the Fourier series with values
of 101 and 5, respectively. Indices i and j are i = [1,--- ,m] and j = [1,--- ,n], respectively.
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Index r refers to the right leg and x; is the data at time instant ¢;. The Fourier coefficients
are ag, a; and b;. @ equals 27/ T, in which 7, is the duration of the gait cycle.

In Eq. 1, the data and the signal matrix of the right leg are known. So, the vector of
coefficients can be easily obtained. Then, a new Fourier basis signal matrix was created for
the left leg:

M = [1 cos(iod(t; +T)) sin(i@(t;+Tn))] .. (1 am) )

where, index [ refers to the left leg. Finally, the data of the left leg can be calculated through:

X1, = My x [1 cos(iwt ;) Sin(iwtj)]£1+2;n)xn X [Xj]rns 3)
where [|™ is pseudoinverse of the matrix. This approach was used to generate all motions,
torques, and GRFs of the left leg from the data of the right leg.

4 Contact parameter identification

We used two different optimization approaches (i.e., trajectory optimization and optimal
control) to identify the contact parameters. These two approaches are often confused and
used interchangeably [35]. In trajectory optimization, static parameter values are identified
to optimize a given performance index. In contrast, in optimal control, time-variant inputs
to a system and, optionally, static parameters are estimated to optimize a given performance
index.

In this section, the solvers, methodologies, constraints and cost functions of the two
optimization approaches, developed in MATLAB (R2018b. MathWorks, Natick, MA, USA),
are explained and compared.

4.1 Trajectory optimization
4.1.1 Solver

To implement the trajectory optimization, GlobalSearch algorithm [44], a global
optimization toolbox for MATLAB, was used. The GlobalSearch uses a scatter-search
mechanism to generate multiple start points for sampling multiple basins of interest. Then,
GlobalSearch starts a local solver (i.e., fmincon) repeatedly to analyze the start points and
remove those points that can not help to find the global minimum. Finally, the best
parameter set that satisfies all constraints and has the lowest cost function value is selected
as the global optimization solution. In this approach, the differential equations are solved
by explicitly integrating or differentiating. The flowchart of this optimization method is
illustrated in Fig. 6. This optimization was done on a desktop computer with an Intel®
Core™ i7-6700 CPU @ 3.40 GHz with 16.0 GB RAM.

4.1.2 Methodology

In trajectory optimization, the inverse dynamic equations of the model were explicitly
solved for the joint torques and ground reaction forces and moments (GRFMs) from the
generalized coordinates (i.e., ¢(z)) and their derivatives (i.e., ¢(¢) = v(¢) and ¢(t) = a(z)).
Meanwhile, the static parameters were optimized to minimize the cost function and meet
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start

initial guess for the parameters
generate multiple potential guess points for the parameters

run fmincon on each guess

- - o meet the explicit differential
optimal solution equations and constraints?
¢ minimize the cost function?

stop

o reject the deviated guess points
o keep the best potential points

Fig. 6: The flowchart of GlobalSearch

the constraints. In this optimization, the generalized coordinates and their derivatives were
set to the experimental coordinate positions, velocities, and accelerations. The static
parameters, which will be identified, are the 39 contact parameters mentioned in Table 4.

4.1.3 Constraints

The dynamic friction coefficient was enforced to be less than static friction coefficient (Eq.

I)'
S / min max

The lower bound in Eq. 4 was set to 0.55 to prevent the model from slipping and the upper
bound was set to 0.99.

4.1.4 Cost function

Experimental joint torques and GRFs were tracked over time using the following cost
function:

I/' 2
Tsim. — T GRF;y,. — GRF,
J= / IZ ( Sim. exp. > +wy Z ( sim. epr) dt (5)
tf o Tmax — Tmin GRFmax - GRFmin j
where #y and 7 are the initial time and final time of a gait cycle and equal to O(s) and
0.98(s), respectively, and w; and w, are the weighting factors. Indices sim. and exp. refer to
the simulation results and experimental data, respectively. 7 is the torque and GRF includes

the tangential and normal ground reaction forces. i is from 1 to 6 referring to the torques of
left and right hip, knee and ankle joints. The metatarsal torques were not tracked since no
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experimental data for them was available. j is from 1 to 4 referring to tangential and normal
forces of the right and left feet. The minimum and maximum values of 7 and GRF were
obtained from the experimental data.

4.1.5 Bounds

We constrained the contact parameters to be within specified bounds. These bounds were
physically-meaningful and tuned using the reported contact parameters in [5], the friction
coefficients reported in [27] for the foot-ground contact, and the shape and dimensions of
the human foot segments mentioned in Table 3.

The bounds were considered large enough to allow the optimization find the best
parameters regarding the optimization constraints. After each optimization run, we
inspected the cost function value to see whether the newly-tuned bounds bring about a
lower value for the cost function than the previously-tuned bounds.

4.1.6 Initial guess

To help the optimization identify physically-meaningful values for the contact parameters,
we used initial guesses for the 39 contact parameters defined in Table 4. For the volumetric
stiffness, volumetric damping coefficient, the dimensions, positions and orientations of the
ellipsoids, the optimal values reported in [5] were used as the initial guess. For the static and
dynamic friction coefficients, 0.40 and 0.35 were assumed as the initial guess, respectively,
since the required friction coefficient for walking is 0.3 [15].

4.2 Optimal control
4.2.1 Solver

To implement the optimal control algorithm, GPOPS-II [32], a direct orthogonal
collocation optimal control toolbox for MATLAB, was used. In this approach, the states
and control inputs are parameterized as orthogonal polynomials (in the case of a parameter
identification problem, static parameters are added to the set of unknowns). The roots of
those polynomials are considered as the collocation points and a local optimizer (i.e.,
IPOPT) updates the polynomials by increasing the number of the collocation points or
displacing the collocation points until the constraints are met and the cost function is
minimized regarding a prescribed error threshold. IPOPT is an interior-point optimizer
where the constraints are satisfied by a barrier function. In this approach, the differential
equations are considered as algebraic constraints that are satisfied during the optimization.
The flowchart of this optimization method is illustrated in Fig. 7. This optimization was
done on a desktop computer with an Intel® Core™ i7-6700 CPU @ 3.40 GHz with 16.0
GB RAM.

4.2.2 Methodology

In our optimal control optimization, the states and control inputs were:

x(t) = [q(1),v(1),a(r)] (©)



14 Mahdokht Ezati et al.

start
initial guess for the states, control inputs and parameters

parameterize the states, control inputs and parameters
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e meet the initial conditions,
implicit differential

equations and constraints?

o minimize the cost function?

optimal solution
_ stop

o displace the collocation points
o increase the number of collocation points
o update the polynomials

Fig. 7: The flowchart of direct orthogonal collocation

u(t) = la(r), 7(1)] M

where the states (x(r)) are the generalized coordinates, velocities, and accelerations. The
control inputs (u(¢)) are the joint jerks (u;(¢) = a(t)) and joint torques (ux(¢) = 7(z)).
Considering joint jerks in addition to the joint torques as the control inputs improves
convergence and solution smoothness [2]. In this optimization, the states, control inputs,
and the 39 contact parameters were parameterized and then optimized to minimize a cost
function subject to constraints. The dynamic equations were solved implicitly as algebraic
constraints during the optimization. Implicit dynamics modeling is different from explicit
forward and inverse dynamics modeling approaches [7].

For a human model with a foot-ground contact model, in the inverse approach,
dynamic equations must be explicitly differentiated to estimate the joint torques and
GRFMs given the motion and in the forward approach, dynamic equations must be
explicitly integrated to predict the motion and GRFMs given the joint torques. Although
the inverse approach is relatively fast, unrealistic joint torques may be predicted due to
numerical differentiation errors and inaccurate model parameters [7]. On the other hand,
the drawback of the forward approach is that explicit integration methods are
time-consuming. To avoid the deficiencies of explicit inverse and forward methods, the
dynamic equations are implicitly solved as an algebraic constraint; thus, this is neither a
forward nor inverse dynamics modeling approaches.

4.2.3 Constraints

In addition to the constraint described for the trajectory optimization in Sect. 4.1, three extra
constraints were defined for the optimal control optimization:
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Ruin < Rpelvis < Rinax (8)
x(t) = [v(t),a(t),u(t)] ©
Coin < (Time (t) —12(t))* < Conar (10)

In Eq. 8, the residual loads on the pelvis were imposed to be minimized to ensure dynamic
consistency [27]. R represents the two residual forces and one residual moment acting on
the pelvis and the bounds for the residual forces were set to -1 and 1 () and for the residual
moment was set to -0.1 and 0.1 (N.m). Eq. 9 is the dynamic constraint which represents the
first derivative of states. Eq. 10 is the algebraic constraint, in which u,(¢) is the torque control
inputs and T;,,, is the joint torques inversely obtained by solving the dynamic equations given
the states. C;, and Cypax Were set to 0 and 10712 to implicitly satisfy the motion dynamic
equations.

4.2.4 Cost function

In addition to the torque-tracking and GRF-tracking cost terms, considered for the trajectory
optimization in Sect. 4.1, two additional terms were included in the cost function of the
optimal control optimization: a motion-tracking term and minimization of the joint jerk.
These two terms cannot be used in the trajectory optimization’s cost function. The reason is
that, in the trajectory optimization, the kinematic inputs are constant and consequently these
terms, which are kinematic-based, are always constant and cannot be minimized. The cost

function of the optimal control optimization is as follows:
t ) ’
,_l/f wZ() Y (M)
Iy It i=1 \ Tmax — Tmin / ; j=1 GRFpax — GRF iy j

U gim —q 2 11 g 2
e
n—

k=1 \ 9max — 4min Amax — Amin ) 5

1D

where j and n are from 1 to 11 referring to the motions and jerks of the 11 generalized
coordinates, respectively. It should be noted that the jerk penalty was scaled by tj(} [27].
Minimizing the joint jerks results in a feasible solution even with a poor initial guess. The
minimum and maximum values of motions and jerks, in the denominators, were obtained
from the experimental data.

4.2.5 Bounds

In trajectory optimization, we can only define bounds for the contact parameters. In the
optimal control optimization, we can define boundaries not only for the contact parameters
but also for the initial and final times, states at the initial and final times, states and control
inputs during the gait cycle time, and also the integrals of the cost terms. The bounds for the
initial and final times were considered to be fixed and equal to O (s) and 0.98 (s), respectively
to match the experimental gait cycle time. The bounds for the generalized coordinates at
initial and final times, and the generalized coordinates and torques during the gait cycle time,
were determined based on the prescribed standard deviation reported by [3]. The bounds for
the contact parameters were specified and tuned by a similar approach to the one we used for
the trajectory optimization. The remainder of the bounds (i.e., on the integrals, generalized
velocities and accelerations at initial and final times and during the gait cycle time) were
tuned regarding the experimental data.
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Table 6: Weighting factor values

Optimization Cost function ~ Weights
trajectory optimization  Eq. 5 wi=1/4,wp=1/4
optimal control Eq. 11 wi=1/4,wy=1/4, w3 =1/4,wy=1/40

Table 7: Root-mean-square errors for the trajectory optimization and optimal control

Optimization Ty (N.M)_ Tpge (NM)__ Tuie Nm)  GRE, () GRF,(N) R, () R, (V) R, (N.m)

trajectory R: 16.46 R: 11.06 R: 17.29 R:36.42 R: 234.67
optimization ~ L: 18.07 L:11.18 L: 17.09 L: 36.60 L:232.46 9435 34903 18.12
optimal R:0.42 R:0.35 R: 0.66 R: 19.81 R:26.49 0 0 0
control L:0.42 L:0.35 L: 0.66 L:8.33 L:26.38

Ry, Ry and R; represent the residual forces and torque on the pelvis. R and L refer to right and left legs.

4.2.6 Initial guess

The initial guess for time, states, control inputs and the integrals of the cost terms were set
to the data described in Sect. 3 and the initial guess for the contact parameters were set to
the contact parameters reported in [5].

5 Results and discussion

Since the number of constraints, variables and cost terms in the optimal control
optimization was higher than those in the trajectory optimization, the computation time of
optimal control (11 minutes) was longer than that of the trajectory optimization (6
minutes). However, both of our optimizations, in which symbolic dynamic equations are
used, are still more computationally efficient than the equivalent optimizations in which
numerical dynamic equations are used [26]. The reason is that in our optimizations,
differential equations were symbolically calculated only once and then being called in the
optimization procedure many times while in the numerical optimizations equivalent,
differential equations are re-formulated each time they are called, leading to higher
computation time.

The values of weighting factors in the cost functions of both optimizations are shown
in Table 6. The weights of motion, torque and GRF tracking terms were set to 1/4 to have
the same effects on the results. The weight of the jerk cost term was set to a lower value
(w4 = 1/40) to affect the results less since the jerk term is only for convergence and solution
smoothness. It should be noted that in Eq. 5 and Eq. 11, the tracking terms were divided by
the range of each quantity (i.e., maximum value - minimum value) to be dimensionless and
comparable.

The resultant joint torques and GRFs from the trajectory and optimal control
optimizations are shown in Fig. 8 and Fig. 9, respectively. The simulated results from the
optimal control optimization (second columns in Fig. 8 and Fig. 9) were mostly within the
standard deviation of the experimental data. The simulated results from the trajectory
optimization (first columns in Fig. 8 and Fig. 9) were not as accurate as the results from the
optimal control. The root-mean-square errors (RMSEs) of joint torques and GRFs are
shown for trajectory optimization and optimal control in Table 7.

The geometries of the ellipsoids obtained from the trajectory optimization and optimal
control are shown in Fig. 10 and Fig. 11, respectively. The geometry information of the left
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Fig. 8: The lower extremity joint torques from trajectory optimization (first column) and
optimal control (second column) (The dotted lines represent the mean experimental torques
and the gray areas show the standard deviations of the mean experimental torques reported

by [3])

foot, in these two figures, are listed in Tables 8 and 9, respectively. The ellipsoids of the
left and right feet have the same dimensions but are bilaterally symmetric. The optimized
ellipsoids from the optimal control matched the geometry of the foot better than those from
the trajectory optimization.

The remainder of the contact parameters optimized through the trajectory optimization
and the optimal control are in Table 10 and Table 11, respectively. Each parameter has
different values for the three different ellipsoids due to the complex structure of foot. In
particular, the human foot consists of 33 joints, 26 bones, 19 muscles and 107 ligaments
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Fig. 9: The tangential and normal ground reaction forces from trajectory optimization
(first column) and optimal control (second column) (The dotted lines represent the
mean experimental GRFs and the gray areas show the standard deviations of the mean
experimental GRFs reported by [3])
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Fig. 10: The optimized contact model geometry from trajectory optimization
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Fig. 11: The optimized contact model geometry from optimal control

Table 8: The optimized geometry parameters for the left foot from trajectory optimization

dimensions orientations positions
ellipsoid (m) (degree) (m)

a b c Y B o Ty ry T,
toe 0.0114 0.0464 0.0148 -46.33 -21.37 151.26  0.1535 0.0100  0.0235
ball 0.1377  0.0226  0.0039 -7461  -3.86 -89.18  0.0882  0.0042  -0.0060
heel 0.0374 0.0358 0.0213 -79.07 -28.26 -91.69 -0.0047 -0.0037 0

Table 9: The optimized geometry parameters for the left foot from optimal control

dimensions orientations positions
ellipsoid (m) (degree) (m)
a b c o Iy Ty r;
toe 0.0118 0.0200 0.0110 -47.33 -29.48 152.46 0.1454 0.0183 0.0235
ball 0.0800 0.0218 0.0179 -57.03 -17.99 -9545 0.0675 0.0089  -0.0060
heel 0.0245 0.0300 0.0135 -68.87 -17.18 -91.62 -0.0212 0.0116 0
Table 10: The optimized contact parameters from trajectory optimization
toe ball heel
k,(N/m3)  1.67e7  1.04e7  0.07¢7
ay(s/m) 09161 0.6881 14732
g 0.0200 0.6256  0.2207
Uq 0.0139  0.4245 0.1592

surrounded by a tissue and the different sections of this tissue have different mechanical
properties (e.g., roughness and thickness).

Since the center of pressure is much closer to the fore-foot than the toe and heel (i.e.,
the ball ellipsoid is more in contact with the ground than the heel and toe ellipsoid) during
gait, the ball ellipsoids play a more important role in generating the normal GRF, and also
avoiding slippage, than the toe and heel ellipsoids. The optimal control optimization
identified the largest values for the penetration volume and the dynamic friction coefficient
of the ball ellipsoids among the ellipsoids (see Fig. 11 and Table 11). Furthermore, the
optimal control optimization identified the lowest and greatest values for the volumetric
stiffness and damping of the ball ellipsoids, respectively that proves that the ball ellipsoids
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Table 11: The optimized contact parameters from optimal control

toe ball heel
k(N/m®)  4.60e7 0.12¢7 0.95¢7
ay(s/m) 0.0654  3.0000  2.1490
s 0.0102  1.2000  0.1765
Ha 0.0100 1.1871  0.1121

also have a big effect on the smoothness of the normal GRFs, in comparison to the toe and
heel ellipsoids.

However, the geometry of the ball ellipsoids, identified in the trajectory optimization,
was not as expected. As shown in Fig. 10, the ball ellipsoids did not have an adequate
penetration volume to create the normal GRFs. To compensate, the heel and toe ellipsoids
had unnatural geometries and large penetration volumes, which did not succeed in
generating accurate GRFs.

Another reason behind the inaccurate tangential GRFs from the trajectory optimization
would be the methodology used (explicit inverse dynamics simulation). The friction in our
foot-ground contact was generated by a continuous velocity-based friction model. It is
difficult for a velocity-based friction model to stay in the sticking regime in an inverse
simulation, because any small errors in the experimental velocities (measurement or
calculation errors) may lead to large errors in the friction force due to the high sensitivity of
friction force to velocity [4]. However, our optimal control optimization, which used
implicit dynamics simulation, resulted in a small level of error in the velocity and
consequently more accurate tangential GRFs. In the implicit dynamic simulation, the error
of the velocity can be controlled better than the explicit inverse dynamics simulation since
the joint jerks were considered as a control input and minimized as a cost term and joint
torques were also assumed as control inputs driving the model.

Optimal control is more suitable than trajectory optimization to identify a large number
of parameters because if some experimental data are not available for being tracked, they
can be predicted through the optimal control approach. This optimization provides this
possibility for us to track not only the torques but also the motions to estimate more
reliable and accurate results for the joint angles and torques for which no experimental data
were available.

In the optimal control optimization, the states (i.e., motion and its first and second
derivatives) and control inputs (i.e., torques and the third derivative of motion) were
parameterized and then estimated through the optimization. Therefore, the absence of the
experimental angle and torque for the metatarsal joints and experimental GRMs and center
of pressure for the feet were compensated by the predictability feature of the direct
collocation method. Fig. 12 shows the simulated motion obtained by the optimal control
optimization. Since the simulated joint angles and joint torques, for which the experimental
data were available, tracked the corresponding experimental data very well, we can say that
the optimal control optimization has predicted physiologically meaningful values for the
angles and torques of the metatarsal joints, for which no experimental data were available.
Predicted metatarsal torques and angles are shown in Fig. 8 and Fig. 3, respectively.

In the trajectory optimization, the inputs (i.e., motion and its first and second
derivatives) were the fixed data measured or calculated from experimental results. Thus,
since the third derivatives of motion were always fixed, they could not be minimized unlike
the optimal control optimization, in which joint jerks were minimized. Moreover, in the
trajectory optimization, unlike the optimal control optimization, no boundaries could be
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Fig. 12: The lower extremity joint angles from optimal control (The gray areas in the plots
of hip, knee and ankle joint angles represent the mean experimental angle data with the
specified standard deviations reported by [3] and the gray lines in the plots of metatarsal
angles represent the trajectory we planned and considered as the initial guess for the
optimization)

defined for the torques and GRFs to lead them to have meaningful values, and also there
was no control on the torques that were constrained to satisfy the inverse dynamics.

Another shortcoming of the trajectory optimization is that no path constraints on the
outputs could be applied. Therefore, the residual loads on the pelvis could not be reduced
to zero thereby causing inaccurate joint torques to be estimated by the optimization. Fig.
13 shows the residual forces and moments obtained by the trajectory optimization and the
optimal control optimization; The corresponding RMSEs are shown in Table 7.

6 Conclusion

In this study, a 2D human model was developed and the 3D ellipsoidal volumetric contact
was applied on both feet. The dynamic equations of the multibody model and the contact
equations were developed symbolically. Two approaches were used to identify the contact
parameters: GlobalSearch trajectory optimization and direct collocation optimal control.
The results showed that for parameter identification, especially when not all the
experimental data are available, optimal control with implicit dynamics is more accurate
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Fig. 13: The residual forces and moment acting on the pelvis obtained from trajectory
optimization (first column) and optimal control optimization (second column)

than the trajectory optimization with inverse dynamics. For the optimal control, the
root-mean-square errors of the resultant torques, tangential and normal ground reaction
forces were 0.48 (N.m), 14.07 (N) and 26.44 (N), respectively. However, for the trajectory
optimization, these errors were 15.19 (N.m), 36.51 (N) and 234.57 (N). In addition, we
presented a computationally efficient symbolic ellipsoidal volumetric foot-ground contact
model that simulates more accurate normal and tangential reaction forces than previous
volumetric models [5].

In this study, we could also predict meaningful values for the torques and motions of
the metatarsal joints through the optimal control approach. However, we believe that more
feasible and accurate prediction could have been achieved if the experimental GRMs and
center of pressure for the feet were available.

Our future goal is to use the proposed contact model in a fully-predictive predictive
human gait simulation, not only to predict novel motions but also to obtain the motions and
torques of metatarsal joints.
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