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Abstract—Functional electrical stimulation (FES) is a type of
neuroprosthesis in which muscles are stimulated by electrical
pulses in order to compensate for the loss of voluntary move-
ment control. Modulating the stimulation intensities to reliably
generate movements is a challenging control problem. For the
first time, this paper presents a feedback controller for FES
to control arm movements in a 2D (table-top) task space. This
feedback controller is based on a recent human motor control
model, which uses muscle synergies to simplify the calculations
and improve control performance. The experimental results
show that this control scheme can produce arbitrary movements
in the 2D task space, with less than 2 cm hand position error
from the specified targets.

I. INTRODUCTION

Functional electrical stimulation (FES) is the process of
applying electrical pulses to skeletal muscles in order to
produce force and perform an action. Artificially stimulating
the muscles to produce movements in individuals with motor
impairment (e.g. spinal cord injury or stroke patients) has
always been an intriguing idea; however, there are basic
challenges that prevent FES to be widely used.

The biggest challenge is associated with the complexity of
the human musculoskeletal system; it is a redundant, non-
linear and noisy system with significant uncertainties. The
actuators in the human body are the muscles, many of which
are co-activated by the nervous systems to produce a certain
motion. We do not know how the nervous system calculates
the required muscle activities. Thus, we have yet to mimic
the same process to produce naturally-looking motions with
FES.

There have been attempts to develop feedback motion
controllers for FES, but the results are far from perfect. Proof
of concept studies for more advanced feedback controllers
exist that report successful control of simple motions (e.g.
knee extension by [1]–[4], elbow extension by [5], and
two-degree-of-freedom ankle motion by [6]). However, their
generalizability to multi-joint and multi-muscle systems has
not been reported.

Controlling the upper extremity movements with FES
is a more challenging control problem, mostly because of
the larger number of degrees of freedom and the involved

muscles. Initial steps toward solving this problem include a
single-muscle controller for a one-dimensional reaching task
[7], control of isometric hand force in a multi-muscle FES
system [8], estimation of FES-produced joint torques during a
prescribed 3D movement [9], and feed-forward control of the
reaching tasks [10]. Controllers for elbow extension using the
measured shoulder joint velocities have also been developed
[11], [12]. However, no feedback controller exists for the
upper extremity reaching movements that allows reaching to
arbitrarily specified targets.

The developed motion controllers in [7]–[10] have all
taken a joint space approach, in which the effect of muscle
activities on joint torques are calculated, and then inverse
kinematics/dynamics are used to convert the information
from task space (hand position, which is the controlled
variable) to joint space (for which the models are developed).
This added complexity can be removed by developing the
formulation in the task space, and considering the effect of
muscles on the task space forces, rather than the joint torques.

In this paper, we employ a biologically plausible human
motor control model [13], [14] as the feedback controller
for FES. The advantage of this model is in its task space
representation, and utilization of muscle synergies to simplify
calculations. The goal of the controller is to drive the arm to
follow arbitrary trajectories in a two-dimensional workspace.
To the best of our knowledge, this is the first feedback
FES controller for the multi-joint and multi-muscle arm
movements.

II. METHODS

A. The experimental setup

Our experimental setup is shown in Fig. 1. In this setup,
RehaStim V.1 with Science Mode (Hasomed GmbH, Ger-
many) is used as the stimulation device. Five muscles (an-
terior and posterior deltoid, biceps and triceps brachii, and
pectoralis major) are stimulated via electrode pads placed on
the skin and over the muscle motor points [15]. The stimu-
lation frequency and current are fixed at 30 Hz and 20 mA,
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Fig. 1. The experimental setup

respectively, and stimulation pulse width is modulated using
a computer running Matlab/Simulink.

The goal in this setup is to use FES to control the position
of the hand, and drive it to any arbitrary target in a 2D
(tabletop) space. This FES system was tested on the left arm
of a healthy subject (28 years old male). To make sure that
the subject’s voluntary actions are minimized, he was asked
to relax, and no information about the target positions were
visible to him.

To control the hand position in the 2D tabletop space,
its position and the applied force are measured using a
2D haptic robot (Quanser Inc. Canada). The robot can be
programmed to be locked in place (for isometric trials), or
move with/without applying resistance (during motion trials).
The subject sits upright in front of the robot, and is instructed
to relax during stimulations to minimize the voluntary force
production. A wrist brace is used to restrict wrist motion, and
also firmly connect the hand to the robot’s end-effector. To
reduce the arm-table friction and keep the arm in a horizontal
plane, the arm is suspended using a sling. Since the arm
always remains elevated by the rope at a certain height, the
effective degrees of freedom of the arm is reduced to two,
and (x, y) position of the hand is sufficient to describe the
posture (given that the torso movement is restricted).

B. FES controller architecture

Our FES controller is the real-time implementation of
a synergy-based motor control framework [13], [14]. The
advantage of this motor control model is in its task space
representation, which simplifies the calculations and allows
for efficient control of the movements in the task space.
Task space in this context refers to the collection of the
kinematic variables that are actively controlled. Therefore,
the task space in this paper is defined as a 2D Cartesian space,
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Fig. 2. The overview of the motor control model as the FES feedback
controller

specified by the (x, y) position of the hand. Alternatively, for
example, if the objective was to control the elbow flexion
angle only, the task space would be a 1-dimensional space
defined by elbow angle (the hand position would be irrelevant
in this case).

The schematic of our FES feedback controller is shown
in Fig. 2. The high-level controller in our motor control
implementation is a PID controller, whose input is the
position error in the task space. This task space controller
defines a 2D reference force vector, Fref , that is required
to reach to the specified target. This force command should
be fulfilled by activating the muscles. The role of the low-
level controller in this motor control framework is to translate
the task space force command to muscle activations, and
consequently to stimulation pulse-width (pw) which is fed to
the FES device. The details of this force-to-activation (F2A)
mapping are described fully in [14] and are briefly explained
below.

The F2A mapping takes advantage of the known actions
of a number of muscle synergies in the task space. A muscle
synergy in this work is defined as the co-activation of a
number of muscles with known relative ratios. The difference
between our definition of muscle synergies from the tradi-
tional definitions is the dependence of activation ratios on
the posture (posture-dependent synergies). In a given posture,
defined by the hand’s (x, y) position in the task space, the
activation of a single synergy produces a certain isometric
hand force. The collection of the force vectors produced by
individual synergies can be considered as a basis set for the
task space. In other words, an arbitrary hand force vector
can be constructed by a linear combination of these synergy-
produced basis vectors.

The known synergies and basis vectors (pre-computed off-
line, see section II-C2) can be used to solve for the muscle
activations in real-time, instead of the time-consuming op-
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Fig. 3. The schematic of the force-to-activation mapping. Each synergy
produces a certain force in the task space that can be considered as a basis
vector. An arbitrary reference force, Fref , can be decomposed onto this
basis set, to calculate the coefficient of each synergy, ci. Combing the
synergies with the corresponding coefficients gives the vector of muscle
activations that produces the reference force.

timization process (e.g. in [8], [10]). The force command
defined by the task space controller can be decomposed
onto the basis set to calculate the coefficient of each basis
vector (Fig. 3). Then, the synergies are combined using
the calculated coefficients to obtain the muscle activations
that produce the reference force. The schematic and block
diagram of this process is shown in Fig. 3.

C. Implementation of the FES controller

To implement this motor control framework as the FES
controller, models of stimulated muscles are needed. Be-
cause of the task-dependent architecture of the motor control
framework, it is only required to identify a mapping that
transforms the muscle stimulation intensity to the task space
force vector—no explicit information about kinematics of
the body (e.g. segment lengths and joint angles) and joint
moments is necessary.

1) Identifying pulse-width-to-force mappings: The muscle
models used in this work are static input-output functions
that estimate the 2D task space force from the stimulation
intensity, pw, and the hand position:

Fest : R3 → R2

(pw, x, y) 7→ (Fx, Fy)
(1)

To obtain mappings of this form, individual muscles are
isometrically stimulated (robot is locked in place) one by one
with the patterns shown in Fig. 4, and the hand force/position
is measured by the robot. The stimulations are repeated at
nine different positions in the task space (a 3-by-3 grid of
30 cm length).

The mapping in (1) is constructed by training two separate
functions: one for the direction of the force, and one for
its amplitude. The reason for this separation is to ensure
that the direction of the estimated force remains the same
for all intensity levels (ideally this direction should only
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Fig. 4. The stimulation profiles used to train the muscle mappings. For
each muscle, the maximum pulse width is the threshold of the stimulations
becoming uncomfortable for the subject, and the base value is the onset
of feeling the stimulations on the skin. These profiles are constant for all
postures.

depend on the geometry of the musculoskeletal system). This
assumption may not be entirely true, as higher stimulation
intensities may excite the neighbouring muscle fibres and
alter the direction of the hand force. Nonetheless, the motor
control model relies on this assumption; thus, the force
direction mapping is trained despite the changing stimulation
intensity, and is only a function of posture.

The direction mapping is trained using the best line of
action of the measured forces at various postures. This line
of action is obtained by fitting a line (zero y-intercept) to the
measured force (as seen in the enlarged plot in Fig. 5). Next,
the unit vector, ûF , representing this direction is found, and
second-order polynomial surfaces (P(x, y)) are used to fit its
ux and uy components as functions of the hand position.

ûF =

[
ux
uy

]
=

[
P1(x, y)
P2(x, y)

]
(2)

Fig. 5 shows the estimated force directions resulting from
pectoralis major muscle stimulation.

The amplitude mapping is obtained by training an artificial
neural network (ANN). The inputs to the training are the
measured (pw, x, y) triplets, and the output is the amplitude
of the measured force. As an example, Fig. 6 shows the
trained mapping (with one hidden layer neuron) for the
pectoralis major muscle.

The two functions are then combined to obtain the posture-
dependent pulse-width-to-force mappings for individual mus-
cles:

Fest(pw, x, y) = ûF (x, y).Fest(pw, x, y) (3)

where ûF is the function that estimates the force unit vector
(the polynomial surfaces), and Fest is the ANN mapping that
estimates its amplitude.

Since the pulse width non-linearly affects the hand force,
it cannot be used in the synergy framework mentioned above
to solve for muscle activity levels—muscle synergy theory
relies on superposition principle, with works only in linear
systems. Therefore, it is useful to define the muscle activation
as the linear scaling of maximum muscle force as:

a(pw, x, y) =
Fest(pw, x, y)

Fest(pwmax, x, y)
(4)
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Fig. 5. An example of the trained mapping for the direction of the force in
the entire work space (pectoralis major muscle). A line of action found by
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Fig. 6. (a) The ANN mapping fitted to the measured data (pectoralis major
muscle as an example). The data collected at 9 different position in the
work space. (b) The mapping estimations for the amplitude of the force as
a function of stimulation pulse width in the entire work space. The results
shown belong to pectoralis major muscle.

which can be used in F2A mapping without problem, instead
of the pulse width. Once the required muscle activations are
calculated through the processes in F2A mapping, inverse
muscle models can be used to calculate the needed stimula-
tion pulse widths.

The trained mapping in (3) is a forward mapping (trans-
forming pw to hand force). In order to calculate the pulse-
width required to generate a certain amount of muscle activa-
tion, an inverse mapping is also trained using another ANN
model (with 8 hidden layer neurons). To ensure the integrity
of inverse and forward mappings, the inverse mapping is
trained using the simulated data obtained from the forward
mapping, instead of the measured data.

2) Obtaining synergies: For the muscle synergies to be
useful in our motor control framework, they need to have
an important feature: their basis vectors must span the task
space in such a way that any force vector could be a linear
combination of the basis vectors with positive coefficients
(muscles are pull-only elements). This requirement implies
that: 1) at least three synergies are required to control the
motion in the 2D task space, and 2) their basis vectors cannot
all be in one half-plane. Furthermore, the structure of the
synergies has great effect on the efficiency of the control
loop [14]. As a result, proper identification of the synergies
is a critical step in this motor control model.

To obtain the synergies, a large number of optimization
problems are solved. In a certain posture, the best set of
muscle activations that result in a target hand force are
found. The target hand forces, Ftrgt, in our optimizations
are 15 vectors equally spaced in the horizontal plane, and
the optimization algorithm tries to minimize the objective
function J :

a∗ = argmin
0<a<1

{J} (5)

where

J = ω1

∣∣∣∣∣
(

5∑
i=1

Fi
est

)
− Ftrgt

∣∣∣∣∣
2

+ ω2

5∑
i=1

pwi + ω3

5∑
i=1

F i
est

2

(6)

where the index i represents the ith muscle, and ω’s are
weighting factors to balance and non-dimensionalize the
terms. In this cost function, the first term is the constraint
of total force being close to the target force, the second term
penalizes high stimulations, and the last one has the effect
of sharing the load among similar-function muscles. The
weightings (w1 = 1×103 N−2, w2 = 1×10−6 µs−1, w3 =
1 Ns−2 are chosen so as to result in the co-activation of
the muscles that is qualitatively similar to the natural human
behavior.

The optimal activations that produce the 15 target forces
can be gathered in the matrix:

A5×15 = [a∗1,a
∗
2, . . . ,a

∗
15] (7)

The usual practice to obtain muscle synergies is to use non-
negative matrix factorization (NNMF, [16]) on such a data
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Fig. 7. (a) The posture-dependent synergies, and (b) posture-dependent basis
set shown at multiple points in the work space. The color-coded basis vectors
are shown with 1N = 0.005m scale in this plot.

matrix to break it into a synergy matrix S and a coefficient
matrix C as:

A5×15 ' S5×nCn×15 (8)

where n is the number of synergies (represented by the
columns of S).

This process can be repeated at a multitude of postures
to obtain the posture-dependent synergy matrices (i.e. S =
S(x, y), Fig. 7a). Next, individual synergies can be fed to
the muscle mappings to obtain the estimate of the total hand
force that each synergy produces. The collection of these
forces form the posture-dependent basis set for the task space
(see Fig. 7b).

During real-time control of the movement, the hand posi-
tion is measured by the robot, which is used to interpolate
between the previously calculated synergy matrices and basis
sets, to obtain the synergies/bases at the current posture.
This information is then used in the F2A mapping to get
the muscle activations, which are finally converted by the
inverse mappings to pulse-width commands to be fed to the
FES device.

III. RESULTS

The closed-loop FES control performance is shown in
Fig. 8. Two control methods are compared here. One is
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the synergy-based motor control model described above. The
second controller is a model-free generic controller that has
no knowledge of the action of the muscles. This controller co-
activates anterior deltoid and pectoralis major muscles (with
equal intensities) when the high-level controller outputs a
command in +x direction. Similarly, it activates the posterior
deltoid when the command is in −x direction, triceps for
commands in +y, and biceps in −y directions.

Because of the information available to the synergy-based
controller about the muscles’ action, it results in smoother
trajectories, and smaller error. Fig. 9 shows the comparison
of the tracking error resulting from the two control methods
during the deterministic motion trials. The tracking error of
the synergy-based motor control is 39% lower (mean±std of
the tracking error is 9.51±5.0 mm for the synergy controller,
and 15.5±8.0 mm for the generic one).

IV. DISCUSSION

The motor controller presented in this paper takes ad-
vantage of the known muscle actions in the task space,



in order to reduce the computational time and improve
control performance. The generic controller, however, lacks
such information, and as a result, suffers from poor control
performance.

One can argue that the generic controller is similar to the
synergy controller, by assuming that it has four orthogonal
basis vectors (±x and ±y directions), and decomposes the
high-level controller command onto these directions. In this
case, the controller suffers from the inaccurate representation
of muscle actions. This lack of knowledge about the actual
muscle actions is the major cause of occasional chattering
during generic movement control.

To improve the proposed control performance, it is pos-
sible to include the arm dynamics in the calculations. All
the information stored in the controller (in the form of the
synergies and the basis set) belongs to isometric (stationary)
conditions. As a result, the controller works best when the
velocities are small. To account for the velocity dependent ac-
celerations and inertia effects, the arm’s equations of motion,
as well as its model parameters are needed. Unfortunately,
obtaining such information is time consuming, which will
increase the proposed method’s preparation time (about 10-
15 minutes in our tests). In a clinical setting where therapy
time is limited, one should weight the benefit of the improved
control performance over the cost of the time spent on
parameter identification.

The controller was tested on one healthy subject. However,
there is no restriction in the controller architecture that pre-
vents the method from being applied to impaired individuals.
As long as the muscles are strong enough and respond
to the stimulations, the controller can be applied. There
are potential challenges with the clinical population that
may impact the controller performance. For example, stroke
patients may suffer from spastic muscles and day-to-day
change in neuromuscular responses, which may adversely
affect the FES controller.

A prominent problem with all the percutaneous FES
systems is the inconsistent response of the muscles to the
stimulations between subjects, and in a subject between
different sessions. The presented method is no exception, and
needs to be calibrated for each subject and therapy session.
The strength of the method, on the other hand, is its inherent
subject-specificity.

V. CONCLUSION

In this paper we presented the application of a motor
control model as the feedback controller of functional elec-
trical stimulation devices. As an advantage, this control
method only required information in a task space, which
disentangles the control task from many of the complexities
of the musculoskeletal system, allowing for fast feedback
control of the motions. As a result, our FES controller is
the first of its kind that can be used to generate and control
arbitrary movements in a task space. Our experimental results
showed that the synergy-based motor control model can be
used to effectively produce movement in the 2D task space.
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