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Feedback Control of Functional Electrical
Stimulation for 2D Arm Reaching Movements

Reza Sharif Razavian, Borna Ghannadi, Naser Mehrabi, Mark Charlet, and John McPhee

Abstract—Functional electrical stimulation (FES) can be used
as a neuroprosthesis in which muscles are stimulated by electrical
pulses to compensate for the loss of voluntary movement control.
Modulating the stimulation intensities to reliably generate move-
ments is a challenging control problem. This paper introduces
a feedback controller for a multi-muscle FES system to control
hand movements in a two-dimensional (table-top) task space.
This feedback controller is based on a recent human motor
control model, which uses muscle synergies to simplify its
calculations and improve the performance. This synergy-based
controller employs direct relations between the muscle synergies
and the produced hand force, thereby allowing for the real-time
calculation of six muscle stimulation levels required to reach an
arbitrary target. The experimental results show that this control
scheme can perform arbitrary point-to-point reaching tasks in
the two-dimensional task space in real-time, with an average
of ∼2 cm final hand position error from the specified targets.
The success of this prototype demonstrates the potential of the
proposed method for the feedback control of functional tasks
with FES.

Index Terms—Functional electrical stimulation (FES), muscle
synergies, feedback control, task space control, biomechanics.

I. INTRODUCTION

Functional electrical stimulation (FES) is the process of
applying external electrical pulses to skeletal muscles or to
their attached nerves, in order to generate force in the muscle
and perform actions. The electric pulses are usually in the
form of a high-frequency pulse train, where the frequency,
amplitude and pulse width can all be modulated to change the
muscle force.

Artificial stimulation of muscles has long been an intriguing
idea to produce functional movements in individuals with
motor impairments. Furthermore, the application of FES to
rehabilitation programs has shown improved recovery of post-
stroke patients, even in severe and chronic cases [1], [2].
Despite the attractiveness of the FES systems, however, there
are basic challenges that prevent them from being widely used.

The biggest challenge is associated with the complexity of
the human musculoskeletal system; it is a redundant, non-
linear and noisy system with significant uncertainties. The
actuators in the human body are the muscles, many of which
are co-activated by the nervous system to produce a certain
motion. We do not know how the nervous system calculates
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the required muscle activities. Thus, we have yet to mimic the
same process to produce naturally-looking motions with FES.

Many methods are presented in the literature for the control
of FES devices. Finite state controllers [3]–[5] switch between
different states based on the measurements of the system, but
during each state the controller is essentially feed-forward.
Another important trend is to use an artificial neural network
to generate the FES control signals [6]–[8]. PID [9], [10] and
sliding-mode controllers [11], [12] have also been used for
the control of FES systems. Optimal control methods (e.g.
non-linear model predictive controllers [13]–[15]) have been
proposed as well.

These previous FES controllers (except for the finite state
controllers [3], [4]) were limited to simple motions: either the
single-joint knee or elbow flexion/extension [5]–[7], [11]–[14])
or the two degree of freedom (DoF) motion of ankle [8]. The
control of more complex multi-joint systems were only tested
in computer simulations [9], [10]. The generalizability of these
controllers to multi-DoF and multi-muscle systems has not
been reported.

Controlling upper extremity movements with FES is a chal-
lenging control problem, mostly because of the large number
of DoFs and involved muscles. A single-muscle controller
for a one-dimensional (1D) reaching task has been developed
in [16], [17]. The control of elbow extensor to facilitate
reaching movements was reported in [18], [19]. The only
multi-muscle controllers for the upper extremity are [20]–[22].
Isometric hand force production was studied in [20], while [22]
presented the estimation of FES-produced joint torques during
a prescribed 3D movement. Finally a feed-forward motion
controller for reaching tasks was developed in [21].

All the developed FES controllers for the upper extremity
[16], [18]–[22] have taken a joint space approach, in which the
effect of muscle activities on the joint torques are calculated,
and then inverse kinematics/dynamics is used to convert the
information from the task space (hand position, which is the
controlled variable) to the joint space (for which the models
are developed). This added complexity can be removed by
developing the formulation in the task space, and considering
the effect of muscles on the task space forces, rather than the
joint torques.

In this paper, we employ a biologically-inspired human
motor control model [23], [24] to develop a real-time feedback
controller for FES. The advantage of this model is in its task
space representation, which liberates the controller from the
joint-space complexities. Furthermore, muscle synergies are
used as a biologically-plausible method [25]–[27] to further
simplify the relationship between task variables (i.e. hand
position) and muscle activities. The goal of the developed
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Fig. 1. The experimental setup for testing the motor control framework as the
feedback controller for an FES system. The passive electrodes are indicated
with darker shades.

controller is to activated major upper extremity muscles and
drive the arm to arbitrary targets in a two-dimensional (2D
tabletop) workspace.

II. METHODS

A. The experimental setup

The experimental setup is shown in Fig. 1. The stimula-
tion device is RehaStim V.1 with Science Mode (Hasomed
GmbH, Germany), which stimulates six muscles of the left
arm (anterior and posterior deltoid, biceps and triceps brachii,
pectoralis major, and the intermediate region of trapezius). The
electrical pulses are delivered to the muscles via the electrode
pads (5 × 13 cm) placed on the skin and over the muscle
motor points as suggested by [28]. The passive electrodes
(5 × 5 cm) were placed away from the motor points. Minor
location adjustments were allowed to reduce discomfort. The
stimulation frequency and current are fixed at 33 Hz (to ensure
smooth force production [29]) and 20 mA, respectively, and
the stimulation pulse width is modulated using a computer
running Matlab/Simulink.

The goal in this setup is to use the motor control framework
as the FES controller, to control the position of the hand,
and drive it to any arbitrary target in a 2D (table-top) space.
For this purpose, the hand position and the forces applied
to the hand are measured using a 2D haptic robot (Quanser
Inc. Canada). The robot can be programmed to be locked in
place (for isometric trials), or move while applying resistance
(during motion trials). The subject sits upright in front of the
robot. A wrist brace is used to restrict the wrist’s degrees of
freedom, and also firmly connect the hand to the robot’s end-
effector. To reduce the arm-table friction and keep the arm
in the horizontal plane, the arm is suspended using a sling.
Since the arm always remains elevated by the sling at a certain
height, the effective number of the arm’s degrees of freedom
is reduced to two; thus, only the (x, y) position of the hand
is sufficient to describe the posture. For this argument to be
valid, it is assumed that the torso movement is negligible, and
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Fig. 2. The overview of the motor control model as the FES feedback
controller

the scapula motion is linked to the shoulder elevation/flexion
angles (through scapulohumeral rhythm).

This FES controller was tested on left arms of three healthy
subjects (21, 28 and 31 years old, all male and right-handed).
To minimize the subjects’ voluntary actions, they were asked
to relax, and no information about the intended action was
visible to them.

B. FES controller architecture

The feedback FES controller is the real-time implementation
of a synergy-based motor control model [23], [24]. The
advantage of this motor control model is in its task space
representation, which simplifies the calculations and allows
for efficient control of the movements in the task space. The
task space in this context is defined as a 2D Cartesian space,
specified by the (x, y) position of the hand. Alternatively, for
example, if the objective were to control the elbow flexion
angle only, the task space would be a 1D space defined by
elbow angle (the hand position would be irrelevant in this
case).

The schematic of the motor control model as the FES
feedback controller is shown in Fig. 2. This model has a
hierarchical structure. The high-level controller is a feedback
controller that compares the actual hand position with the
specified target, and defines the direction in which the hand has
to move. The high-level controller in this implementation is a
PID controller; its input is the position error in the task space,
and it defines a 2D reference force, Fref, which is required to
reach to the specified target.

This force command should be fulfilled by activating the
muscles. Thus, the role of the low-level controller is to
translate the task space force command to muscle activations
and consequently to stimulation pulse width (pw). This force-
to-activation (F2A) mapping uses muscle synergies to calculate
the muscle activations from the reference force. A muscle syn-
ergy in this context is defined as the co-activation of a number
of muscles with predetermined relative ratios (specified by a
column vector S = [a1, a2, . . . , a6]

T ). The basics of the F2A
mapping is briefly explained here.
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TABLE I
THE PARAMETERS USED IN THE EXPERIMENTS

Parameter value

KP = 150 (Nm−1)
PID coefficients Kd = 30 (Nsm−1)

Ki = 30 (Ns−1m−1)

w1 = 1000 (N−2)
Cost function weightings w2 = 1× 10−6 (µs−1)

w3 = 1 (N−2)

In a given posture, defined by the hand’s (x, y) position in
the task space, the activation of a single synergy, S, results in
a certain isometric hand force (vectors B in Fig. 3). Each of
these force vectors that are produced by individual synergies
can be considered as a basis vector for the task space; the
collection of all the vectors is then a basis set for the task
space. The basis set and the synergy matrix are expressed as:

B2×k = [B1, B2, . . . , Bk] (1)
S6×k = [S1, S2, . . . , Sk] (2)

where k is the number of muscle synergies.
The known basis vectors can be used to solve for the

muscle activations in real-time, instead of the time-consuming
optimization process (e.g. in [20], [21]). The force vector
command Fref can be decomposed into the basis set to
calculate the coefficient of each basis vector (Fig. 3). This
problem is equivalent to solve for the vector C in the equation:

Fref = B2×k Ck×1 (3)

Then, the synergies are combined using the calculated
coefficients as

a6×1 = S6×kCk×1 (4)

to obtain the muscle activations that produce the reference
force. The schematic and block diagram of this process is
shown in Fig. 3.

C. Implementation of the FES controller

To implement this motor control framework as the FES
controller, subject-specific models of the stimulated muscles
are needed. Specifically, to calculate the basis vectors, one
should have an estimate of the forces generated by individual
muscles. Because of the task-dependent architecture of the
motor control framework, it is only required to identify a
mapping that transforms a muscle’s stimulation intensity (pw)
to the task space force vector. This feature is an important
advantage of the proposed motor control model as no explicit
information about the kinematics of the body (e.g. segment
lengths and joint angles) and the joint moments is necessary.

1) Identifying pulse-width-to-force mappings: The subject-
specific muscle models used in this work are static input-
output functions that estimate the 2D task space force for each
muscle from the stimulation intensity and the hand position:

Fest : R3 → R2

(pw, x, y) 7→ (Fx, Fy)
(5)

Synergy 1

c1× + [a]
Synergy 2

c2×

Synergy 1
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Fig. 3. The schematic of the F2A mapping. Each synergy produces a certain
force in the task space, which can be considered as a basis vector. An
arbitrary reference force, Fref, can be decomposed into this basis set, to
calculate the coefficient of each synergy, ci. Combining the synergies with the
corresponding coefficients gives the vector of muscle activations that produces
the reference force.

To obtain the muscle mappings of this form for each muscle,
a subject’s individual muscles are isometrically stimulated (the
robot is locked in place) one by one with the profiles similar
to those shown in Fig. 4a, and the hand force/position is
measured by the robot. The profiles in Fig. 4a are subject-
specific, where the base pulse width values are the onset of
feeling the stimulations on the skin (no force is produced at
this level of stimulation), and the maximum values are the
thresholds where the stimulations become uncomfortable for
the subject. These thresholds are obtained prior to testing via
manual modulation of stimulations for each muscle. Using
these patterns, only one muscle is active in each instant of
time; therefore, the measured force contains the contribution of
a single muscle only. The stimulations are repeated at multiple
positions in the considered workspace (Fig. 4b) to account for
the posture-dependence of the produced forces.

The mapping in (5) is constructed by training two separate
mappings: the first one is trained to estimate the direction of
the hand force as a function of posture, and the second one
estimates the hand force magnitude as a function of posture
and stimulation pulse width. The reason for the separation of
the force direction from its magnitude is to ensure that the di-
rection of the estimated force remains the same for all intensity
levels (ideally this direction should only depend on the geome-
try of the musculoskeletal system). Unless indwelling or nerve
cuff electrodes are used, the assumption of constant force
direction may not hold, as higher stimulation intensities with
transcutaneous electrodes may excite the neighbouring muscle
fibres and alter the direction of the hand force. Nonetheless, the
motor control model relies on this assumption; thus, the force
direction mapping is trained despite the changing stimulation
intensity, and is only a function of the posture. In addition,
these feed-forward mappings need only be approximate, as the
high-level feedback controller can compensate the modelling
error.
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Fig. 4. (a) The stimulation profiles used to train the muscle mappings (these
profiles belong to subject #1). For each muscle, the maximum pulse width is
the threshold where the stimulation becomes uncomfortable for the subject,
and the base value is the onset of feeling the stimulations on the skin (no force
is produced at this level of stimulation). (b) The workspace and the points at
which the stimulation profiles are applied. The thresholds are the same for
all the tested points. The numbers inside the circles indicate the posture IDs
that are referred to in Fig. 9
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Fig. 5. An example for the best line of action (pectoralis major muscle in
the centre of the workspace for subject #1). The dots represent the measured
force as the pulse-width increases.

a) The direction mapping: The direction mapping is
trained using the best line of action of the measured hand
forces at various postures. This line of action is obtained by
fitting a line (zero y-intercept) to the measured force (as seen
in Fig. 5). Next, the unit vector, ûF , representing this direction
is found, and second-order polynomial surfaces (P(x, y)) are
used to fit its ux and uy components as functions of the hand
position.

ûF =

[
ux

uy

]
=

[
P1(x, y)
P2(x, y)

]
(6)

Fig. 6 shows the estimated force directions of subject #1’s
stimulated muscles in the 2D task space. In these plots, the
origin of the coordinate system is at the left shoulder, x is
lateral with the positive direction pointing to the right, and
y is forward (see Fig. 4b). The goodness of the polynomial
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Fig. 6. The trained mappings for the direction of the force in the entire
workspace. The best line of action of the measured data are shown with thick
lines, and the arrows show the direction of the force estimated by the mapping.
The force measurements are shown with 1N = 0.005m scale in this plot.

fit (adjusted R-squared) for the direction mapping is given in
Table II.

b) The amplitude mapping: The amplitude mapping con-
tains two fitted functions. The estimation of the posture-
dependent maximum force is obtained using a second-order
polynomial surface, which is fitted to the maximum of
the measured force amplitudes (at maximum pulse-width,
|F(pwmax)|) in various postures. This mapping gives the
maximum hand force production capacity of the muscle as
a function of posture as:

Fmax = P3(x, y) (7)

Fig. 7 shows the estimated maximum task space forces
of subject #1’s muscles. The goodness of the fit for Fmax

(adjusted R-squared) is given in Table II.
The last function is used to estimate the muscle activation,

a. Muscle activation in this context is defined as the linear
scaling of the maximum force, between 0 and 1:

a(pw) :=
|F(pw)|
|F(pwmax)|

(8)

The muscle activation is a non-linear function of the
stimulation pulse width, which is modelled using a sigmoid
function. Sigmoid is chosen because stimulated muscle forces
tend to be S-shaped, and because sigmoid functions are easily
invertible. During the experiments, it was observed that the
activation-pw relation is not significantly affected by the
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TABLE II
THE GOODNESS OF FIT (ADJUSTED R-SQUARED) FOR THE TRAINED MUSCLE MAPPINGS.

Subject #1 Subject #2 Subject #3
Muscle ux uy Fmax a ux uy Fmax a ux uy Fmax a

Anterior deltoid 0.202 0.126 0.227 0.900 -0.097 0.0780 0.798 0.778 0.300 0.375 0.817 0.876
Posterior deltoid 0.949 0.945 0.940 0.909 0.258 0.457 0.716 0.635 0.880 0.413 0.807 0.901
Biceps 0.987 0.784 0.921 0.906 0.968 0.926 -0.489 0.923 0.746 0.393 0.525 0.906
Triceps 0.995 0.886 0.828 0.965 0.738 0.070 0.955 0.782 0.722 0.389 0.891 0.759
Pectoralis Major 0.633 0.727 0.884 0.918 0.043 0.625 0.266 0.746 0.014 0.080 0.079 0.411
Trapezius 0.929 0.918 0.639 0.950 0.900 0.926 0.266 0.746 0.558 0.137 0.512 0.757
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Fig. 7. The fitted polynomial surfaces to estimate the maximum capacity of
the muscles as functions of posture. The measured data are shown with black
asterisks. These results belong to subject #1.

posture (only the maximum force changes by posture, see
Fig. 8). Therefore, the following sigmoid function, S, with
four parameters ci is trained using the collection of the data
obtained at all the postures.

a = S(pw) = c1 +
c2 − c1

1 + 10(c3−pw)c4
(9)

The trained amplitude mappings (the combination of the
activation and Fmax mappings) for the stimulated muscles are
shown in Fig. 9. The quality of the sigmoid fit (adjusted R-
squared) is also given in Table II for all the muscles.

Finally, the three subject-specific functions are combined to
obtain the subject-specific posture-dependent pulse-width-to-
force mappings for individual muscles:

Fi
est(pw, x, y) = ûi

F (x, y)F
i
max(x, y)a

i(pw) (10)
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Fig. 8. The sigmoid function fitted to the measured data collected at 9 different
positions in the workspace (the example data belongs to subject #1’s pectoralis
major muscle)
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where ûi
F , F i

max and ai are the functions that estimate the
force unit vector, maximum muscle capacity, and activation
level of the ith muscle, respectively. The first two functions are
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the polynomial surfaces, and the last one is a sigmoid function.
Using these functions, the basis vector corresponding to the
synergy S = [a1, a2, . . . , a6]

T can be estimated as:

B(x, y) =

6∑
i=1

ûi
F (x, y)F

i
max(x, y)ai (11)

where the index i represents the ith muscle.
Defining muscle activation is important in the synergy

framework, as its relationship with muscle force is linear—
a feature that is necessary for the superposition principle
that is the core of the synergy framework. Stimulation pulse
width, unfortunately, does not exhibit such a relationship. Once
the required muscle activations are calculated through the
processes in the F2A mapping, an inverse mapping is required
to calculate the needed stimulation pulse widths. The inverse
mapping pw = S−1(a) can be easily obtained by taking the
inverse of the sigmoid function in (9) as:

pw = S−1(a) = c3 −
1

c4
log

(
c2 − a

a− c1

)
(12)

2) Obtaining the synergies: The muscle synergies in this
framework need to have an important feature: their basis
vectors must span the task space in such a way that any
force vector can be a linear combination of the basis vectors
with positive coefficients (muscles are pull-only elements).
This requirement implies that: 1) at least three synergies are
required to control the motion in the 2D task space, and 2) their
basis vectors cannot all be in one half-plane. Furthermore, the
structure of the synergies may affect the performance of the
control loop. As a result, proper identification of the synergies
is an important step in this motor control model.

Three methods are studied to obtain the synergies; one is
a heuristic method, and the other two include factorization
matrices that contain optimal muscle activation data.

In the heuristic method, the muscles with similar functions
are grouped together and stimulated with fixed relative acti-
vation levels. In this context, a muscle’s function is defined
as the direction of the hand force it produces. Therefore,
the synergy 1 includes anterior deltoid and pectoralis major
muscles; synergy 2 includes posterior deltoid and trapezius
muscles; synergy 3 includes biceps brachii; finally, synergy 4
includes triceps brachii.

The direction of forces produced by each synergy varies
with posture, but in rough terms, synergy 1 moves the hand
medially, synergy 2 moves the hand laterally, synergy 3
retracts the hand, and synergy 4 pushes the hand away from
the body. As an example, subject #1’s heuristic synergies and
the associated basis vectors are visualized in Fig. 10a.

The basis vectors that the heuristic synergies produce can
successfully span the task space (see Fig. 10b). However, it
should be noted that this property may not necessarily hold in
general. For instance, muscles may change function drastically
across larger or more complex task spaces. More importantly,
the inclusion of more muscles makes it harder to identify such
synergies. For example, the trapezius muscle is placed in the
synergy 2 alongside the posterior deltoid, but its function is to
retract the scapula and consequently move the hand laterally

and back, which is neither the same as the posterior deltoid
nor biceps brachii. Therefore, considering more systematic
methods to obtain useful synergies is highly beneficial.

A non-negative matrix factorization (NNMF) algorithm [30]
is used to calculate the synergies more systematically. To
start the process, a large number of optimization problems
are solved. In a particular posture, the best set of muscle
activations that results in a target hand force is found. For this
purpose, the muscle mappings are used to find the estimates for
the hand forces. The target hand forces, Ftrgt, in the optimiza-
tions are 15 equally-spread vectors (with 24◦ differences) at a
given point in the horizontal plane. The optimization algorithm
tries to minimize the objective function J :

a∗6×1 = argmin
0<ai<1

{J} (13)

J = w1

∣∣∣∣∣
(

6∑
i=1

Fi
est

)
− Ftrgt

∣∣∣∣∣
2

+ w2

6∑
i=1

pwi + w3

6∑
i=1

∣∣F i
est

∣∣2
(14)

where the index i represents the ith muscle, and w’s are
weighting factors to balance and non-dimensionalize the terms
(values given in Table I). In this cost function, the first term
is the penalty function forcing the estimated total hand force
(generated by all the active muscles) to match the target force,
the second term penalizes high stimulation intensities, and the
last one has the effect of sharing the load among similar-
function muscles.

The optimal activations that produce the 15 target forces
can be gathered in the matrix:

A6×15 = [a∗1,a
∗
2, . . . ,a

∗
15] (15)

The usual practice of using NNMF is applied to this data
matrix to obtain the synergy matrix S and the coefficient
matrix C as:

A6×15 ' S6×kCk×15 (16)

where k is the number of synergies (represented by the
columns of S).

This process is repeated at p different postures to obtain
the posture-dependent synergies with posture-dependent bases.
Fig. 10c shows the results when p = 64 (an 8× 8 grid in the
task space). As a rule of thumb we found that a grid point
at every 4 cm in the workspace provides sufficiently smooth
transitions of the synergies between postures.

Alternatively, the optimal activation matrices in all the p
postures can be stacked in a larger matrix and then fed to the
NNMF algorithm to get the posture-dependent synergies with
shared bases:

A6p×15 =


A1

6×15

A2
6×15
...

Ap
6×15

 =


S1
6×k

S2
6×k
...

Sp
6×k

Ck×15 (17)

This concatenated NNMF method (CNNMF) [31] has the
advantage of giving synergies that are readily consistent across
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Fig. 10. Subject #1’s synergies (panels a, c, and d) and the corresponding basis vectors in the 2D task space (panels b, d, and f) obtained from the three
methods. Top row: the heuristic method (fixed synergies, changing bases). Middle row: the normal NNMF method (changing synergies, changing bases).
Bottom row: CNNMF method (changing synergies, fixed bases). Each surface in these plots shows how the activation of a muscle in a synergy changes
across various postures in the task space. The checkerboard patterns in the heuristic synergies mean that multiple surfaces are on top of each other. The basis
vectors on the right are the estimated task space forces from the combined muscle activities in each synergy (obtained using the identified muscle mappings).
These basis vectors are drawn with 0.01 m/N scale.

posture (i.e. the transition of synergies from one posture to a
neighbouring one is always smooth). This is a feature that
is hard to achieve using the normal NNMF method because
of the many local minima in its solution space. Furthermore,
as can be observed in equation (17), the coefficient matrix is
shared between all postures, implying that the basis vectors are
approximately posture-invariant—another feature that helps
with the calculations in the F2A mapping. Fig. 10e shows
the synergies obtained from the CNNMF method and the
corresponding basis vectors.

To get the estimate of the total hand force that each synergy
produces (i.e. the basis vectors in Figures 10b, 10d and 10f),
the synergies obtained from any of the three methods were
fed to the muscle mappings. Therefore, one should note that
the bases are estimates themselves, rather than the exactly
measured response of the muscles.

D. The experiment procedure

Three healthy subjects participated in the experiments. The
experiments were approved by the Office of Research Ethics
at the University of Waterloo, and participants gave informed
consent to take part in the experiment. Since the participants
retained full voluntary control over their muscles, they were
instructed to relax as much as possible and avoid performing
any voluntary movement.

In the first set of tests, isometric trials were performed. In
these tests, the robot was locked in four different locations
in the task space, and the F2A algorithm estimated the stim-
ulation pulse widths that would generate reference isometric
hand forces (5-N forces in 6 different directions). Then the
muscles were stimulated with the calculated pulse widths, and
the actual hand force was measured. These trials were meant
to assess the combined performance of two components of
the framework: the first component is the muscle mapping,
and the second one is the F2A. The existence of inaccuracies
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in each part results in error in the force produced.
Next, the motor control model was used as the feedback

motion controller for the FES system. Random point-to-point
movements (not visible to the subjects) were chosen as the
reference trajectories, to reduce the chance of memorizing the
trajectory and voluntarily following it. The subjects were also
asked to relax as much as possible to further reduce the chance
of voluntary actions.

During the real-time control of the movement, the hand
position is measured by the robot, which is used to interpolate
between the previously calculated synergy matrices and basis
sets. The interpolation gives the synergies and bases at the
current posture. This information is then used in the F2A
mapping to get the muscle activations, which are finally
converted by the inverse mapping to pulse-width commands
that are sent to the FES device.

All subjects did separate sets of tests using the three
different synergy methods. The exception is subject #2, who
did not test with NNMF synergies.

III. RESULTS

Fig. 11 shows the reference (big circles) and the resulting
hand forces (small dots that are color coded) in isometric trials
of subjects #1, #2 and #3. The three methods compared are:
the heuristic synergies (denoted as heuristic in the plots), the
factorized synergies with posture-dependent bases (denoted
by NNMF), and the factorized synergies with shared bases
(denoted by CNNMF). No NNMF data was recorded for
subject #2. Four synergies are used in all the methods for
consistency. Although there is error between the targets and
the actual hand forces, this error is mostly compensated by
the high-level feedback controller in the motion trials. Similar
performances are observed in the resulting data for subject #1
and #3, while higher relative errors are observed for subject
#2.

The closed-loop FES control performance is shown in
Fig. 12, where the reference motions were sequences of ran-
domly placed target points. The maximum hand velocity ex-
perienced in the reference trajectory is approximately 25 cm/s.
The resulting movements from the different synergy extraction
methods are shown for the three subjects. The tracking error
is also visualized in Fig. 13. The average distance of the hand
from the specified targets at the end of the reaching movements
is approximately 2 cm with all three methods for subject #1,
3 cm for subject #2 and 1 cm for subject #3. The histogram
of hand position errors for the entire motion is also shown in
Fig. 13. Because of the high-velocity portions of the reference
trajectories at the transition points, the total error has a larger
mean and standard deviation value.

IV. DISCUSSION

It is debatable whether muscle synergies are truly the build-
ing blocks of muscle activities. Both arguments favouring (e.g.
[32], [33]) and rebutting (e.g. [34]) the muscle synergy theory
exist (for a review see [35]). Nonetheless, muscle activations
do show synergistic patterns in normal human movements.
Therefore, the proposed synergy-based FES controller, which
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Fig. 11. The results from the isometric force production trials performed on
three subjects, using (a) heuristic, (b) NNMF, and (c) CNNMF synergies. The
relative root-mean-squared of error (RMSE) is provided. In these tests, the
reference hand forces are six equally-spaced vectors of amplitudes 5 N (forces
drawn with 0.005 m/N scale). Subject #2 did not test with NNMF synergies.

results in the synergistic co-activation of the muscles, has the
potential to mimic natural control of movements better than
single-muscle controllers.

The motor controller presented in this paper takes advantage
of the known muscle actions in the task space, to reduce
the computational time and improve control performance. The
experimental results showed that the choice of the synergy
extraction method has a small effect on the tracking perfor-
mance of the feedback controller. The tracking performance
seems to be more affected by the quality of the muscle
mappings (i.e. goodness of fit in Table II) than by the choice
of the synergies. It is worth noting that the synergies extracted
from simulated optimal muscle activities (e.g. the NNMF and
CNNMF methods) are shown in [36] to have a similar structure
as the ones obtained from real electromyographic data of
healthy individuals. This may justify the extra effort needed
to obtain synergies with the factorization methods, as opposed
to the heuristic one.

The relatively high force production error in the isometric
trials (50-60% for subjects #1 and #3 and appropriately 100%
for subject #2 in Fig. 11) may have many causes, including the
inaccuracies in the muscle mappings (which give the basis vec-
tors), inaccuracies in the vector decomposition (which relies on
linearity assumption), inaccuracies in the activation-to-pulse
width mapping (to calculate the required pulse-widths), and
altered electrode/muscle conditions (including skin impedance
and muscle fatigue). Statistical analysis shows that the choice
of the synergy method has no significant effect on the re-
sults of either the isometric trials (one-way ANOVA results:
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Fig. 13. Feedback controller tracking error. For each subject, the left column shows the position error between the target and the actual hand position at the
end of each reaching movement, and the right column shows the histogram of the error in the entire duration of the movements. The histogram plots show
the number of sample times with the amount of error indicated by the horizontal axis.

p = 0.096, p = 0.116, and p = 0.272 for subjects #1, #2, and
#3, respectively) or the motion trials (p = 0.118, p = 0.69, for
subject #1 and #2). The only statistically significant difference
has been observed in subject #3’s tracking error, where the
heuristic method is different from the other two methods

(p < 0.05). Our observations suggest that the quality of the
fitted surfaces during muscle mapping identification has a
stronger effect on the tracking performance of the controller.
Subject #2’s inferior control performance could be attributed
to poor muscle mapping quality (note the lower goodness of fit
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in Table II). Furthermore, the changes in muscle/skin condition
(e.g., skin conductance, electrode wear, sweat) could also
contribute to the error. To compensate for these uncertainties,
an on-line method can be used to re-train the muscle mappings
based on the inputs and the measurements. The development
of such on-line methods, however, is beyond the scope of this
paper.

To improve the proposed controller performance, it is also
possible to include the system dynamics in the calculations.
The hand and robot dynamics cause inaccuracies in the F2A
estimation of muscle activations. Furthermore, all the informa-
tion stored in the controller (in the form of the synergies and
the basis set) belongs to isometric conditions. As a result, the
controller performance further degrades when the velocities
are large. To account for the velocity-dependent accelerations
and inertial effects, the arm’s equations of motion, as well
as its model parameters are needed (as described in [37]).
Unfortunately, obtaining such information is time consuming,
which will increase the proposed method’s preparation time
(about 10-15 minutes in our tests). In a clinical setting where
therapy time is limited, one should weight the benefit of the
improved control performance over the cost of the time spent
on parameter identification.

The controller was tested on three healthy subjects. How-
ever, there is no restriction in the controller architecture that
prevents the method from being applied to impaired individ-
uals. As long as the muscles are strong enough and respond
to the stimulations, the controller can be applied. However,
there are potential challenges with a clinical population that
may impact the controller performance. For example, stroke
patients may suffer from spastic muscles, joint contracture,
and day-to-day changes in neuromuscular responses, which
may adversely affect the FES controller performance. These
issues are essentially disturbances to the systems, which can
be accommodated by the proposed feedback control structure.

A prominent problem with all transcutaneous FES systems
is the inconsistent response of the muscles to the stimulations
between subjects, and in a single subject between different
sessions. The presented method is no exception, and needs
to be calibrated for each subject and therapy session. The
strength of the method, on the other hand, is its inherent
subject-specificity.

The presented FES controller was used to reach to targets
on a 2D tabletop surface. The motor control framework used
as the controller has the ability to be generalized to higher
dimensions. For instance, the same motor control framework
has been used to simulate reaching to targets in 3D space
[37]. Therefore, the FES controller can be extended without
significant modification to handle the 3D motions in activities
of daily living, which are also more attractive for rehabilitation
purposes.

V. CONCLUSION

The application of a synergy-based motor control model
to the feedback controller of functional electrical stimulation
devices was presented. As an advantage, this control method
only required information in a task space, which disentan-
gles the control task from many of the complexities of the

musculoskeletal system, allowing for fast feedback control
of the motions. As a result, the proposed FES controller is
the first of its kind that can be used to generate and control
arbitrary movements in a 2D task space. The experimental
results on three different subjects showed that the synergy-
based motor control model could be used to produce reaching
movement with approximately 1-3 cm accuracy as measured
at the endpoint.
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