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Abstract Over the past decade, there has been a rapid increase in applications of multibody system
dynamics to the predictive simulation of human movement. Using predictive “what-if” human dynamic
simulations that do not rely on experimental testing or prototypes, new medical interventions and devices
can be developed more quickly, cheaply, and safely. In this paper, we provide a comprehensive review of
research into the predictive multibody dynamic simulation of human movements, with applications in
clinical practice, medical and assistive device design, sports, and industrial ergonomics. Multibody models
of human neuromusculoskeletal systems are reviewed, including models of joints, contacts, and muscle
forces or torques, followed by a review of simulation approaches that use optimal control methods and
a cost function to predict human movements. Modelling and optimal control software are also reviewed,
and directions for future research are suggested.

Keywords Neuromusculoskeletal system models · Predictive dynamic simulation · Biomechanics ·
Optimal control · Human movement · Review

1 Introduction

Multibody dynamics formalisms and methods are well suited for studying the biomechanics of human
movement. The human skeletal system is composed of bones connected by physiological joints, which can
be modelled as a traditional mechanism formed by rigid links and mechanical joints. This human mech-
anism is actuated by muscle-tendon units and controlled by the central nervous system. The modelling
of the human body as a mechanical multibody system allows its equations of motion to be derived using
traditional formulations in mechanical engineering. To simulate human movements, these equations of
motion need to be complemented by models of the muscular actuation and the neural control.

In his historical review paper on multibody system dynamics, Schiehlen observed a widespread ap-
plication of multibody dynamics to automotive, aerospace, and machinery fields [1]. In contrast, biome-
chanics was listed as a “challenging application” requiring further research. Twenty-five years later,
biomechanics is one of the leading areas of research within multibody dynamics. In fact, the number of
published articles related to biomechanics in Multibody System Dynamics in the last ten complete years
(2012-2021) is 98, which is 19 % of the total published papers (excluding editorials); thus, approximately
one in five published articles in Multibody System Dynamics relates to biomechanics.

This growth in the volume of research related to biomechanics is thanks to events like the IUTAM
Symposium on Human Body Dynamics: From Multibody Systems to Biomechanics that took place
in Waterloo, Canada, and recently witnessed its tenth anniversary [2]. This event brought together
leading researchers in biomechanical simulation and multibody dynamics for three intense days of research
exchanges. The current paper highlights the advances in multibody biomechanical modelling in the 10
years since that symposium.

We found two recent review papers that focus on neuromusculoskeletal modelling and movement
simulation. Fregly presents a personal perspective for how biomechanical models can become useful in
current clinical practice [3]. The paper presents some future research challenges (e.g., model personal-
ization and validation, among others), along with clinical, technical, collaboration, and practical issues
that must be resolved before modelling and simulation can achieve clinical utility. Secondly, De Groote
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and Falisse review the latest studies on predictive simulations of human gait [4]. The paper presents
different simulation approaches to predict walking, and challenges and future perspectives to increase
the accuracy of simulations and to validate the simulated outcomes.

In this paper, we review predictive simulation approaches of general human movement using neuro-
musculoskeletal models, i.e., “what-if” simulations of human movement without tracking experimental
data. The research papers classified in this review are neither restricted to clinical application [3] nor walk-
ing movements [4]. We present studies in different application fields, such as clinical, industrial, sport, or
ergonomics. In the clinical field, we note the recent recommendation of the U.S. Food and Drug Adminis-
tration (FDA) to replace time-consuming and expensive clinical trials with computer simulations [5]. The
paper has two main sections: 1) Modelling section, including unique features of the multibody dynamic
modelling of neuromusculoskeletal systems, such as nonlinear contact dynamics, non-ideal joints, and
muscle geometry and dynamics, and 2) Predictive simulation section, including optimization approaches
used to generate what-if simulations in the absence of experimental data, optimization cost functions
and constraints, and applications. We conclude with some suggestions for future research directions.

2 Multibody biomechanical models

The level of detail in a multibody dynamic model of human movement depends on the desired predictions
and analysis results. The human body can be driven with ideal joint torques, activations, or muscle
excitations (Figure 1). In many predictive simulation studies, conceptual models with only a few degrees
of freedom (DoF) and no muscles were used [4]. Musculoskeletal (MSK) models may also be used to
represent the motion of the human body, or neuromusculoskeletal (NMSK) models that include models
of the central nervous system (CNS), which adds more complexity to the system dynamics. In the
following sections, the different modeling elements (skeletal, contact, neuromusculoskeletal, and human-
device interactions) and modeling software packages are reviewed. A detailed description of each modeling
element for the most relevant predictive simulations in the literature can be found in the Supplementary
material.

2.1 Skeletal models

Multibody models represent the motion of each human body segment using rigid or flexible bodies. The
segments represent a bone (or a group of bones) and the surrounding tissue that moves together (section
2.1.1). The joints and other interactions between segments can be represented by constitutive laws that
model the elastic elements between them, such as the joint cartilage and the ligaments. Kinematic
constraints can also be used to define the relative motion between segments (section 2.1.2). The skeletal
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Fig. 1 Forward dynamic (FD) simulation (in solid arrows) of an NMSK system using joint torques (T ), muscle forces (F ),
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model can be driven with an ideal joint torque (T ), as shown in Figure 1. If an NMSK model is used
(section 2.3), it can be driven by muscle force (F ), activation (a), or muscle excitation (u) from a neural
controller (section 2.3.3).

2.1.1 Articulated-body models

The kinematic and dynamic model of the human body is usually represented as a series of rigid segments
or articulated linkages that are connected together by joints [6, 7]. Based on the objective motion and
study goal, a 2D or 3D model may be selected. For example, a 2D model was used for predicting
sagittal plane biomechanics of lower body joints [8, 9], and a 3D articulated-body model was used for
the prediction of 3D crutch-assisted walking patterns [10].

From a system topology viewpoint, the skeleton system is formed primarily by an open kinematic
chain or, less frequently, by a closed kinematic loop (e.g., when both hands grasp a rigid object). A
model with an open kinematic chain has been used for simulating the swing phase of human walking
[11, 12, 13, 14, 15]. The open-loop model with serial kinematic connections, when using a minimum
number of coordinates, results in an ordinary differential equations (ODEs) system [14, 16], and, when
using dependent coordinates (e.g., natural coordinates), forms a differential algebraic equations (DAEs)
system. For the double support phase of human walking, the joint variables are not all independent since
the model contains a closed kinematic chain [17]. Another example of a closed loop is when the two
feet of a cyclist are fixed to a crank or when the hand is attached to the handlebars [18]. Consequently,
dynamic equations take the form of DAEs. The simulation framework becomes more difficult to solve for
systems with closed kinematic chains [9].

Body positions are described by the generalized coordinates, which can be relative or absolute. Rela-
tive coordinates are primarily associated with internal motion (i.e., relative motion between consecutive
segments), and absolute coordinates represent position and orientation relative to an inertial reference
frame. For example, for a walking prediction study, the pelvis location relative to an inertial frame is
defined by absolute coordinates, while the knee angle is considered as a relative or joint coordinate [19].
These generalized coordinates are used to form the system states.

Bodies are usually assumed to be rigid and segment properties (including length, the center of mass
(CoM), mass, and moment of inertia) are frequently calculated based on anthropometric measurements
(anatomical regression equations from the literature) and scaled to match the targeted subject [9, 18, 20,
21]. Motion capture data may be used to estimate segment lengths [9]. For fast motions, the segments
may need to be modeled with non-rigid bodies (“wobbling masses”) [22].

2.1.2 Joint models

The joints of the human body govern the directional mobility capabilities of body segments. For human
movement modeling and analysis, ideal joints connect adjacent rigid segments by introducing DoF and
consequently constraints to the system. The joints may be modeled with a range of simple 1-DoF revolute
(pin) joints [23] to 6-DoF joints [19, 24].

Kinematic constraints are helpful in modeling anatomy that is difficult to explain using ordinary
joints or that would otherwise require calibrated ligament and cartilage models to create the required
features of the motion [25, 26]. Models of the knee, shoulder, and neck are examples of models with
complicated anatomy achieved using kinematic constraints [27].

A joint can incorporate explicit contact and ligament models that limit the joint physiological motion
[26]. Ligaments are fibrous tissue that joins two bones across a joint, ensuring that the joint angle
remains within the functional range of motion (RoM) [28, 29]. Passive structures such as ligaments and
cartilage can be explicitly modeled with complex equations or with lumped passive joint torques [22, 26].
These models of ligaments and cartilage resist movement and are activated during joint hyper-flexion or
-extension [24, 28, 30]. Ligaments are often modeled as nonlinear spring-dampers that act as a soft or
exponential limit on the joints [24, 28, 29, 29, 31, 32], and improve stability [26, 29]. Eskinazi et al. have
shown that the ligament stiffness must be greater than some critical value in order for direct collocation
optimal control to converge [24].

2.2 Contact models

The most common external contact considered and modeled in multibody human models is foot-ground
contact (necessary for modeling walking, running, and jumping) and is the primary focus of this section.
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Some other contacts of interest include posterior-seat contact (such as for sit-to-stand models [33, 34]
and cycling models [18, 35]), crutch-ground contact [10, 36], and contacts at several points on the body
for physical assistive devices [33] and exoskeletons [37, 38, 39].

2.2.1 Normal force models

Contact can be modeled in a variety of ways. These are mentioned in approximate order of model
complexity, starting with the simplest.

One method is to model the contact as a rigid joint. This is especially common for models where the
body is in continuous contact with a surface, such as foot-ground contact during squatting [21], a hand
rigidly grasping an object [18, 32], and foot-pedal and posterior-seat contact during pedaling [35, 40].
In cases where contact may be intermittent, a rigid contact can be modeled by only applying kinematic
constraints and their reaction forces when the bodies are in contact. This results in different sets of
equations being used at different simulation phases. In 2D models using rigid contacts, each foot contact
typically uses two point constraints, representing the heel and the toe [14, 41, 42]. Depending on the foot
model, 3D models have used one [43], two [13], four [16], or — when the foot is modeled as two segments
— six [44, 45] point constraints per foot.

A rigid contact model may miss out on some foot motion that happens during contact. One improve-
ment is to consider the “roll” of the foot, which may be done by modeling the foot as a rigid body that
rolls without slipping. Ren et al. modeled the sole of the foot as a curved surface in their 2D model,
fitted so that the ankle kinematics matched experimental data [17]. In Felis and Mombaur’s 3D model, a
sphere represented the heel, and a short line segment represented the forefoot, resulting in rolling motion
during heel contact and 2D rotation during forefoot contact [7].

Outside of rigid contact, there are a number of deformable contact models. The simplest of these are
point-contact models. In point contact, the normal forces will typically be modeled as linear or non-linear
springs and dampers between the ground and one point on the contact surface. Normal force models used
for point contact include linear spring-damper equations [29, 46], exponential spring-damper equations
[47], and equations similar to or based on Hunt-Crossley [48, 49, 50, 51]. To better model contact across
a large surface (as is the case in foot-ground contact), several point contacts may be used across the
surface. Point contacts used per foot included 1 contact [29], 2 to 5 contacts (typically places at the
edges of the foot) [46, 47, 49, 52, 53], and a larger number of contacts (e.g. 51 in [50] and 47 in [51])
distributed on a grid across the contact surface. In the case of [50], the number of elements (51) was
chosen by increasing the number of point contacts until there were no more improvements in how well
the model could match experimental data.

An alternative to using a large number of contact points is to use a single point of contact that
can move relative to the foot, usually based on a geometrical representation of the contact surface. For
example, the foot has been modeled using 2 to 8 spheres [54, 55, 56, 57], with the contact forces applied
at the point on the sphere that is closest to the ground at a given time; being the forces computed
using Hunt-Crossley (or other non-linear model) point contact equations. More complex geometries than
spheres have also been used: Lopes et al. modeled foot-ground contact using a superellipsoid [58], and
Millard and Kecskeméthy used a model based on disk-plane contact [59]. According to Lopes et al., the
superellipsoid model was more computationally efficient than a similar model using many point contacts
[58].

Another model that represents surfaces using analytical geometry is volumetric contact [60]. It uses
elastic foundation theory to represent contact loads distributed over a surface, instead of acting at discrete
points. Some initial work using volumetric contact in foot-ground contact has been done using spheres
[61] and ellipsoids [62, 63], and it has also been used to model impacts in sports applications [32].

Finite element (FE) contact models have also been used for foot-ground contact. This is a computa-
tionally expensive approach compared to other models mentioned here, especially for predictive models
that require many dynamic simulations, and there are few examples in the literature. Halloran et al.
made use of an FE model for a study that was focused on ground contact pressure and reported that
the contact model took 99.5% of the computation time [64]. As a more efficient alternative, Halloran et
al. developed a surrogate model trained on the finite element (FE) model, which had similar results to
the FE model at a 95% reduction in computation time [65].

The choice of contact model in existing works in the literature appears to be based on computa-
tional efficiency and appropriateness for the simulation, optimization, or control methodologies, rather
than on which modelling method is most accurate for motion and contact forces. There are few direct
comparisons of different contact models in the same type of simulation [58, 65]. Insight into the relative
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advantages of the different models could be gained from more studies comparing the relative accuracy
and computational efficiency of different contact models for the same human model and motion.

2.2.2 Friction force models

When the contact is modeled as a rigid joint or a constraint, friction may be modelled as part of the
constraint. To ensure that the friction forces do not exceed realistic limits, these models may add addi-
tional constraints or penalty functions to limit the friction forces (for example, they may be constrained
based on Coulomb’s law) [13, 42].

For deformable contacts, one way to model friction is using a velocity-based function based on the
Coulomb friction model. In these “regularized” models, friction is a non-linear function of velocity, which
approximates Coulomb friction, but with additional parameters to smooth the discontinuities in frictional
forces.

For some examples of different equations used in these models, see [48], [51], and [53]. One disadvan-
tage of velocity-based friction models is that equations tend to be stiff at low velocities, which is often
the case for human motion; during gait or when jumping, the foot is not expected to slip across the
ground during contact, and when grasping an object, the hand is typically not expected to slip either.
Another disadvantage is that the model allows some tangential velocity during contact, even if no slip is
expected.

An alternative friction model for deformable contacts is a position-based friction model. In position-
based models (which includes bristle friction models), friction forces are modeled as tangential springs at
the contact surface. This adds an additional state variable to the equations, resulting in more complex
equations than those from velocity-based friction models. Unlike velocity-based models, position-based
models do not allow additional slip during stiction, meaning that they are more accurate for experiments
where stick-and-slip behavior is observed [66]. Examples of position-based foot-ground friction models
can be found in [47, 67].

An aspect of contact that has received little attention in these models is the lateral flexibility of the
contact surface (due to the soft tissue in the human body). For example, the bones and joints in a foot
may be able to shift while the foot surface remains sticking (not slipping) on the ground. It is possible
that position-based friction models could be used to model this flexibility. In existing position-based
friction models, it is not clear if this was one of the intended purposes of using the model.

Aside from the models mentioned so far, another potential friction model is the Maw friction model
[68]. This can model the effect caused by different regions of the contact surface having different stick
and slip conditions, e.g. sliding at some areas and sticking at others, due to different normal and lateral
forces across the contact surface. This may be relevant to biomechanical models such as foot contact
during gait, since the contact area and contact forces have large changes throughout contact in gait.

2.3 Neuromusculoskeletal models

Many researchers have included the mechanical behavior of muscles in predictive simulations by using
realistic MSK models, including an anatomically-detailed viscoelastic model of muscle mechanics, e.g. a
Hill-type muscle model (section 2.3.1). To reduce the computational cost of predictive simulations, muscle
torque generators (MTGs), which represent the resultant torques generated by muscle forces, can be used
[18, 42, 69] (section 2.3.2). Furthermore, the muscle model may incorporate biologically-motivated neural
control methods (section 2.3.3) such as muscle synergies, central pattern generators (CPGs), or stretch
reflexes. The mechanical properties of muscles introduce limits to the maximal human performance [70],
influence the simulation results [6, 31], and have an impact on validation accuracy [26].

2.3.1 Hill-type muscle models

The popular Hill-type model consists of: (1) a contractile element (CE) (FV (V )FL (L)) that models its
force-length-velocity characteristic; (2) a nonlinear parallel elastic element with muscle fibers (FP (L, V ))
that mimics the stiffness or passive response; and (3) and a nonlinear series elastic element that charac-
terizes the stiffness of the connected tendon with a stress-strain curve. The latter is serially connected
to the muscle model (equation 1).

F (t) = FA (u, t)FV (V )FL (L)Fmax + FP (L, V ) (1)
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The force-producing qualities are influenced by the maximal isometric strength of the muscle (Fmax)
and its related optimal fiber length and pennation angle, the maximum shortening velocity of the muscle,
and the rest length of the tendon [11, 26, 31]. Most of the model constant properties are based on data
reported by literature. However, the musculoskeletal geometry model calculates the model variables, such
as muscle length and velocity. The geometry path model of the muscles is made either by a set of straight
lines or a combination of straight lines and space curves (wrapping) [24, 26, 47].

Due to the comparatively slow electrochemical process, muscles cannot be instantly contracted or
relaxed. The muscle’s force-velocity property partly explains this behavior, but is also a function of
muscle activation’s time course. Primarily, a first-order differential equation (FA (u, t)) relates the time
rate of change of muscle activation to muscular excitation.

The use of high-dimensional complicated models in predictive simulations is typically prevented by
the tremendous computational cost necessary to solve the accompanying optimal neuromuscular control
problem [11]. Due to numerical issues, static optimization of muscle redundancy can only accommo-
date simplified Hill-type muscle models [71]. However, using the biologically-based muscle model in
the predictive simulations allows estimation of metabolic energy expenditure of human muscle actions
[49, 72, 73, 74].

2.3.2 Muscle torque generators

Using anatomically-detailed muscle models in simulations can provide insights into individual muscle and
joint loads; however, these muscle models increase the computational cost of the predictive simulation.
An alternative approach is to use physiological torque actuators to represent the resultant torques being
generated by muscle forces [18, 42].

In this approach, each joint is driven by a pair of agonist-antagonist parametric MTGs [9] (equa-
tion (2)) that mimic the flexor (+) and extensor (−) groups surrounding the joint [32, 75]. The MTG
consists of active and passive elements. Active components include angle-dependent (τθ (θ)) and angular
velocity-dependent (τω (ω)) torque production capacities at each joint [42], which represent the phys-
iological muscle force-length and force-velocity relationships [18]. To account for both concentric and
eccentric muscle contractions, the scaling functions are piecewise [18]. The passive component (τp (θ, ω))
is modeled as a nonlinear rotational spring and damper that represents the passive forces produced by
the stretching of muscle tissue, tendons, and ligaments around the joint [18]. The curves describing the
MTGs torque generation capacity are normalized by the maximum isometric torque and are usually
characterized from experimental dynamometer data [75]. Similar to conventional muscles, a differential
equation (τa (u, t)) relates the time rate of change of muscle activation (a) to muscular excitation (u).

T (t) = τ+a
(
u+, t

)
τ+ω (ω) τ+θ (θ) τ+0 + τ−a

(
u−, t

)
τ−ω (ω) τ−θ (θ) τ−0 + τp (θ, ω) (2)

NMSK models and dynamic simulations are simplified by using MTGs, since the number of model
parameters and input variables is reduced [18]. By using MTGs in place of line-type muscles, there is no
need to solve for redundant muscle forces, resulting in faster simulations and easier interpretation of the
numerical results [75]. Since MTGs are continuous to the second derivative, gradient-based optimization
is facilitated by their use [75]. Moreover, the MTGs are easier to fit to specific subjects since they
simulate groups of muscles rather than multiple line-type muscles [75]. However, joint reactions cannot
be computed from an MTG-driven model [69]. In the event of co-contraction of the flexor (+) and the
extensor (−) MTG components, one is again faced with a redundancy problem to resolve; it seems that
no papers have been published on the resolution of MTGs in the case of co-contraction.

2.3.3 Neural controls

The CNS is thought to coordinate body motion by bundling individual muscles into groups [23]. Sim-
ilarly, in the human model, a large number of independent muscle activations can be controlled via a
low-dimensional set of synergy activations [51, 76]. The synergy controls (lower-dimensional set of time-
varying signals) can be obtained by decomposing a high-dimensional set of processed electromyography
(EMG) signals. For decomposition, non-negative matrix factorization with an optimization approach is
often used [77]. The synergy weights define the contribution of each synergy control to the processed
EMG signals [51, 76, 78, 79]. Utilization of muscle synergies reduces the complexity and size of the neuro-
muscular control problem [23, 76, 80, 81], simplifies the control process [76, 81], improves the prediction
results [82], and improves computational speed and convergence of the optimal control algorithm [51, 78].
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Table 1 Summary of how different neuromusculoskeletal impairments have been modelled in predictive simulations.

Type of impairment Modelling References

Muscle weakness
Reducing maximal isometric force [57, 89]
Limiting maximum hip abduction moment (constraints) [46]

Muscle contracture Reducing a muscle’s optimal fiber length [57]

Cerebral palsy
Subject-specific muscle torque generators [9]
Personalized geometries (from MRI images), personalized muscle-
tendon parameters (optimal fiber lengths and tendon slack lengths),
spasticity model–personalized feedback gain estimation, and reduced
neuromuscular control complexity modeled through muscle synergies

[80]

Spinal cord injury A weakness factor limits the maximum neural excitation of those den-
ervated muscles

[14]

Nonspinal knee injury Subject-specific parameters and torque generator functions were im-
plemented in the model from dual X-ray absorptiometry and human
dynamometer measurements

[90]

Stroke Subject-specific muscle-tendon parameters, musculoskeletal geome-
tries, muscle synergy controls

[51, 76]

Knee osteoarthritis
Subject-specific joint and inertial parameters
Subject-specific cost function weights

[12, 15, 19]

Amputee
Remove muscles
Add passive stiffness at the ankle

[41, 53, 74, 89, 91]

Reduce the mass of the lower leg and foot segments to mimic the
prosthesis

[89]

As an alternative to synergy-based approaches, machine learning methods can be used to map processed
EMG signals to muscle excitations [83, 84].

Human locomotion arises from a rhythmic interaction between the CNS, the MSK system, and the
environment [28]. A CPGs is a network of brain cells; in the absence of sensory feedback, it may form
synchronized rhythmic motor signals of neural activity without rhythmic inputs [28, 43, 67]. CPGs could
play a role in human locomotion in terms of stability against perturbations and speed control [28]. They
are primarily used for gait (walking and running) optimal control simulations [28].

The NMSK model may incorporate a set of biologically-motivated stretch-reflex-based control rules
that produce muscle excitation signals determined by the current kinematics, muscle states, and envi-
ronment conditions [54]. Each muscle is activated in proportion to its normalized fiber length via stretch
feedback controllers [54] or via a proportional-derivative controller [85]. The stretch-reflex-based control
laws are utilized for disturbance rejection, and precision control in human limbs [85].

2.4 Subject-specific and impairment modeling

A MSK model of the human body can be developed using values taken from the literature for the
different parameters that define the skeletal model (inertial and geometric parameters), the muscle-tendon
(MT) models, and the foot-ground contact models. They are usually estimated based on experimental
measures from cadaver specimens [86, 87]. Depending on the objective of the study, and especially for
clinical applications, these parameters may be further specified towards individual characteristics, to
develop patient-specific models [9, 19] (Table 1). Having a subject-specific model of the patient under
investigation is crucial for obtaining meaningful simulation results and can also serve as the foundation
for an objective treatment planning approach [88]. For that, it is important to identify these parameter
values accurately.

2.4.1 Skeletal models

Body segment properties (mass, length, inertia properties) and joint centers and axes are usually adapted
from a generic model to a specific subject model using regression equations. This is the usual approach
for most predictive simulation studies [14, 41, 53, 57, 82], where segment lengths are measured using
reflective markers and are used to compute scaling factors to scale the anthropometric properties [92, 93].
Depending on the purpose of the study, population-specific models can be used, e.g., female-male, young-
adult-old adult. In [94], running is predicted for four different groups: a young adult female, a young adult
male, an older adult female, and an older adult male. In [33], the optimal way of supporting sit-to-stand
transfers of geriatric patients is predicted, and mass and inertial parameters are taken from percentiles
20/50/80 of the male and female geriatric population. However, linear scaling presents some limitations
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and may not be accurate enough when having a subject that is far away from the mean population
values, e.g., children with cerebral palsy [80] or paralympic athletes [95].

Medical imaging, such as magnetic resonance imaging (MRI) [80, 96], computed tomography (CT)
imaging [97, 98], biplanar X-ray [99] and dual-energy X-ray absorptiometry (DXA) [95], has been used
to create subject-specific models. In [96], the authors developed software for creating subject-specific
bone geometries, joints, muscle paths, and wrapping surfaces in OpenSim. They tested the software by
developing an MRI-based musculoskeletal model of the lower limb. In [97], subject-specific bone geome-
tries from a subject wearing a total knee replacement (TKR) implant were segmented from CT images.
In [99], subject-specific masses and 3D locations of the CoM of body segments were determined using
biplanar X-rays for six children and six adults. In [95], the authors aimed to define body segment param-
eters of paralympic athletes (e.g., individuals with spinal cord injuries and lower extremity amputations).
Two-dimensional body segment parameters (i.e., mass, length, position vector of the CoM, and principal
mass moment of inertia about the CoM) were quantified from DXA. The previous studies presented new
methods [95, 96, 99] or used a subject-specific model for simulation [97], but without predicting new
motions. In [80], a 3D MSK model with personalized geometries was created from MRI images of a child
with cerebral palsy (CP), which presents bony deformities, and was used to predict walking motions of
that specific child.

Other studies use dynamic measurements (e.g., marker trajectories and ground reaction forces) to-
gether with optimization methods to calibrate model joint and/or inertial parameters. In [15], a method
for estimating hip, knee, and ankle joint centers and axes, together with full-body inertial parameters,
was developed. Based on this method, the authors have predicted the walking motions of an osteoarthritic
knee subject using a 3D ideal torque-driven model, with the aim of designing patient-specific gait modi-
fications for knee osteoarthritis rehabilitation [12, 19]. The same group has also predicted the gait of a
post-stroke subject walking at different speeds [51] and has designed a treatment to improve propulsive
force symmetry during the post-stroke gait of a stroke subject, using a 3D muscle-synergy-driven model
[76].

Although some methods have been developed for constructing medical image-based MSK models of
the lower limb, these personalized models have rarely been used in predictive simulations. One reason
may be that more development is needed to improve the existing modeling methods, as they have been
applied only for one joint [98], the lower body [15], or have been tested in only one subject [80, 96, 97].
Moreover, the existing model personalization processes for predictive simulations require a large learning
time [3].

2.4.2 Muscle models

To determine muscle forces, it is important to correctly identify muscle geometry (e.g., muscle attachment
points, muscle paths) and MT parameters (describing the Hill-type muscle model). Personalized bone
shapes and muscle attachments are especially important in cases where bone deformities are present,
such as in children with cerebral palsy [80]. MT parameters describing the Hill-type muscle model are
often collected from cadaver studies. The maximum isometric force is usually linearly scaled, together
with the skeletal model parameters (segment mass, length, inertia). However, the MT parameters are
subject-specific and values vary widely across subjects [87].

Different approaches have been proposed to estimate personalized MT parameters that combine
measurements and optimization techniques. Different techniques that take into account differences in
subject size were examined in [100], and the authors found that scaling by maintaining muscle oper-
ating range (force-generating characteristics) throughout the range of joint motion was the approach
that worked best. In [101], the previous method was generalized and used to adjust lower limb muscle
parameters following linear scaling of a generic model and to estimate muscle parameters “from scratch”
in a subject-specific model of the hip joint created from medical images. In [87, 102], angle-torque re-
lationships measured from functional movements (marker trajectories and dynamometer measurements)
were used to estimate Hill-type MT parameter values. Motion data and EMG measurements, together
with optimization techniques, have been used to identify muscle tendon parameters [61, 80, 103]. MTG
parameters have also been identified using dynamometer measurements [9, 75, 104].

Muscle impairments
Muscle weakness and muscle contracture are deficits that can be found in different NMSK disorders,

such as cerebral palsy, stroke, muscular dystrophy, and spinal cord injury. The usual approach in pre-
dictive simulation studies is to model muscle weakness by assuming a weakness factor (or percentage
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of use) with respect to the “healthy” condition that limits the maximum force that can be produced
by a specific muscle or group of muscles [14, 46, 57, 89, 105]. To model muscle contracture, in [57], the
muscle’s optimal fiber length is reduced by different percentages with respect to the “healthy” condition.
In all these studies, the main goal is to test if the prediction framework can predict the expected trends
correctly when simulating impaired walking, rather than trying to find a treatment for a specific subject
[14, 46, 57, 89]. When the motion of a specific subject is predicted, then MT parameters that describe the
Hill-type model are personalized based on experimental data. In [9, 104], MTGs are used to produce the
combined effect of all muscles spanning each joint, and maximum isometric torque is personalized based
on experimental data collected for the specific subject under study. MT parameters can be estimated
through optimization, including optimal fiber lengths and tendon slack lengths [51, 76, 80], and addi-
tional parameters describing the activation dynamics [76]. EMG-driven modeling has also been used to
adjust surrogate representations of a patient’s musculoskeletal geometry to improve prediction of lower
extremity joint moments during walking [106].

Aging
Aging results in progressive loss of mobility, mainly caused by muscle weakness [107], and an increase

in stiffness and tone [108]. There are few predictive simulation studies focused on elderly subjects. In
[34], sit-to-stand was predicted and compared for virtual healthy young and elderly individuals using
population-specific models (each of the digital healthy young and elderly groups had five digital male
and five digital female individuals). For the elderly models, a reduction rate of 20% to the isometric
strength was assumed and applied. In [33], sit-to-stand transfers of geriatric patients were predicted in
order to design the best physical assistive devices. However, the model was driven by ideal joint torques,
and no limit was applied to the torque that each joint could produce.

2.4.3 Neural control models

Motion data and EMG measurements, together with optimization techniques, have been used to identify
muscle synergy parameters [51, 76, 109]. However, neural control and muscle behavior in NMSK impair-
ments present some differences with respect to healthy subjects. In clinical applications, it is crucial to
model the deficits correctly if one wants to obtain meaningful results for a specific subject.

Neural control impairments
Spasticity is a common impairment in cerebral palsy and stroke and is characterized by exaggerated

stretch reflexes. However, the mechanisms underlying spasticity and its influence on gait are still not well
understood. In [110], a model of the lower leg as a torque-driven single-link pendulum was used to gain
insight into physiological mechanisms of spasticity, and in [111], a spasticity model based on feedback
from muscle force was developed. This model was applied in a predictive simulation case study of a child
with CP in [80]. High muscle co-contraction is often seen in subjects with neurological impairments.
In these cases, model-based optimization techniques that consider EMG measured information can be
used to solve the muscle redundancy problem, to find more realistic agonist and antagonist muscle forces
[112]. Finally, reduced neuromuscular control complexity has been modeled through muscle synergies,
imposing a lower number of synergies in the case of a child with CP [80].

2.4.4 Foot-ground contact models

When foot-ground contact is modeled using spring and damper elements, Hunt-Crossely models, or
volumetric contacts, these model parameter values need to be specified. One approach used in predictive
simulation studies is to hand-tune them to fit an experimental measurement [48, 53, 54, 70]. Another
approach is calibrating those values for a specific subject solving an optimization problem where the
difference between simulated and measured data (motion and ground reaction forces) is minimized [37,
76, 82, 89]. In [62], pressure data is included in the optimization procedure.

Some assumptions can be made to reduce the number of parameters to calibrate. For instance, usually
symmetry between values of both feet is assumed [51, 113, 114]. Other approaches include in the cost
function the minimization of the difference between individual spring stiffness (or damping coefficient)
and mean stiffness (or damping coefficient) for all springs [114], or approximate the stiffness distribution
across the entire shoe sole by a three-dimensional parabolic surface [51]. Another way of reducing variables
is considering some constant parameter values for all spring-damper units, like the damping coefficient
[51] or the friction coefficient [114].
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In [115], contact model parameter values were calibrated using experimental data from five subjects
(performing 15 trials at different walking speeds each), and it was found that the vertical and anterior-
posterior position of the visco-elastic units is specific for each subject. In [114], a sensitivity study was
performed, and the authors found that the free moment of both feet exhibited moderate sensitivity to
the change in stiffness values, while all other ground reaction quantities exhibited little sensitivity to
changes in model parameter values. However, validation was only done using gait for one subject and
at the same cadence. In [62], data was collected for one subject at three different speeds: one speed for
calibration and two other speeds for validation. However, the model was not evaluated by running a
predictive simulation, and data were collected for only one subject. In [89], the authors compared the
results of a 3D full-body musculoskeletal model using a generic model from the literature [116] with
results using an optimized contact model. Despite large differences in contact geometry, using a generic
model instead of an optimized contact model had little influence on the predicted gait pattern, except for
a small offset in the ankle angle. All these results lead to some open questions: if these parameter values
are really subject-specific or not, and which of them are more critical for accurate predictive simulations.

2.5 Human-device models

To design devices that interact with humans, it is necessary to model the device alongside the human.
Human-device modeling and predictive simulation provide insight into immeasurable variables [42], help
to improve the design of augmentative devices [32, 39], are useful tools to identify the optimal device
characteristics and personalize the device parameters [9, 82], shorten the prototyping period [41], study
the device performance and interaction feel [39, 85], and increase athletic performance [18, 32, 40].
Examples of human-device predictive simulations include passive assistive devices (e.g., crutch [10] and
wheelchair [90]), wearable robots or exoskeletons [37, 38, 39, 39, 75], passive or active orthoses [9, 14, 74,
82, 89], bicycles [18, 40], golf clubs [32, 104]), and vehicles [85].

Human-device interaction models range from very simple to highly detailed. In a simple model ex-
ample, only the resulting active and passive joint torque of a wearable robotic device was considered for
studying human jump performance within an optimization framework [42]. In contrast, a comprehen-
sive high-fidelity vehicle dynamics model in combination with a neuromuscular driver model was used
to study the driver’s control performance, steering feel, and the human effect on vehicle control and
stability [85].

The device may be modeled with rigid or flexible bodies based on the study goal and the device’s
mechanical properties. For example, an exoskeleton can be modeled as a rigid-body mechanism coupled
to the wearer through kinematic constraints to predict how the exoskeleton will affect the movement
of the human [38, 39, 75]. Improvements to golf swings and clubs were found using direct orthogonal
collocation and a multibody dynamic model that included MTG models of muscles and a Rayleigh beam
model of the flexible golf shaft [32, 104].

In some applications, not only should the device be modeled, but also the interaction of the device
with the environment or human. For example, in addition to the exoskeleton model, linear or rotational
spring-and-damper elements were used to model the human–exoskeleton interface in an optimal control
framework to assess user comfort and effectiveness of the interaction [37]. A crutch-ground contact model
was included in a crutch and human model to predict different three-dimensional crutch-assisted walking
patterns [10]. A Pacejka model of tire forces and moments was used in a bicycle model for predictive
dynamic simulations of standing starts of a two-legged cyclist [18].

Some devices are powered and provide external actuation from motors and mechanical transmissions.
Those devices also include a control system to define the device assistance during a motion task. For
example, an active (or powered) knee-ankle-foot orthosis model was used in an optimal control-based
predictive simulation approach for personalizing knee trajectory parameters during walking [82]. Garćıa-
Vallejo et al. modeled the active orthoses as external devices attached to the lower limbs for predicting
orthosis-assisted human gait, while optimizing ankle stiffness (device design parameter) [14]. Usually,
very simple models of the actuation system (motor and mechanical transmission) have been employed
in these studies [14, 82].

2.6 Modeling software packages

Several commercial (e.g., MapleSim, AnyBody, MuJoCo, and LifeMOD/Adams) and open-source (e.g.,
OpenSim and BiomechZoo) multibody dynamic programs have been used to model and simulate human



pr
e-
pr
in
t

m
an
us
cr
ip
t

Predictive Multibody Dynamic Simulation of Human Neuromusculoskeletal Systems: A Review 11

MSK systems. These programs provide models of joints and Hill-type muscles for human motion simu-
lation. We describe those that have been used for predictive simulation. MapleSim is based on symbolic
computing, which provides analytic derivatives when needed, e.g. for optimization or sensitivity studies,
while AnyBody, MuJoCo, LifeMOD, and OpenSim use numerical programming.

OpenSim (SimTK, Stanford, CA, USA) is a widely-used open-source biomechanical modelling and
simulation environment that relies on the Simbody dynamics engine; it was developed at Stanford Uni-
versity [117]. It provides an explicit formulation of the dynamic equations of motion [55] and uses a
5th-order Runge–Kutta integration method with a variable step size [55] or semi-explicit Euler integra-
tor [57, 78]. OpenSim provides tools for generating tracking simulations [118], such as the scale model
tool (for scaling the OpenSim generic model to the target subject’s dimensions using surface marker
data [76, 82]), the inverse kinematic analysis tool (to obtain joint coordinates of the human model from
marker trajectories [10, 37, 82, 91]), the inverse dynamic (ID) analysis tool (to obtain the resultant net
joint moments [37, 76, 82]), and the muscle analysis tool (calculates MT lengths and muscle moment
arms [51, 76]).

The AnyBody Modeling System [119] (AnyBody Technology, Aalborg, Denmark) provides a generic
MSK model, which is constructed from anatomical studies. AnyBody consists of two graphical user
interfaces and a console that can be called from other programs. It uses a dynamic trial to scale individual
segments. AnyBody is restricted to ID simulation; it calculates muscle forces using ID-based optimization
methods to minimize the polynomial muscle recruitment criterion [46, 119].

MapleSim (Maplesoft Inc., Waterloo, ON, Canada) is a multibody dynamics simulation software that
supports the modelling of MSK systems. MapleSim’s multi-domain capabilities allows human and device
(e.g., bicycle [18], vehicle [85], rehabilitation robot [120], or wheelchair [90]) models in the same software.
The symbolic models and optimized simulation code can be exported from the MapleSim environment
as DAEs or ODEs for computationally efficient forward dynamic (FD) models [18, 85, 90, 104].

3 Human movement predictive simulation in biomechanics

3.1 Biomechanical simulation approaches

Once a biomechanical model for a human is selected, a solver is required to simulate the model’s movement
for a specific task. Simulation solvers use predictive simulation approaches, including optimization-based
methods and feedback-control methods. Optimization-based methods use “trajectory optimization” or
“optimal control” for task analysis. Feedback-control methods benefit from straight-line programming
or non-optimal controllers to solve the simulation problem of a specific task. In this paper, we focus on
optimization-based methods as well as those feedback-control methods that use optimization to guide
their controllers (e.g., model-predictive control).

3.1.1 Optimization-based methods

Trajectory optimization and optimal control, commonly-used optimization-based methods, are often
confused and used interchangeably. In trajectory optimization, static parameter values are identified to
optimize a given performance index. In contrast, in optimal control, time-variant inputs to a system
and, optionally, static parameters are estimated to optimize a given performance index. Optimal control
methods are divided into two categories: indirect and direct methods [121].

Indirect methods use the calculus of variations to obtain analytical expressions of optimal control
that are adjoint differential equations. Thus, boundary-value problems should be solved to obtain the
optimal solution. However, finding an initial guess for adjoint variables is challenging since most of the
variables are not physically meaningful. Furthermore, adjoint differential equations are highly nonlinear;
hence, backward integration of those differential equations can be numerically unstable.

In direct methods, it is not required to solve boundary-value problems. Instead, the controls and/or
states are parameterized, and the optimal control problem is solved as a nonlinear programming problem
(NLP). Systems with large-scale NLP (e.g., optimal control of human movement) can be solved using
different software packages such as interior point optimizer (IPOPT) and sparse nonlinear optimizer
(SNOPT). Direct methods are divided into two methodologies: direct shooting and direct collocation.

In the direct shooting method, the optimization design variables are model controls. In this method,
forward dynamic equations are explicitly integrated, and each time frame is solved sequentially by time
marching. The shortcoming of this method is that numerical integration problems may lead to the
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prediction of unstable movements. Thus, a stabilizing feedback control would be required to predict
stable movements using the direct shooting method.

To cope with the shortcoming of the direct shooting method, researchers have exploited the direct
collocation method in which the optimization design variables are both model controls and states. In this
method, forward dynamic equations are solved implicitly, and all time frames are solved simultaneously.
Although this method leads to a large nonlinear optimization problem, it can predict stable movements
under novel conditions without facing numerical integration problems.

3.1.2 Feedback-control methods

In feedback-control methods, a forward dynamics model and a feedback controller are used with/without
an inverse dynamics model. Using the controller, the joint actuator values (torques or muscle forces) are
updated by comparing with reference motion data. A classic feedback-control method is the proportional-
integral-derivative (PID) control. PID controls the plant model by feeding back the past error.

Due to numerical differentiation errors and inaccurate model parameters, feedback-control methods
may predict unrealistic joint torques or muscle forces. Some studies have used the feedback controller in
conjunction with model predictive control (MPC) to improve the results.

MPC can be considered as a practical optimization-based method that uses an internal model to
estimate/predict the output, compare it with the reference data, and finally predict control inputs of
the plant model by minimizing a cost function. The cost function can contain a data-tracking error. Not
only does MPC provide stability for the model, but it also has predictive features [23]. MPC is a fast
near-optimal controller that seems well-suited to real-time biomechatronic applications [120].

3.2 Components of biomechanical predictive simulations

In this subsection, we describe the components of the optimization formulations (mainly optimal control
approaches) for motion prediction: simulation inputs, initial guesses, constraints, and cost function. It
is believed that the CNS optimizes performance during motion (i.e., minimizes the metabolic cost of
transport, muscle activity, effort, or other criteria), and different cost function terms have been proposed
to represent these optimal principles mathematically [4, 11, 43, 52, 122]. Additionally, some simulations
include some task requirements (like reaching a target position) that may not be directly related with
an optimal principle [123], or include a clinical-related goal [3, 80]. A special mention should be made to
sports-related predictive simulations, where the goal is to maximize performance instead of minimizing
effort [32, 42, 104, 124]. A detailed description of each of the components of the optimization formulations
for the most relevant predictive simulations in the literature can be found in the Supplementary material.

3.2.1 Control and state variables

Torque-driven models
Predictive simulations using torque-driven models following an ID-based algorithm, use as inputs

generalized coordinates [17, 44, 45, 125] or generalized coordinates and ground reactions [12, 15, 19].
These references use parameter optimization or sequential quadratic programming (SQP) for solving the
optimization problem. When a FD-based algorithm is used, the inputs for the optimization problem are
joint torques, together with the initial values for generalized coordinates and/or velocities [7, 33, 42, 43].
These references use dynamic optimization (covariance matrix adaptation) or direct multiple shooting to
solve the problem. Finally, in direct collocation approaches, both joint torques and generalized coordinates
and velocities are inputs for the optimization algorithm [16, 104]. Other variables that are used as controls
in direct collocation approaches are joint jerk [10, 37, 82] and joint torque change [10, 82]. A study that
predicts walking in a stochastic environment [126], defines the generalized coordinates as states and
velocities and the state feedback control law parameters as controls.

Muscle- and synergy-driven models
Predictive simulations using muscle-driven (and synergy-driven) models use as controls muscle excita-

tions, muscle activations, or muscle forces. In FD-based methods, controls are usually muscle excitations
[9, 11, 20, 49, 65], followed by muscle activations [71, 75, 81] and muscle forces [41]. The initial values
for states (muscle activation, muscle length, generalized coordinates, and velocities) can be imposed or
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treated as unknowns in the problem. When they are imposed or known, they can be obtained from exper-
imental data (e.g., assuming static equilibrium) [20, 65, 124] or they can be optimized previously [47]. In
[11], initial conditions for generalized coordinates and velocities are imposed from experimental data, but
they are included as variables for muscle activations. Garćıa-Vallejo et al. use a parameter optimization
approach, where both muscle forces and generalized coordinates are design variables [13, 14].

In direct collocation approaches, most studies define muscle excitation as controls, and muscle activa-
tion, muscle length (CE length), generalized coordinates and velocities as states [35, 48, 55, 74, 118]. In
[23], muscle length is not included as a state variable, and in [127], muscle force is used as a state instead
of muscle length. Other types of controls used in muscle-driven simulations are activation/deactivation
times for muscle torque generators [32], muscle synergy controls [51], combination coefficients [78], joint
jerks [24, 51, 76], and time derivatives of muscle activations, tendon forces and velocities [80, 89]. Pre-
dictive simulations using control laws for the actuators that are based on the muscle-reflex controller
introduced by Geyer and Herr [128], define as design variables the controller parameters [28, 67, 72, 129],
or the controller parameters together with the initial values for generalized coordinates and velocities
[30, 54, 57].

Static parameters

Besides control and state variables, some prediction studies include static parameters to be optimized,
such as full (or half) cycle duration [33, 82, 89, 124], stride/step duration [48, 70], the duration of different
motion phases [13, 30, 33, 45], stride/step length [14, 82], and walking speed [7]. Other parameters that
have been used are foot orientation angles, and mediolateral distance between ankles at heel strike [13],
angular stiffness of metatarsophalangeal (MTP) joint [52, 70], and linear spring-damper parameters to
mimic the compliance and damping properties of muscles, ligaments and passive tissues [7, 43].

Assisted motions

A special mention should be made for studies in which an assisted motion is predicted. The prosthesis
or orthosis motor torque [14, 41] or the subject-exoskeleton contact forces [37] can be considered control
inputs. Moreover, when optimization is used for assistive device design, orthosis design parameters such
as spring stiffness [9, 14, 42] or equilibrium position [42] can be added as design variables. The gains
and parameters of controllers of an upper limb exoskeleton were optimized in [130]. Finally, in [76]
the stimulation amplitude and timing of a fast functional electrical stimulation (FES) treatment for a
post-stroke patient are optimized.

3.2.2 Initial guess

Initial guess definition

The initial values for states in FD-based methods can be obtained from experimental data [29, 75],
imposing specific poses, like standing posture [42], or finding an optimal steady state [65]. They can
also be assigned random values [28], or be set as zero, especially velocities [16, 42, 75]. Controls are
given constant values [65, 75] or are hand-tuned until a first “good” solution is found [42, 54, 67, 72].
In methods where both controls and states are variables, initial guesses for a certain number of time
points are given. One approach is to define these initial guesses from experimental data [9, 19, 104], or
from a forward dynamic simulation [55, 118]. Some works use experimental data of gait at normal (or
self-selected) speed and predict gait for higher and lower speeds [51, 89, 131]. It is also possible to give
only initial and final states [18, 37]. Some researchers give as initial guesses random, quasi-random, or
arbitrary values [8, 30, 73, 124, 132].

The most common approach is to use as an initial guess the solution from a previous tracking or
predictive problem. In tracking problems, the reference motion can be obtained from experimental data
from published studies [48, 122], or it can be collected from healthy subjects [48, 56, 94, 122] or from
patients [51, 76]. Another option is to use as an initial guess the solution obtained in a previous simulation
[23, 57, 122, 126], especially in cases where to help convergence, some constraints are “loosened” in the
first simulations and are then “tightened” little by little [21, 73]. In other cases, a first prediction for
nominal conditions (e.g., mean speed or normal walking) is generated, and it is then used as the initial
guess for predicting motion under different conditions [42, 51, 67, 74]. Alternatively, a first prediction
can be started from a random initial guess, and each solution is used as the initial guess for the following
prediction, in which some tolerances are tightened [73].
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Sensitivity analysis and global optimum
Some studies used different initial guesses to determine the sensitivity of the optimal control solution

to a change in the initial guess [55], and to demonstrate the robustness of their simulations against the
initial guess [89, 132]. In [18], it was found that the initial and final guesses only seemed to influence the
CPU time and did not seem to influence the optimal solution. However, in [81], it was found that the
method was clearly sensitive to the initial guesses, and multiple runs were performed to obtain the mean
and variability of the results.

It is difficult to be sure that the obtained solution is a global optimum. In [124], they found that the
algorithm converged to the same solution regardless of the initial guess. In [41], authors only considered
solutions that could be discovered from multiple initial seeds. However, the previous studies predicted
a 2D jump and a 2D lower body gait motion; and for 3D walking, in general, different initial guesses
converge to different solutions, and the solution with minimum cost function value is the one considered
the optimal solution [8, 28, 30, 40, 48]. These references ran each simulation with 2 to 10 different initial
guesses and found different solutions per each different initial guess. In [126], they used 100 random initial
guesses, for a simple one DoF pendulum swing-up problem. Depending on the degree of complexity of
the model and problem, the amount of different initial guesses that can be tested is limited.

3.2.3 Constraints

In optimization approaches, constraints can be classified into dynamic constraints, algebraic equality
constraints, and algebraic inequality constraints [133]. Algebraic constraints have also been classified in
the literature as interior or terminal path constraints [6], and as time-dependent or time-independent
constraints [44]. In optimal control approaches, the system dynamics (which may include skeletal dy-
namics, activation dynamics, and contraction dynamics) is usually defined as differential equations in
explicit formulations [43] and as algebraic equality constraints in implicit formulations [91].

Task-related constraints
In predictive simulations, different task constraints have to be stated to define the motion that has

to be predicted. For walking, a target mean speed is often imposed as a constraint [48, 65, 89, 91].
Moreover, cycle or step duration [17, 21, 94, 125], step or stride length [7, 10, 43], or step width [46]
can be also known or imposed. Usually, bilateral symmetry is assumed in walking predictive simulations.
This is usually done by predicting only a half cycle [11, 73, 89, 122]. Moreover, periodicity is imposed
in most predictive simulations of walking [13, 44, 51, 94]. For other predicted movements different than
walking, final (or endpoint) constraints define a prescribed final point [21, 127], or specific conditions
on position and/or speed [104]. Additionally, initial and final state may be imposed within a specific
tolerance [10, 22, 71, 118].

Physical constraints
In addition to skeletal dynamics, other physical constraints that have to be included in predictive

simulations are those that define the contact conditions, which can be kinematic constraints or dynamic
equations. Some works model the foot-ground contact through kinematic constraints [33, 75], that define
feet point position for specific periods of time [10, 14, 43, 125], or add conditions on foot ground pene-
tration [16, 17] and/or ground clearance [13, 41, 44]. Sometimes, zero velocity is imposed at foot strike
[43, 125] or at the start of phases [9]. Forces and dynamic equations are also considered in works that
model the foot-ground contact through kinematic constraints, as imposing normal forces to be always
positive [13], centre of pressure to be within the boundary of the foot [44], or imposing some limits (e.g.
F ≤ µN) on friction [17, 45]. Other contacts that have been modeled through kinematic constraints in
predictive simulations include contact with a chair [33], with a bicycle seat [18], hand contact with a box
[75], contact between a human and an exoskeleton [75], and bounding the hand position on a treadmill
handlebar [76]. In walking, sometimes constraints are added to avoid collision between feet [45, 89] or to
avoid body penetration [44, 89]. Finally, in [14], a knee-ankle-foot orthosis (KAFO) actuation is modeled
through constraints: the knee is locked during the stance phase, and a Klenzak ankle joint constrains
ankle plantarflexion.

Physiological constraints
In predictive simulations of human movements, constraints defining realistic or physiologically feasible

movements are added: limits in joints RoM [16, 41, 48, 125], avoiding joint hyperextension [17, 124]; or
bounding neural excitations and activations between zero and one [6, 21, 56, 81], between a lower value
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greater than zero and one [65, 89], or between zero and a maximum value adapted to weakened impaired
conditions [14]. Other constraints related to muscle forces include the condition of muscle forces to
be always positive [124] or to be bounded to a maximum value [85], and joint torques being limited
using variable bounds [44, 104] or through contraction dynamics [72]. Physiological constraints include
the excitation-activation dynamics and the muscle contraction dynamics (force-length and force-velocity
properties defined by the Hill-type muscle model [134]]). The latter can be modeled with more or less
complex equations. Other constraints related to neural activity include limits on neural transmission
speed [67] and muscle excitation timing [50]. Finally, reflex-based controllers add realistic constraints on
the control space by modeling physiological feedback loops, and sensors [57].

Constraints versus penalty terms in the cost function

Some constraints are enforced using penalty terms in the cost function. For instance, avoiding joint
hyperextension has been formulated as a constraint [6, 13, 124] or as a penalty term in the cost function
[47], and tracking synergy controls has been imposed using constraints [76] or penalty terms in the cost
function [51]. A possible drawback of using penalties to enforce constraints is that they can create local
minima [40].

3.2.4 Cost function terms

Optimality terms

Metabolic cost

One of the most accepted approaches to predict walking and running is to minimize metabolic cost,
using 2D [28, 30, 52, 73] and 3D [11, 56, 67, 72] models. This cost function term has also been used
to predict bicycle pedaling [40]. In some works, minimizing metabolic cost has been considered as a
single objective in the cost function [28, 56, 73, 94], but in others has been combined with other terms
[8, 14, 54, 129].

Muscle effort and fatigue

A second group of terms widely used for motion prediction is those related to muscle effort and
fatigue, quantified through minimization of weighted muscle excitations, activations, forces, and stresses.
Minimization of squared activations [48, 89, 91, 122] and cubed activations [48, 94, 122, 132] are used to
minimize muscle effort or fatigue. Minimization of activations to a power of 10 [48, 80, 94] approximates
the minimization of the largest muscle excitation integral and thus avoids excessively activating any single
muscle [135]. Squared activations can be weighted by muscle volume [48], muscle mass [94] or by travelled
distance [9]. Motion prediction has also been done by minimizing squared excitations [23, 35, 53, 94],
squared muscle forces [94, 127] or time derivative of muscle force [21, 40], squared muscle stress [52, 94],
stress to a different power [40, 94], or divided by muscle mass [94]. In some works, squared excitations
[80, 89], activations [24, 75], or time derivatives of activation [104] are minimized for reserve or muscle
torque actuators. It is interesting to note that some researchers have performed a comparison of different
muscle effort/fatigue-related terms [40, 48, 94], but have not found a clear advantage of one specific
cost function formulation over another. Minimizing muscle effort/fatigue related terms has worked for
2D [40, 73, 104, 118] and 3D [24, 49, 78, 81] simulations, and has also been used as a single objective
[9, 21, 73, 118] or combined with other optimization terms [24, 71, 89, 104]. Besides walking and running
[73, 94, 122, 132], different activities have been predicted using muscle effort or fatigue-related terms:
squatting [21, 123, 127], bicycle pedalling [35, 40], manual wheelchair propulsion [104], weight lifting with
an exoskeleton [75], arm motion [23, 71, 78, 81] and finger tapping [20].

Joint torque

The minimization of joint torque has been defined as a minimization of energy [29, 125] or dynamic
effort [44, 72] criterion, especially in torque-driven simulations, but also in some muscle-driven simula-
tions. In some 3D walking torque-driven simulations, minimization of squared joint torques has been used
as a single-objective cost function [29, 44, 125], while in others, it has been combined with other criteria
[43, 126, 136]. In [33], minimization of squared joint torque is used together with other terms for design-
ing physical assistive devices to support sit-to-stand transfers of geriatric patients. Some muscle-driven
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16 Mı́riam Febrer-Nafŕıa, Ali Nasr, Mahdokht Ezati, Peter Brown, Josep M. Font-Llagunes, John McPhee

simulations include minimization of all squared joint torques [85], of ideal joint torques in the upper
body [72], or of passive joint moments that model ligaments and other passive structures [8, 80, 89].

Stability and balance

Stability/balance-providing terms have always been used combined with other criteria, in both torque-
driven [7, 33, 43] and muscle-driven [30, 54, 57, 72, 132] simulations. The most common way of defining
stability is by minimizing the motion of the head [43, 57, 72], which can be done by minimizing head
angular velocity [7, 33] or head acceleration [30]. Another option is to minimize distance, or relative
forward velocity, between the head and the body CoM [54], or between the head and the center of the
base of support [132].

Mechanical and kinetic terms

Other mechanical or kinetic objectives used for motion prediction are minimizing mechanical en-
ergy, angular momentum, or contact forces, and encouraging smoothness of movement. Minimization
of mechanical energy in torque-driven models was used in different motions, e.g., as a single term in
2D walking [17], or as a combined term in 3D crutch walking [10] and 2D sit to stand transfer [33].
Minimization of system angular momentum expressed at the CoM [7] or the sum of the squared norms
of the local angular momenta [10] was used, combined with other criteria, in 3D torque-driven models.
Other terms related to contact forces and ground reaction forces that are minimized are: joint contact
forces in running [94], reaction forces in the wrist joint in steering tasks [85]; foot–ground impact in
walking: ground reaction forces (GRFs) derivative [30], an impulse at the foot on touch-down [43]; sum
of the hand forces in manual wheelchair propulsion [104]. Finally, there are other terms related to the
smoothness of movement: minimize squared joint velocities at the last time step [78], minimize joint
accelerations [80, 89], or minimize jerk costs for the CoM [132].

Sports applications

In sports, the goal is usually defined as an objective function, as says the original Olympic motto
“Citius, Altius, Fortius” (“Faster, Higher, Stronger”). Examples of “faster” can be found in maximizing
speed for sprinting [70] and maximizing distance in bicycle standing start [18]. Examples of ”higher”
can be found in maximizing jumping height [47, 65, 124] or jumping distance [42], and maximizing carry
distance in golf drives [32, 104]. These objectives are usually the only criterion considered in the cost
function [6, 18, 55].

Clinical applications

In clinical applications, the cost function usually contains different criteria, and one of them is related
to the treatment goal, as minimization of knee contact force [8] or adduction moment [19, 50], minimiza-
tion of maximum knee flexion angle [8], minimization of anterior-posterior force [76], or minimization of
joint moment [53] asymmetry. In human walking with assistive devices (e.g., active orthoses and prosthe-
ses), device-related costs can be included in the cost function, as minimizing the root mean square (RMS)
power [14] or actuation torque [14, 41] from the assistive device, or minimizing the human–exoskeleton
interaction energy [37]. In some wearable robotic systems, prosthesis and orthosis design and tuning sim-
ulations, usually parameters from the devices are optimized, but without considering additional terms
in the cost function [9, 42].

Task-related and optimization supporting terms

There are some terms that are included in the cost function for predicting motion, not for being
optimality principles, but task-related (desired or imposed speed), penalty terms to avoid undesirable
motions, regularization, and optimization-supporting terms.

Task-related objectives used in predictive simulations related to angle or position include covering at
least a certain distance [28], minimizing steering wheel angle [85], imposing the pedal cycle travel [40], or
reaching a desired position (e.g., vehicle lateral position [85], or hand end position [23, 78]). Task-related
objectives related to speed include reaching a target velocity [28, 35, 67, 72] or angular velocity [40], or a
target stride/cycle duration [53, 74, 126]. Other terms include encouraging periodicity in kinematic state
[49, 50] or encouraging steady speed [70].

Penalty terms are used to avoid undesirable motions, as hyperextension of the joints to avoid ligament
injury [30, 57, 70, 78], or deviation of the trunk from an upright posture during walking [45, 72]. Other
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Table 2 Terms that are tracked (x) in simulations that predict new motions using multi-objective cost functions, which
include tracking one or more quantities.
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[35] Pedalling 2D Hill-type muscles x
[127] Raising up from squat 2D Hill-type muscles x
[12, 19] Walking (knee OA) 3D Ideal torque actuators x x x x x x
[15] Walking (knee OA) 3D Ideal torque actuators x x x x x
[64] Walking 2D Hill-type muscles x x
[91] Walking (prosthesis) 2D Hill-type muscles x x
[13] Walking (one-side disorders) 3D Hill-type muscles x x
[46] Walking (weak hip abd.) 3D Ideal torque actuators x
[50] Walking (gait retraining) 3D Hill-type muscles x
[51] Walking (post-stroke) 3D Muscle synergies x x x
[14] Walking (SCI subject with KAFO) 2D Hill-type muscles x x
[53] Walking (prosthesis) 2D Hill-type muscles x x x
[20] Finger tapping 2D Hill-type muscles x
[74] Walking (unilateral transtibial) 2D Hill-type muscles x x x
[132] Walking 2D Hill-type muscles x x
[81] Arm motion 3D Muscle synergies x
[37] Sit-to-stand (with exoskeleton) 2D Ideal torque actuators x x x
[126] Walking 2D Ideal torque actuators x x x

undesirable effects that are avoided are falling [54, 57, 67, 72] or slipping [42, 136]. Finally, model torque
production has been limited by penalizing rapid activation and deactivation [41].

Some authors add regularization terms (or optimization supporting terms) to avoid singular arcs, i.e.,
situations for which controls are not uniquely defined by the optimality conditions [133]. Regularization
terms include minimization of joint jerks [10, 24, 51, 76], joint torques [7], joint torque change [10],
external forces [33], time derivatives of activations [89], time derivatives of tendon forces [89], and joint
accelerations of the arms [89]. Some works correlate jerk to the smoothness of motion [137, 138], but it
remains unclear if it is one of the optimality principles that guide human motion.

Data-tracking terms
Some simulations include tracking terms in the cost function (Table 2). The tracked quantities can

be obtained from experimental data, from the literature, or from previous simulations. Quantities that
are tracked include joint angles or body orientation [19, 51, 91, 132], joint torques [15, 37, 51, 127],
residual loads at the pelvis [12], ground reaction forces [13, 53, 74, 91], centre of pressure (COP) [19, 37],
footpath or foot angles [15, 35], activations/synergy controls [51], excitation timing [50], or stride/step
time [74, 126]. Some references track only one type of magnitude (e.g., only joint angles or only forces)
[35, 94], whereas others track different types of magnitudes at the same time [14, 19, 74, 126]. Tracking
can be done also through equality constraints [24, 71, 76].

Some authors have used tracking terms to answer specific research questions. In [31], it was found
that the contact force could be reduced while maintaining a normal knee joint motion, but at the cost
of using a slightly slower speed and a shorter stride length. In [80], results showed that upright (close to
healthy) walking was less optimal than walking in a crouch for a child with cerebral palsy.

3.2.5 Cost function design

An important aspect of predictive simulations is finding the terms included in the cost function, as well
as the weighting factors for each of these terms. Generally, the cost function is assumed a priori, based
on previously published studies or some hypotheses, and the weighting factors are manually adjusted
[47, 54, 91, 127]. Another approach for determining the cost function is to compare the predicted motion
using different cost functions. Some works compare different single-term cost functions [48, 94] in order
to gain insights into each term, or the same cost function but with different mathematical formulations
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(e.g., in [49], five different energy models to calculate the metabolic cost term in the cost function were
compared). In other works, this comparison is made with the aim of finding a combined cost function
that improves the results compared to the single-term cost functions [10, 30, 82]. Other published studies
determine the cost function from among a family of possible cost functions, by an inverse optimal control
problem [139]. These studies include a small (three in [132], five in [140]) or large (twelve in [141]) number
of different terms. The difference between the solution and experimental data or a synthetic motion is
minimized, and in this way, the weighting factors are found. A weight close to zero or even zero may
indicate that the specific term does not need to be included in the cost function. When the cost function
is assumed a priori, weights can be manually adjusted, as stated previously; can be determined following
a formal comparison [12, 19, 33], e.g., computing a Pareto front [30, 41]; or can be determined using an
optimization procedure [15, 29].

The combination of subject-specific models with optimal control approaches is a promising tool for
designing patient-specific treatments [3], but finding the correct optimal control problem formulation
for the generation of new impaired or assisted walking motions is a current challenge [4, 89, 142]. Some
researchers make the assumption that the cost function is the same for healthy subjects and impaired
subjects (e.g., amputee, one-sided impairments, spinal cord injury (SCI) subjects) [13, 82, 89, 91]. Other
authors formulate a hypothesis and test it by performing predictions. For example, in [53], the authors
hypothesize that subjects with unilateral transtibial amputation can walk with more symmetric joint
moments at the cost of increased effort or abnormal kinematics; and, in [80], the authors investigate
whether a child with CP adopted an impaired crouch gait pattern because of neuro-mechanical constraints
or because it was more optimal. A common finding is that the optimized cost function includes different
criteria, as the use of multiple criteria leads to improved results [10, 89, 132, 143]. This is usually done
by having a combined cost function optimizing multiple criteria simultaneously, but it can also be done
by having single-term cost functions that are optimized one after the other [28]. In the case of multiple-
objective cost functions, a critical aspect is finding the weighting factors, and interpreting those values, as
they may include the scaling of the cost function terms, and a term that dominates the others in the cost
function may not necessarily be the most important factor [89, 132]. In addition, it is an open research
question whether these weights (and even some cost function terms) are subject-specific [12, 15, 80],
which would be of high importance in the case of clinical applications [3].

3.3 Validation of simulation results

Validation of results is a critical step in predictive simulations to corroborate that those results are
representative of the physical system, and they can be applied in real scenarios (Table 3). Hicks and
co-workers [26] suggested a seven-stage process for verification and validation of models and simulations.
However, such a rigorous (or a similar) validation of MSK models is not usually done, mainly because
of its technical difficulty [144, 145]. Some researchers publish their predictive simulation results without
validating them against experimental data, discussing them qualitatively based on what they expected to
find (e.g., if the gait looks natural [43]). Usually, it is because the authors aim to evaluate the feasibility
of a new approach, rather than analyzing some specific tasks or motions [21, 81, 118], or because they are
more interested in comparing different methods [16, 78] or different problem formulations (e.g., different
cost functions [48, 53]) among them.

When results are validated, this validation is often weak [3]. Some researchers validate their results
qualitatively by “visualization” or taking into account the researcher’s or clinician’s experience [33].
Another approach is to validate results by comparing them against published data [14, 55, 122, 129]. In
this approach, the validation is usually done qualitatively (e.g., by checking the trends or if results fall
within the mean and 1 or 2 standard deviations). While this approach allows one to check if the predicted
results look realistic or natural, it cannot be used in subject-specific applications, where a more strong
validation is required [3].

The most used approach for validating predictive simulation results, is to compare them against
experimental data collected for one [7, 18, 29] or more than one [11, 49, 74, 104] subject. Collected
data are in almost all cases marker trajectories [15] and ground reaction forces [15], and some works
include also EMG measurements [76, 80] or pulmonary gas exchange rates [49]. Validation is usually
done more extensively when subject-specific models (i.e., some model parameters are identified beyond
just anthropometric scaling) are used, and in this case, data are collected for the specific subject under
study [9, 15, 51, 76, 80, 104].

There are also a few research studies that have published extensive human movement data sets,
including motion, ground reaction forces, and EMG data, along with in vivo hip or knee contact force data
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that can be used for model validation purposes [146, 147]. Some studies use these datasets for validating
their predictive methods [24, 56]. Moreover, a novel shear wave tensiometer has been recently developed
to measure tendon forces in vivo [148]. These novel techniques are promising for measuring internal forces
with non-invasive methods. However, despite this considerable progress in the movement measurement
capabilities, there is still no extensive movement data for clinical use (e.g., patient movements before
and after treatments) in the literature [3].

3.4 Domain of applications

Predictive simulations using neuromusculoskeletal models have been used for clinical purposes (Table
4), in sports, and in industrial/ergonomics applications (Table 5). The Food and Drug Administration
has recently endorsed the use of computer simulation to support medical device design [5]. The use
of computer simulation instead of (or together with) clinical trials could reduce time and costs in the
design of medical devices and interventions. As mentioned in section 3.2.4, the original Olympic motto
“Citius, Altius, Fortius” (“Faster, Higher, Stronger”) is well suited for predictive simulations in sports.
Finally, there are some studies that show the potential of using predictive simulations in some industrial
applications to avoid work-related injuries, to increase productivity and/or to reduce discomfort.

3.4.1 Clinical

Proof-of-concept studies
Some researchers show the potential application of their predictive framework to clinics by including

some additional results as a proof-of-concept, where some impairment, disorder and/or assistive device is
modeled. In [91] and in [13], the waking motion of an amputee and an individual with one-side disorder,
respectively, are predicted. Both studies use a generic model and include multiple tracking terms in
the cost function. In [46] a Trendelenburg gait (with weakened hip abductors) was simulated, and the
model was able to predict a small increase in lateral trunk sway as a compensatory strategy. In [89], the
capability of a fully predictive framework using a 3D full body model, muscle-driven (trunk and lower
body), is demonstrated by predicting the walking of a subject with muscle weakness and a subject with
a prosthesis.

Investigation of a clinical question
Predictive simulations have been used to gain insights into a specific clinical problem. In these cases,

the model used is generic, and usually 2D, and includes only the lower body, as the main goal of the
research is not to find a result for a specific subject but to understand better an underlying mechanism or
to find possible treatments for a general population. In [57], the authors explored gait adaptations due to
ankle plantar flexor muscle weakness and contracture, which occur commonly in conditions such as cere-
bral palsy, stroke, and muscular dystrophy. Both the development and progression of knee osteoarthritis
have been associated with the loading of the knee joint during walking. In [8], walking patterns that min-
imize the axial knee joint contact force were predicted. These results could help to develop strategies for
changing walking biomechanics to offload the knee joint without resorting to surgery. In [50], the authors
use a 3D lower body model to explore the relationship between knee adduction moment reduction and
changes in medial knee joint contact force. In [53], they tested the following hypothesis: people with a
unilateral transtibial amputation can walk with more symmetric joint moments at the cost of increased
effort or abnormal kinematics. The hypothesis was confirmed using predictive simulations of gait. In
[74], the authors tried to understand the relationship between changes in strength and gait energetics in
subjects with transtibial amputation, and their results suggested that maintaining muscle strength may
prevent an increase in the metabolic cost of walking following unilateral transtibial limb loss.

Subject-specific treatment design
Fregly et al. have used a computational model to predict how an individual with medial knee os-

teoarthritis should walk differently to reduce medial knee contact force and relieve pain [19]. They
developed a patient-specific cost function to predict the influence of foot path on the knee adduction
torque during gait [12], and compared how two treatments for knee osteoarthritis —gait modification
and high tibial osteotomy surgery— altered the external knee adduction torque for a specific patient [15].
In these three studies, the model used was a torque-driven 3D full body model, which was personalized
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to the subject by calibrating joint centers and axes. The cost function included some tracking terms.
A limitation in these studies was that the cartilage wear was not included in the model when it may
be important in patients with knee osteoarthritis. Additionally, the knee joint was modeled as a single
DoF joint, without considering the secondary kinematics of the tibiofemoral and patellofemoral joints,
nor the ligament forces. In [24], a computational framework that includes a more complex model of the
knee joint, which simultaneously estimates muscle and joint contact forces and body motion using opti-
mization and surrogate modeling, was developed. This framework represents a promising tool for future
studies.

Subject-specific treatment design has been predicted for a stroke patient. In the study of Meyer et
al. [51], stroke patient walking was predicted at different speeds. In this work, in addition to minimizing
joint jerk, the cost function included various tracking terms (upper body joint angles and lower body
joint torques, muscle activations, or synergy activations), following the assumption that under different
conditions, the subject would try to find a solution close to what he did in the nominal case. In [76], a
personalized functional electrical stimulation treatment for fast-speed treadmill training was designed for
an individual post-stroke. In that study, the cost function included minimization of joint jerk and mini-
mization of inter-limb propulsive force asymmetry, which was the targeted gait improvement parameter.
In [80], a case study to support clinical decision-making to choose the appropriate treatment for a child
with cerebral palsy was reported. The authors explored the influence of altered muscle-tendon proper-
ties, reduced neuromuscular control complexity, and spasticity on the gait pattern. They concluded that
altered muscle-tendon properties were the primary cause of the crouch gait pattern observed for the child
under study, which matched with the clinical examination.

Assistive device design
Optimal control has recently been used to identify the optimal spring characteristics of an ankle-foot

orthosis that minimizes muscle effort for a child with gait abnormalities [9]. In [33], an assistive device
was designed to best support the sit-to-stand transfer of geriatric patients. The models used were based
on percentiles 20/50/80 of male and female geriatric populations. In [14], a semi-predictive simulation
has been used to identify the parameters of an active KAFO for SCI subjects. Febrer-Nafŕıa et al. [10]
recently found that a multi-term cost function combining minimization of joint jerk, joint torque change,
joint mechanical power, and angular momentum predicted four-point crutch walking without tracking
any experimental data [10]. Based on this problem formulation, the authors predicted crutch-orthosis-
assisted walking of an SCI subject, with the aim of finding the best controller parameters of the robotic
orthosis [82].

An interesting application is predicting walking with a prosthesis. Some researchers have attempted
to predict gait for transtibial amputees. In such studies, the ankle muscles are usually removed, a passive
stiffness is added at the ankle, and limb mass and inertial properties are maintained [41, 53, 74, 91].
In some cases, limb mass and inertial properties are reduced to mimic the prosthesis [89]. In these
studies, the patient’s neural control strategy is not modeled explicitly, which limits the reliability of
those simulations. Including the neural control in the model would help to improve our understanding
of how the surgery affects the mechanics and control of the ankle muscles that are partially retained in
transtibial amputation surgery [74]. A review of emerging model-based methodologies for personalized
neurorehabilitation technologies, which includes an example of designing a biomimetic variable stiffness
transfemoral prosthesis, can be found in [149]. Predictive simulations could be used to improve the design
of the prosthesis controllers.

3.4.2 Sports

Some sports movements, such as rising up from squatting position [21] or kicking [22], have been chosen
as applied examples to demonstrate the effectiveness of the problem formulation or an improvement in
computational time when compared to previous methods.

Running
Following what has been discussed in section 3.2.4, it is still an open question which cost function

describes the human performance correctly in running. In [72], the authors suggested that metabolic
energy expenditure (as a measurement of effort) can be used for both walking and running optimization.
In [89], the authors used the same multi-criteria cost function (which includes the cost of transport
(COT), i.e., metabolic energy consumed per unit distance traveled) for predicting walking and running.
In this case, their results suggested that the cost function may not capture all goals during running, as the
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predicted walk-to-run transition speed and the stance phase duration were slightly greater/longer than
expected. In [52], the authors explored different cost functions, which were minimizing the COT, the total
muscle activation, and the total muscle stress. While minimizing the COT naturally predicted the lowest
COT, minimizing activation predicted a more realistic COT in comparison with the experimental mean.
All these studies have predicted periodic running at a constant speed, which might not be completely
realistic, as they do not take into account changes in time as fatigue (which is not included in the current
metabolic energy expenditure models). More research is needed regarding the cost function for running,
as it might be different for sprinting, trail running, or running a marathon, for instance.

Besides the cost function, other aspects have been studied regarding running. These same authors
have used fully-predictive simulations of running using a generic 2D muscle-driven lower body model
to gain insights into different aspects of running. They found that the force-velocity relationship is the
most important contractile property of muscle regarding limits to maximum sprinting speed [70], and
that rear-foot striking is the optimal footfall pattern for a large number of goals (or cost functions) [94].

Cycling
Research on modeling and simulation of cycling has mostly focused on seated pedaling. One of the

first semi-predictive simulations solves a steady-state pedaling problem using a 2D muscle-driven model
[35]. The computed muscle activations compare well with experimental EMG data. In [40], the authors
compared different fully-predictive cost functions for bicycle pedaling, and found that the simulations
based on minimizing muscle activation and muscle stress were the ones that matched most closely the
experimental pedaling data. Recently, a 2D muscle-driven model has been used for predicting standing
starts, when the cyclist starts from rest and attempts to accelerate to top speed as quickly as possible
[18]. The cost function consisted in one single term: to achieve the maximum distance in the given time
period. The predictive simulations aligned well with the experiments and replicated key aspects of the
standing start technique. The authors suggested that this model could be used to investigate optimal
cycling techniques and equipment.

Golf
The golf swing has been predicted using a 3D upper body model, driven by MTGs, and a fully-

predictive single-term cost function (maximizing ball carry distance), using a genetic algorithm [32] and
direct collocation [104]. These simulations provide a deeper understanding of the interaction between
golfer biomechanics and the physical properties of golf clubs, which can be used to improve the design
of golf clubs.

Clinical aspects of sports
Human motion prediction can be used to find ways of reducing the risk of developing injuries in

sports. In [94], the optimal footfall pattern was studied in relation to running performance and injury
risk. Another application example can be found in wheelchair sports. A 2D model of the upper body
driven by MTGs was used to predict the manual wheelchair propulsion of a basketball athlete who
suffered severe, non-spinal lower body knee injury [90], and a 2D torque-driven full-body model was used
to predict wheelchair curling of a Paralympic athlete with a spinal cord injury [95].

3.4.3 Assistive devices for healthy populations

A 3D muscle-driven arm model has been used to simulate steering tasks during driving [85]. Realistic
driver models, which include modeling of muscle loads, fatigue and co-contraction, can play an important
role in developing new driver assistance technologies. Moreover, simulation can aid in the design of
performance-enhancing technologies, as it has been suggested by the predictive simulation of an orthosis-
assisted long jump [42], and by the predictive simulation of subject-exoskeleton combined motion when
lifting a box using a lower back exoskeleton [75]. The framework used in these studies is applicable
for simulating a large range of robotic-assisted human motions, but the human-exoskeleton interaction
is modeled through kinematic constraints, which may limit the validity of those simulations. Modeling
correctly contact forces is an important aspect of human-exoskeleton interaction. It has been found that
the calibration of those contact force models is critical to predicting the correct collaborative movement
and interaction forces between a subject and exoskeleton during sit-to-stand movements [37]. We can
conclude that in the industrial/ergonomics domain, a limited number of predictive simulation studies
can be found, but they show the potential use of those simulations to increase performance and/or to
avoid injuries.
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3.5 Optimal control software

Although some researchers have programmed their own optimal control algorithms for specific NMSK
and MSK models, there exist optimal control software packages that can be employed for general com-
putational models. The most popular of these general-purpose software packages are described in the
following paragraphs. Other toolboxes or software include CasADi, an open-source tool for nonlinear
optimization and algorithmic differentiation [150] (it uses the IPOPT solver), the recursive integration
optimal trajectory solver (RIOTS) (a MATLAB toolbox from the University of California, Berkeley,
USA), the open-source software for predictive simulation of biological motion (SCONE) [151], Bioptim,
which is a Python framework based on IPOPT [152], and musculoskeletal optimal control (Moco), which
can perform tracking and predictive simulations using OpenSim models [27].

Researchers have obtained predictive simulations of MSK movement by combining OpenSim models
with optimization algorithms in MATLAB (The MathWorks, Inc., MA, USA) [55, 118] or SCONE [57].
MATLAB can call the OpenSim multibody dynamics engine using MEX files that communicate data
between the shared memory and OpenSim’s C++ API [51, 55, 76, 118, 153]. Eskinazi and Fregly have
developed an interface between MATLAB and OpenSim with code parallelization capabilities for direct
collocation whereby multiple queries are created instantly [24].

The optimization toolbox of MATLAB software has optimization algorithms that are widely used in
the literature. The common algorithms are: Levenberg–Marquardt nonlinear least-squares (model fitting)
optimization [15, 19]; SQP algorithm [17, 65], which may run the constrained nonlinear optimization
algorithms (fmincon) routine [20, 71, 127]; interior-point algorithm available within the fmincon [55, 118];
and Nelder–Mead algorithm, which run by bounded constrained multivariable function (fminsearchbnd)
using a derivative-free method [71].

MATLAB can also integrate with the open-source IPOPT [154] or commercial SNOPT [155] tool-
boxes. By using sparsity in the constraint Jacobian matrix that develops when the system dynamics are
translated to a wide set of algebraic equality constraints, IPOPT and SNOPT have the potential to signif-
icantly exceed fmincon [118]. When a good initial guess is unavailable, IPOPT is favored [18, 24, 51, 104],
whereas SNOPT is preferable when a series of related problems has been solved, and early guesses are
already near to the solution [91].

The multiple shooting code (MUSCOD-II) [156] is used as a direct multiple-shooting-based reduced
SQP method for the solution of mixed-integer nonlinear constrained optimal control problems. By dis-
cretizing continuous controls on a grid and solving the resulting boundary value issue, MUSCOD-II
reduces the infinite-dimensional problem into a finite-dimensional nonlinear problem.

The general-purpose optimal control MATLAB software version II (GPOPS-II) is a commercial tool-
box for direct collocation (simultaneous) multiple-phase optimal control that implements variable-order
Gaussian quadrature orthogonal collocation algorithms [157]. GPOPS-II uses the hp-adaptive mesh re-
finement approach to optimize the individual interval widths and polynomial degrees to attain a final
optimal solution. GPOPS-II parameterized both states and inputs into a sparse nonlinear program-
ming problem. IPOPT and SNOPT solvers are available within the GPOPS-II toolbox. For dynamic
constraints, GPOPS-II does not support implicit dynamics and needs the usage of explicit dynamics
[10].

4 Conclusion

In the past 25 years, multibody system dynamics has seen a rapid increase in applications to the simula-
tion of human movement. New models of joints, muscles, and contacts have been combined with optimal
control methods to develop predictive dynamic simulations of humans without relying on data from
costly and time-consuming experiments. These what-if simulations hold great promise for the rapid and
safe development of new medical interventions and assistive devices, and preliminary applications have
included prostheses and orthoses, surgery assessment, wearable robotics, and sports optimization.

However, there are still many significant challenges to overcome before predictive human simulations
become widely accepted and adopted. First and foremost, the accuracy of these computer simulations
must be firmly established, especially for the subject-specific models that are needed for personalized
treatments. These subject-specific models will require systematic methods to convert non-invasive mea-
surements (e.g. from wearable sensors or markerless motion capture using AI-based pose estimation)
into the many parameters in the model. Studies that compare different models of joints, muscles, and
contact forces (including human-device interactions) are needed to develop guidelines for choosing the
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most appropriate model for a given application. Fast and accurate solutions to the muscle redundancy
problem should be researched, especially in the presence of co-contraction of muscles or muscle torque
generators. More studies are needed to determine if and when a human moves so as to minimize some
cost function, and what mathematical terms should be included in that function.

Predictive human simulations are time-consuming, mainly because optimal control methods must
run many dynamic simulations in their search for optimal movements and devices. Methods to improve
their computational efficiency are needed, especially for clinical practice in which decisions must be made
quickly. Muscle synergies offer one approach to reduce the number of inputs and therefore the size of
the optimal control problem, while machine learning might be used to increase the speed of the dynamic
simulation and control algorithms. Model-predictive control is another promising approach to the fast
simulation of near-optimal human movements.

Another future research direction is to investigate how one can model the recovery of the neural
control system during rehabilitation, and the adaptation of a human to an assistive or rehabilitative
device (and vice-versa, in the case of devices with model-based controllers). To simulate altered walking
or reaching patterns, research into how the neural control of muscle coordination adapts to different
neuromuscular conditions, such as spinal cord injury or stroke, is needed. The effects of aging on muscles
and cognition should also be included in predictive dynamic simulations, for both clinical practice as well
as sports applications. The latter also requires better models for muscle dynamics, particularly energy
expenditure and fatigue, in order to boost performance and avoid injuries.

The growth in multibody dynamics of human movements over the past 25 years has been remarkable,
and the authors expect that research in predictive dynamic simulation of human motion will continue
its exponential growth until computer simulations become commonplace in clinical practice, sports, and
biomedical engineering companies.
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Glossary

CE contractile element.
CNS central nervous system.
CoM center of mass.
COP centre of pressure.
COT cost of transport.
CP cerebral palsy.
CPG central pattern generator.
CT computed tomography.
DAE differential algebraic equation.
DoF degrees of freedom.
DXA dual-energy X-ray absorptiometry.
EMG electromyography.
FD forward dynamic.
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FE finite element.
FES functional electrical stimulation.
GPOPS-II general-purpose optimal control MATLAB software version II.
GRF ground reaction force.
ID inverse dynamic.
IPOPT interior point optimizer.
KAFO knee-ankle-foot orthosis.
Moco musculoskeletal optimal control.
MPC model predictive control.
MRI magnetic resonance imaging.
MSK musculoskeletal.
MT muscle-tendon.
MTG muscle torque generator.
MTP metatarsophalangeal.
MUSCOD-II multiple shooting code.
NLP nonlinear programming problem.
NMSK neuromusculoskeletal.
ODE ordinary differential equation.
PID proportional-integral-derivative.
RIOTS recursive integration optimal trajectory solver.
RMS root mean square.
RoM range of motion.
SCI spinal cord injury.
SNOPT sparse nonlinear optimizer.
SQP sequential quadratic programming.
TKR total knee replacement.
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