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In this paper, we survey two kinds of mathematics-based battery models intended for use in hybrid and
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the battery, and abstracts away the electrochemistry into equivalent electrical components. The second is
chemistry-based, which is founded upon the electrochemical equations of the battery chemistry.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Battery modelling is a challenging field that has been receiving a
great amount of interest recently due to two main commercial drives:
the desire for longer-lasting portable electronic devices [1—3], and
the great push for hybrid and battery electric vehicles by the auto-
motive industry [4,5].

These two industries have different aims. The portable elec-
tronics industry is concerned with maximizing the operating life of
a low-power electronic device that runs for a long period of time on
a small inexpensive battery pack. The electric vehicle industry is
concerned with maximizing the driving range and fuel economy of
hybrid and electric vehicles using large battery packs in demanding
applications that involve high power charge and discharge rates
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that push the batteries to their limits, while operating within a
range that maximizes the expensive battery pack’s service life.

In both of these areas, accurate and efficient battery modelling is
vital to help maximize the performance of a device and its battery,
and to inform the development of electronic and control systems.
The overall performance and life of the device depends on the
control system and electronics that interface with the battery,
which need to be carefully tailored to the behaviour of the battery.
Furthermore, the size and configuration of the battery pack must be
chosen to maximize the performance of the device while mini-
mizing its cost.

In this paper we focus on the field of battery modelling for
automotive electric vehicle simulation, with an aim to help engi-
neers and scientists become familiar with the field of battery
modelling and the different models and techniques that are
commonly used. Because the field of battery modelling is so
extensive, we limit ourselves to considering only the most common
battery chemistries and modelling techniques.
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We also limit ourselves to acausal, physics-based battery
models. This means our batteries use voltage, current, and tem-
perature as the physical quantities of interest, and that they can be
written as a system of continuous-time equations. This is in
contrast to causal, signal-based battery models that typically use
discrete-time equations in an iterative solution, and power as the
main physical quantity of interest.

The most commonly used batteries in electric vehicles today are
the Nickel-Metal-Hydride (NiMH) and Lithium-Ion (Li-ion) chem-
istries [6]. In the past, Lead-Acid batteries (PbA) were used, but
these are falling out of favour to the higher energy and power
densities of the Ni-MH and Li-ion chemistries. However many of
the techniques developed for modelling these PbA batteries are
applicable to more modern chemistries. In the future, Li-ion is a
very promising chemistry that is light weight and has high energy
and power densities; however more research needs to be done to
drive down the cost of these batteries and to increase their safety
[6] and performance, particularly at relatively high and low
temperatures.

In Section 2 we survey battery models as they apply to various
battery modelling tasks. Section 3 focuses on equivalent circuit
models in particular, and surveys different modelling techniques and
considerations. Section 4 surveys electrochemical battery modelling,
and Section 5 briefly compares an equivalent circuit and electro-
chemical battery under pulse discharge, shows the results of a
sensitivity analysis of the two battery models, and finally shows the
results of an electric vehicle simulation. The paper is finished off by
the conclusions, acknowledgements, references, and appendices.

2. Battery modelling

The two most common techniques we encountered for model-
ling batteries in automotive applications are equivalent electric
circuit and electrochemical modelling. Some models [7—9]
combine elements of both chemistry and circuit-based modelling
techniques.

Equivalent circuit modelling techniques abstract away the
electrochemical nature of the battery and represent it solely as
electrical components [1]|. Sometimes these contain non-linear
components like diodes that strive to better approximate the
electrochemical nature of the battery. The structure of the model
depends on the type of experimental method used to determine
the parameters of the model — which is usually either electro-
chemical impedance spectroscopy or measuring pulse discharge
behaviour — as well as the desired fidelity and goals of the
modelling effort.

Electrochemical modelling techniques are all based on the
highly non-linear equations that describe the electrochemical
physics of the battery, and employ many different approximations
to simplify the equations and the solutions thereof, depending on
the level of fidelity one requires and the goals of modelling the
battery.

Generally, the simpler the model, the faster it will simulate, but
the lower its fidelity. This is an important trade-off that one must
consider when choosing a battery model to suit one’s application,
particularly if real-time simulation is a requirement.

Although a comprehensive comparison of different models
would be challenging due to the wide variety of phenomena
different models are good at capturing, comparing similar models is
possible. Zhang and Chow [10] do a computational-complexity
versus modelling-error analysis for a Thévenin resistor—capacitor
network circuit model, varying the number of RC pairs. Increasing
the number of RC pairs decreases the error and increases the
computation time, and this paper shows how these quantities scale
as a function of RC pair number.

For real-time control system applications, where high fidelity
models are often not required, simple circuit based models are
employed [11—14]. However for applications requiring higher fi-
delity such as vehicle performance, drive cycle simulations, battery
ageing, and other computation-intensive simulations, a higher fi-
delity circuit-based or chemistry-based model can be used to in-
crease the accuracy of the results. Thus, the choice of the right
battery model to use depends on the fidelity one requires for one’s
application.

For on-line state of charge (SOC) estimation, battery models
are usually fairly simple, as they are fused with an actual battery
using a technique like an Extended Kalman Filter (EKF) [15—17], a
fuzzy-logic system [18,19], a least-squares regression model [20],
or a sliding-mode observer model [21]. What is usually required
in these applications is that the model be simple enough to run
on an embedded controller while being accurate enough to
model the battery’s internal variables of interest, primarily the
SOC [22].

For control system development, battery models can again be
fairly simple. Being able to run in real-time and on embedded
computers is an important requirement for control systems, so
the battery models cannot be too computationally expensive. The
majority of these models are circuit-based, comprising either a
simple resistor, or a Thévenin resistor—capacitor network [11—
14].

When doing fuel economy and vehicle performance simula-
tions using drive cycles, more accurate models are desired to fine-
tune the performance of the vehicle and power management
controller to see how they perform over a long period of time with
successive charge and discharge cycles. Since these calculations
are usually executed offline on workstations, the stringent re-
quirements of real-time computation are absent, and one can
afford to use a more computationally expensive model such as the
Li-ion models of [8,10,23—32], the NiMH models of [7,9,23,33], or
the lead-acid models of [23,34,35]. A good comparison of circuit-
based models for Li-ion batteries is presented by Hu et al. in Ref.
[36].

If one is analysing the response of the battery to transients, a
model that is based on these measurements and takes the dy-
namic battery response into account is desired. The Thévenin
models of Refs. [13,23,24,26,33] and the electrochemical
impedance spectroscopy (EIS) models of Refs. [7,8,22,37—39] are
good examples of these. For high frequency switching, a greater
number of resistor—capacitor (RC) pairs are necessary to better
approximate the short time behaviour of the battery [23].
Alternatively one can model the mostly inductive behaviour of a
battery in the high-frequency region using resistor—inductor (RL)
networks [40].

An important consideration for electric vehicle applications is
the battery’s dependence on temperature, especially in cold cli-
mates. Because the rate of chemical diffusion is slowed by low
temperatures, this can have a serious impact on the current-
delivering capabilities of the battery. Although high temperatures
have the opposite effect, the downside is that the rate of detri-
mental electrode oxidization is increased, which shortens the ser-
vice life of the battery [1,41].

Many battery models do not consider temperature variations. If
this is a modelling requirement, then it is necessary to use models
like those proposed in Refs. [7—9,25—31,34] that include the effects
of temperature on the dynamic response and state-of-charge
behaviour of the battery.

State of health (SOH) is a more difficult quantity to measure. It
represents the battery’s gradual loss of maximum capacity and
increase in internal resistance over a long period of time, which
eventually results in the battery needing to be replaced. It is due to
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gradual chemical effects changing the structure of the battery,
mainly electrode oxidization, active material degradation, and
electrolyte decomposition [1,42]. These are hastened by high
operating temperature, overcharging, and deep discharging.

Experimentally, SOH is a time-consuming effect to measure, as it
changes slowly over hundreds to thousands of battery charge—
discharge cycles.

In battery models, the effects of SOH are incorporated or
measured in different ways. Bhangu et al. [15] use a circuit model
with an EKF to determine SOH by measuring the change in bulk
capacitance. Prada et al. [7,8] use EIS and an electrochemical ageing
model to measure degradation. Tréltzsch et al. [42] use a multi-
frequency EIS approach with battery model parameter identifica-
tion to match battery ageing with changes in model parameters.
Salkind et al. [19] use a fuzzy-logic system to determine SOH in
many battery chemistries. Erdinc et al. [28] use a resistance element
that depends on the cycle number. A detailed review of using EIS to
measure SOH is presented in Ref. [43], a small table of SOH mea-
surement methods is presented in Ref. [5], and Zhang and Lee re-
view prognostics and health monitoring of Li-ion batteries in Ref.
[44].

There is no single model that is capable of meeting all the re-
quirements one may have. Thus, it is important to consider one’s
modelling requirements and to select a battery model that best
matches those requirements.

If one is using an electric circuit model and has a particular
battery one wants to model, it is necessary to perform experimental
measurements to get data that are then converted into the pa-
rameters of the model. The model by Gao et al. [26] can use in-
formation from a manufacturer’s data sheets to help determine its
parameters. Alternatively if one has a detailed chemistry model,
one could use it to generate the necessary data.

In any case, one must identify the circuit model parameters
from battery charge—discharge data. Many people who use Thé-
venin models identify the circuit parameters using the battery’s
time response to pulse discharges [24,27,31,33]. By looking at the
instantaneous voltage drop, the time constants of the charge
depletion and recovery regions, and the current, one is able to
identify the resistors, capacitors, and open circuit voltage for a
particular SOC. Kim and Qiao [45] apply a least-squares method
to this pulse-discharge technique. Hu et al. [46] apply an alge-
braic simplification to the non-linear battery equations to ease
the identification of circuit components from pulse discharge
data.

Other people use more complicated techniques that compare
the battery model simulation to the actual battery response with
an objective function. Hu et al. [36] use multi-swarm particle
swarm optimization to match several different battery models to
the same experimental data. Hu et al. [29,30] use a genetic algo-
rithm and 1D and 2D spline interpolation to find the SOC and
temperature dependence of circuit model component values for
charge and discharge current directions. Troltzsch et al. [42] use a
combination of genetic global optimization and Levenberg—Mar-
quardt local optimization to find parameter values for an EIS cir-
cuit model.

Unlike the chemistry-based models, the circuit-based models
are not able to adapt to changing an arbitrary physical parameter of
the battery, for example the molality of the electrolyte or the sur-
face area of the anode, since the circuit model parameters do not
correspond directly to these physical quantities. Since parameter
identification techniques are used to determine the values of circuit
model components, it is necessary to obtain experimental or
simulated data in order to tailor the circuit model to a particular
kind and size of battery. An exception to this is when using batteries
that differ only in size, as the currents and capacities can be

normalized and scaled between batteries [38]. Battery packs of
different sizes, but using identical battery cells, can also be
modelled by scaling the current and voltage appropriately.

The following subsections provide more detail on the different
techniques in circuit and chemistry-based battery modelling.

3. Equivalent electrical circuit models

Circuit-based models attempt to model the electrochemical
physics of a battery using only electrical components. These
component models can easily be incorporated into the system
model of an electric vehicle, and are generally not computationally
expensive. Some of them can also be used in circuit-simulation
environments such as SPICE [35,47,48].

The simplest circuit model is the resistance model, shown in
Fig. C.1, with terminal equations described by Equation (1). This
uses an open circuit voltage V,. based on the battery’s state of
charge (SOC) and a resistor R to model the equivalent series resis-
tance of the battery [35]. A load Z is connected across the battery
terminals with voltage V(t) and current I(t) measured at the load. To
keep track of the SOC, current integration (also called Coulomb-
counting) is used.

V(t) = Voc — RI(t) (1)

Current integration, described by Equation (2), is the simplest
way of keeping track of a battery’s SOC, which ranges from 0 (empty)
to 1 (full). Cy is the battery’s rated charge storage capacity and I(t) is
the battery current. The current consumed by loss reactions can also
be accounted for by subtracting it from the battery current [49].

t
SOC(t) = SOC(ty) +C1—N / I(t)dt )
to

For simulations, Coulomb-counting is acceptable, but in practice
it suffers from drift. Thus, in the field it is only accurate for short
durations, or when the battery is frequently recharged to a known
SOC. A comprehensive overview of a variety of SOC determination
techniques can be found in Refs. [44,49,50].

The first step in increasing the fidelity of the simple resistor
model is to make the resistor and open-circuit voltage dependent
on SOC and temperature [25,51], or by incorporating non-linear
components such as diodes to change the battery parameters un-
der charge and discharge conditions [11,16,35].

Further increases in fidelity can be achieved by incorporating
more circuit components into the model, such as a network of
resistors and capacitors to model time-dependent effects. These
higher-fidelity models can be divided into two main groups:
Thévenin models and impedance models. The Thévenin models
usually comprise a series of resistor—capacitor pairs, and have
their model parameters identified by using pulse charge/
discharge techniques. The impedance models usually incorporate
a constant-phase Warburg element and have their model pa-
rameters identified using EIS.

3.1. Thévenin models

As mentioned above, Thévenin models generally consist of a
network of a series of parallel resistor—capacitor pairs. These
models can capture the time-dependent effects of charge depletion
and recovery.

Charge depletion is an effect seen when one first begins to
discharge a battery [52]. Due to an initially high concentration of
chemical products near the cathode and anode the initial battery
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voltage drop is subdued and the voltage gradually decreases as
chemical products are consumed. Charge recovery is the opposite
effect, where the battery seems to recharge itself after discharging
has stopped, due to chemical products diffusing from within the
body of the battery to the anode and cathode. These behaviours can
be seen when pulse discharging a battery, as illustrated in Fig. C.2,
and a simple explanation for this is given in Ref. [1].

A simple model that can capture these effects is shown in
Fig. C.3, incorporating one or more parallel resistor—capacitor
networks in series. Here Rs is the series resistance that models the
instantaneous change in voltage with respect to current, and the
RiC; parallel pairs, where ie{1,...,N}, model the exponentially
decaying time-dependent variation of voltage with respect to cur-
rent. The circuit component values can be found using pulse
discharge analysis [24,27,31,33,45,46], or parameter identification
techniques [29,30,36]. Variations on this parallel-RC model are the
most common circuit models encountered by the authors.

The fidelity of these Thévenin models can be improved by
making the battery component values depend on various internal
states of the battery. The most basic improvement is to incorporate
a dependence on the battery’s SOC [10,23,24,27—32,35,45,46].

A further improvement is to take into consideration the effects
of temperature on the battery’s response by making the model
component values a function of temperature. There does not seem
to be a consensus on the best way to do this, and each group takes a
slightly different approach.

Gao et al. [26] introduce correction factors to the battery ca-
pacity and open circuit voltage of the battery that can be calculated
from measurements or manufacturers’ data sheets. Erdinc et al.
[28] use the same voltage correction technique and also model
capacity fade with cycle number and battery age considering
storage temperature. Verbrugge and Conell [9] have the open cir-
cuit voltage, resistors, and self-discharge depend on temperature.
The model of Baronti et al. [27] has the resistors depend on tem-
perature, and the model by Lam et al. [31] has the resistors, ca-
pacitors, and usable capacity depend on temperature. Hu et al. [30]
use 2D splines to make the components depend on both SOC and
temperature, and Ceraolo [34] has the circuit components, battery
capacity, and open circuit voltages depend on temperature. Some
papers [9,26,34] consider the battery’s thermal generation and heat
transfer aspects, while others [27,28,30,31] consider temperature to
be an external variable.

A rarely discussed modelling feature is the fact that the battery’s
model parameters change depending on whether the battery is
being charged or discharged. Aside from the diodes used in the
simple circuit models [11,16,35] mentioned at the beginning of the
section, very few papers take into consideration the effects of
current direction. Hu et al. [29,30] use two completely different sets
of battery parameters for the charging and discharging behaviour,
requiring the computer simulation to determine which set should
be used.

Some models incorporate a capacitor to account for the charge
storage capacity of the battery. Since the voltage across a capacitor
is the first time integral of the current flowing through it, this can
immediately be mapped onto the state of charge. However the
open circuit voltage of the battery is not a linear function of the
state of charge, so the charge storage capacitor’s voltage must be
mapped non-linearly onto the open circuit voltage
[23,24,27,28,31,32,44].

By putting a resistor in parallel with the charge storage capac-
itor, the battery’s self-discharge can be modelled. However since
the time scale of self-discharge is much greater than that of the
dynamic effects that are usually of interest, and battery powered
vehicles are frequently recharged, the effect of self-discharge can
usually be neglected in automotive applications [24,31].

A circuit diagram of such a model can be seen in Fig. C.4, which is
based on the model by Chen and Rincén-Mora [24]. The dashed
lines indicate the mathematical relationship between the two
separate capacity and time-response circuits. Current flowing in the
time-response circuit is made to flow in the capacity circuit, while
the values of the resistors and capacitors in the time-response
circuit are related non-linearly to the voltage of the capacity cir-
cuit, which is proportional to the SOC.

To improve this model, Zhang et al. [32] use a discharge-current-
dependent charge storage capacitor to model the “C-rate effect”,
which causes the capacity of the battery to diminish with
increasing discharge current. Kim and Qiao [45] take a different
approach for modelling the C-rate effect, and replace the charge
storage capacitor with a component based on the Kinetic Battery
Model (KiBaM) by Manwell and McGowan [53].

The model by Erdinc et al. [28] models the SOH by taking into
consideration the effects of capacity fading and increased series
resistance with increasing time and cycle number.

Turning back to general Thévenin circuit models, Hu et al. [36]
provide a comparison of different circuit-based Li-ion battery
models trained using the same battery data, and discovered that for
the LINMC and LiFePO,4 batteries they tested, a battery model
containing a single RC parallel pair was sufficient to accurately
describe the battery behaviour. In the case of the LiFePO4 battery,
adding hysteresis to the model improved the accuracy.

Zhang and Chow [10] performed an investigation into the
optimal number of RC parallel pairs that balance the conflicting re-
quirements of high model fidelity and low computational expense,
and found that two RC parallel pairs were a good compromise.

Some models are designed to be coupled with an actual battery
in order to inform the user about the battery’s internal states. For
SOC there is the sliding mode observer model by Kim [21], the on-
line non-linear regression model of Verbrugge and Tate [20], and
the EKF model by Vasebi et al. [17]. For both SOC and SOH there is
the non-linear observer model by Bhangu et al. [15].

3.2. Impedance models

A special type of circuit-based model is one based on the
experimental technique of electrochemical impedance spectros-
copy (EIS) [43,54]. This injects a range of low frequency AC current
(up to a few kilohertz) into the battery and measures the battery’s
voltage response. The magnitude and phase of the response can
then be interpreted to give the battery’s complex (real and imagi-
nary) impedance as a function of frequency. This method has the
limitation that it is a small-signal method that assumes a linear
battery model [37] (this fact is actually an asset in the analytical
electrochemical models of Sikha and White [55,56] mentioned at
the end of Section 4). These models are not often used as a stand-
alone simulation of a battery. They are often used to determine
the SOC or SOH of a resting battery, or are used as a system model in
a Kalman filter to provide on-line battery state estimation.

A battery half-cell, representing one half of the battery’s
chemical reaction that occurs at one of the electrodes, can be
modelled by a Randles circuit similar to Fig. C.5 [39], where L, R;,
and C model the inductance, internal resistance, and capacitance,
respectively. The non-linear resistor R depends on the current
flowing through it. The impedance Z, described by Equation (3),
refers to a constant-phase Warburg element used to model diffu-
sion, where Ay, is the Warburg coefficient, w is the angular fre-
quency, and j is the imaginary number v/—1.

_ Aw

Zu(0) = 7

(1-J) (3)
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By measuring the complex impedance of the battery as a func-
tion of frequency and looking at the spectrum, one can determine
the type of electrical circuit network needed to reproduce its
behaviour [54]. By using a reference electrode, one can measure
and model the spectra of the positive and negative electrodes
separately. This gives the most accurate results, since the parame-
ters of both electrodes cannot be reliably determined by measuring
them both together [43]. Different battery chemistries can have
considerably different EIS spectra. Shih and Lo [54] provide a
technical report with many different EIS circuit models that
correspond to a wide range of battery chemistries.

Although circuit models abstract away the electrochemical
physics happening in the battery, EIS models stay closer to mapping
the physics onto circuit elements. Troltzsch et al. [42] provide a nice
explanation of how the battery physics maps onto EIS components,
and how these effects show up in the EIS spectra. They also describe
a clever method of using multiple excitation frequencies and
frequency-domain analysis to speed up the spectroscopy
procedure.

The EIS spectra, a depiction of which can be seen in Fig. C.6,
depend on SOC, current, temperature, and SOH. In some ways this is
a disadvantage, as it increases the complexity of the model. Huet
[43] discusses some of the issues with the temperature dependence
of the spectra in relation to determining SOC and SOH of batteries
in the field.

However it can also be an advantage, as these effects can be
included in the model. Models like [7,19,42] are designed to
determine SOC and SOH in conjunction with a real battery under
test. Others can be used to simulate a stand-alone battery, including
various effects on the model behaviour. Refs. [22,38,39] consider
SOC only, Ref. [7] considers SOC and SOH, while Ref. [8] considers
SOC, SOH, and temperature.

Using a complex non-linear least squares fitting algorithm [57]
seems to be the usual way of determining the circuit model pa-
rameters from EIS spectra. Troltzsch et al. [42] use a combination of
a genetic global optimization and Levenberg—Marquardt local
optimization to find model parameters.

Another challenge is that the behaviour of the Warburg element
is defined in the frequency domain, and must be converted to a
series of resistor—capacitor pairs in order to be simulated in the
time domain [22,38]. Increasing the number of pairs increases the
model fidelity, but also the amount of computation time required.

4. Electrochemical models

Unlike equivalent circuit modelling approaches, electrochemical
models explicitly represent the chemical processes that take place
in the battery. These models describe the battery processes in great
detail, making them the most accurate of battery models. However,
the highly detailed description results in considerable computa-
tional complexity, and it may take hours to simulate a charge—
discharge cycle of a detailed battery model if no model reduction
approach is used to treat the battery equations.

There are several approaches to developing electrochemical
battery models. One of the most popular approaches is a lumped
parameter model where the battery is described by a small set of
differential algebraic equations (DAEs) that represent the time-
dependent electrochemical phenomena between the electrodes,
while assuming a uniform spatial distribution of chemical products.
This approach constitutes the majority of the early physics-based
battery models, mostly for describing simple lead-acid and non-
rechargeable batteries [58,59]. This approach is based on Nernst's
theory and the Butler—Volmer equation. For example, the equation
for the open-circuit potential of a galvanic cell that relates the

electrical potential @(t) of an electrode to the electrical charge or
molality m(t) can be described using Nernst's equation [58] as:

o(t) = 9° - %lnm (mkum)”k) (4)

k

in which the k subscript represents the kth reactant, m is the
molality, v is the activity coefficient, n is the number of electrons, »
is the stoichiometric coefficient, and ¢° is the electromotive force at
standard conditions. Please see Appendix B for the nomenclature
used in these chemistry equations.

The Butler—Volmer equation describes the relationship be-
tween battery current density J(t) and over-potential 7(t) (alterna-
tively called polarization) by

10 = Joexp (o)) - exp( ) | (5)

where « is called the charge transfer coefficient and J is the ex-
change current density.

These two equations constitute most of the early primary and
secondary battery models, mostly for lead-acid batteries [58] and
some NiMH cells [60,61]. An advantage of the lumped models is
that the equations are fairly simple and easy to integrate,
resulting in a fast and accurate model suitable for automotive
applications and control design purposes. As an example, the full
NiMH battery model developed by Wu et al. [60] simulates in
milliseconds using today’s computers. When reorganized using a
linear graph theory formulation that results in a more optimized
and compact set of equations, the simulation time reduces a
further 30% [61].

The main drawback of the lumped parameter approach is that
the simple DAEs are insufficient to describe the complex elec-
trochemical processes in most modern batteries produced using
today’s advanced technology, such as Li-ion cells. Rapid advances
in battery research, resulting in new electrode materials and
battery designs, requires better models that can describe more
complex electrochemical and physical processes in greater detail.
For example, one needs to model the spatial distribution of Li*
ions and the electrical potential between the two electrodes to
have an insight into the temperature distribution in a Li-ion cell
or an HEV battery pack. This is where the lumped models fall
short and a distributed model is needed to meet such
requirements.

Newman et al. [62—65] pioneered the development of porous
electrode theory to describe models for Li-ion cells. This method
has become the foundation and standard for most physics-based
battery modelling techniques today and, in many cases, is used
for generating battery testing data for model validations. This
model describes a battery in great detail and considers all the major
electrochemical processes including mass transport and diffusion,
ion distribution, side reactions, temperature effects, and battery
ageing.

Most of the current rigorous battery models are derived from
the porous electrode and concentrated solution theories that
describe charge, discharge, and species transport in the solid and
electrolyte phases across a simplified one-dimensional spatial cell
structure. This 1D model considers dynamics along only one axis
(the horizontal x-axis shown in Fig. C.7) and neglects the dynamics
along the remaining two axes (y-axis and z-axis) [62,63,66—70].
This approximation is applicable to most cell structures as the
length scale of a typical Li-ion cell along the x-axis is on the order of
100 pum, whereas the length scale for the remaining two axes is on
the order of 100,000 pm or more [71].
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In contrast to lumped-parameter modelling, the porous elec-
trode theory uses partial differential equations (PDEs) to describe
the electrochemical processes. In general, these PDEs are derived
based on Fick’s law of diffusion for the active material concen-
tration, Ohm'’s law for electrical potential distributions, and the
Nernst and Butler—Volmer equations. Specifically, the PDEs that
describe the changes in lithium concentration in solid and liquid
phases due to the gradient changes in the diffusive flow of Li* ions
are given by:

acs,k(x’ r, t) - Ds,k 0 2acsﬁk(x7 T, t)
“ o o (r T) ©6)
and
0Ce (X, £) 0 0Ce (X, T)
E‘Ice’T = ™ (Deff,ke’T) +a(1 =t )i (x,8) (7)

where k = p for the positive electrode and k = n for the negative
electrode.

Charge conservation in the solid phase of each electrode can be
described by Ohm’s law

62 @S,k (X7 t)

w2 = WX D) (8)

Oeff k

with boundary conditions at the current collectors being propor-
tional to the applied current density

0Ps 0P
_ ) - _ —=s5n =1 9
Teff,p o Teff,n gy . 9)
0Ps 0Psn
—Oeffp—o = —Oeffn—. =0 (10)
P ox x=L, ox x=Lp+Ls

where the current density I is related to the applied current i and
the surface area A of the electrode as I = i/A.

The effective electronic conductivity can be expressed in terms
of the porosity of the electrode as

Oeffk = Ok (1 — e — é’f,k) (11)

Combining Kirchhoff's law with Ohm'’s law in the electrolyte
phase yields

a(I)s,k(x’ t) aq)e,k(xv t)
Oeffk— ax ~ Keff ko
(12)
2Keff7k(x, f)RT 1 ¢ oln Ce,k ]
+7F 1-t) x

The Butler—Volmer equation describing the relationship be-
tween the current density, concentrations, and over-potential is
given by [68]

05 05

0.5
Jk(x,t) = 2K (Cs,k,max - Cs.,lcsurf) (Cs,kﬁsurf) Celk (x,1)

x [exp(%ﬂs,k(xv f)) —exp (_%MS"‘(X’ t))}
(13)

These partial differential algebraic equations (PDAEs) are
defined separately for each of the positive electrode, separator, and
negative electrode regions and are coupled with each other by the

continuity in the boundary conditions. In total, there are 14 non-
linear PDAEs with 14 unknowns.

The traditional methods for solving battery PDEs were mainly
based on the finite difference technique, which approximates
continuous quantities as being constant within discrete evenly-
spaced intervals along the x axis, and approximates the de-
rivatives based on a Taylor series expansion. As an example, the
second derivative of the Li™ concentration in liquid phase can be
approximated as

PCek(®,8) _ Ciya(t) = 26i(8) + i (1)

ox2 h2 (14)

where segments along the x axis are indexed with i, and h is the
length of a segment. When this is substituted into Equation (7) it
results in

() = 2¢i(t) +¢i_1(t)

ace,k (X, t)
ka7 h2

Cit1
ot = DeffJ(

&

+ a (1 = t)i(0)
(15)

The boundary conditions can be approximated using forward
and backward difference forms as

ace,k(xv t) G 1(t) — ¢i(t)

X lxo R (16)
dCe (X, ) . ci(t)

K lep,  Gioa(0) (17)

The end result is a set of N linear differential equations, with N
being the number of discretization segments. The finite difference
method is simple, yet to obtain good accuracy N must be quite large
due to the loss of precision when non-linear equations are linearly
approximated. This makes solving the whole battery system in real-
time difficult using the finite difference method.

During the last few years, many model reduction methods have
been developed around this porous-electrode theory to make the
battery models suitable for real-time applications. These ap-
proaches can be classified into two different groups: (1) trying to
reduce the order of the model while preserving the fidelity of the
system, and (2) trying to neglect some the model properties with a
loss of information.

The first group consists of mathematical techniques to better
handle the model PDEs or to convert the PDEs into a simpler form
that can be integrated faster using numerical solvers. Some of the
most well-known methods are based on temporal-spatial separa-
tion techniques, including the collocation method and Galerkin's
method. The idea behind these methods is similar and is based on
finding the approximate numerical solution to a non-linear PDE
using a set of orthogonal basis functions which turns the PDE into
coupled set of ODEs. The real utility of these methods comes from
their application to non-linear PDEs. Take the liquid phase con-
centration PDE in Equation (7) as an example, the Galerkin idea is to
start off with the spatial decomposition and allow time-varying
coefficients:

N
p(x,t) = > mi(t)e;(x) (18)
j=1

where N is the number of node points, «j(x) are the orthogonal basis
functions that have been carefully chosen to satisfy the boundary
condition of (7), and 7; are the unknown functions of time to be
solved for. Chebyshev polynomials or sine functions are good
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candidates for the basis function. Let’s assume that «j(x) = cos(jr/
Lx). Inserting this approximate solution into the full PDE in (7) gives

N dn;(t N d?a;(x
R0 = )0 S - Dare Y- S o
j= j=

+a (1 -t)/=0 (19)

This function is known as the residual. In Galerkin’s method, we
replace the condition that the residual should be approximately
zero by the condition that the residual should be orthogonal to the
set of basis functions. That is, for j = 0,...,N we multiply the residual
by the basis function cos(jm/Lx) and integrate it over x, then set the
result to zero. In the collocation method, we choose a finite set of
points where the exact solutions must be matched. These points are
called collocation points and at these points, the residual becomes
zero. The collocation and Galerkin’s techniques both result in a set
of ODEs which, when solved, give the approximate numerical so-
lution of the time-varying unknowns. These unknowns can be
substituted into the approximate solution in (18) to obtain the
order-reduced form of the PDE.

The techniques outlined above have been used in the works of
Subramanian et al. in Refs. [72—75]. As one of the pioneers in
battery modelling, Subramanian et al. developed a wide range of
methods for battery model reduction and a real-time simulation
model using a combination of perturbation techniques and heu-
ristic simplifications [72—74]. They reported that the wall time for
their real-time simulation model for a single process was around
100 ms to simulate a complete charge—discharge cycle. To derive
the lower-order model using this method, one needs to carry out
preprocessing and have a priori knowledge of the behaviour of the
system under different conditions, which makes their method less
flexible than desired. In recent research, Ramadesigan et al.
expanded Subramanian’s collocation method to simulate the
electrochemical-thermal behaviours of a battery pack in real-time
[75] and used Subramanian’s reformulated model for estimation
of battery capacity fade (decrease in SOH) [76].

Other methods, including the Chebyshev polynomial method
[77,78], the residue grouping method [79,80], proper orthogonal
decomposition method [81], and Padé approximation [82] have
also been used to derive reduced-order models for Li-ion batteries

In the methods using Chebyshev polynomials, the state vari-
ables are approximated by linear combinations of several Cheby-
shev polynomials, and then an approximate model is projected
onto a subspace formed by these orthogonal Chebyshev poly-
nomials to form a reduced-order model, which can then be solved
for the unknown coefficients in the truncated expressions.

With the residue grouping method, Smith et al. were able to
reduce computational time by roughly 20 times compared to the
full-order model [79]. Smith et al. [83] also developed a control-
oriented one-dimensional (1D) electrochemical model by using
the method of residue grouping. Their transfer functions are rep-
resented by a truncated series of grouped residues with similar
eigenvalues.

Cai and White [81] proposed an approach based on proper
orthogonal decomposition for tackling the problem by using two
steps of approximation: PDE discretization, and truncation of the
number of orthogonal modes. Cai and White showed that the
order-reduced model simulated seven times faster than the full-
order model for a similar level of accuracy.

Some of the most recent efforts for model reduction in this
category include the work of Dao et al. [84], who applied Galerkin’s
method with sinusoidal shape functions that has resulted in a fast
model suitable for real-time vehicle applications. Dao et al. also
applied the simplified battery models to a number of high-fidelity

EV and HEV systems [85] which simulated several orders of
magnitude faster than real-time.

Most recently, Guo and White [86] and Hu et al. [87] applied
model reduction techniques to reformulate Li-ion equations as a
state-space model for system identification. Their models can be
applied for both spherical and non-spherical particles using a
transfer function calculation based on step response and complex
exponential methods. Guo and White [86] showed that the
approximate solution can provide accuracy and time-efficiency in
simulation. They also indicated that the approximate solution
simulates faster at high current rates and shows better long-time
accuracy than the short-time solution.

The methods outlined above result in fast models with little
loss of information and are, therefore, very suitable for applica-
tions that require high model fidelity. However, not all applica-
tions require high fidelity over a wide range of battery operating
conditions. For example, many applications only need model ac-
curacy with low-to-medium charge/discharge currents. In this
case, techniques such as the electrode averaging method [88] or
volume-averaging technique [89] can be used to produce a fast
chemistry-based model. Speltino et al. also made several simpli-
fications such as neglecting solid concentration distribution and
assuming constant electrolyte concentration. As a result, their
model simulated quickly, but with a heavy loss of information
[88,90].

An interesting application of porous electrode theory to EIS is
in the papers of Sikha and White [55,56] where they develop
analytical expressions for the impedance spectrum of a Li-ion
cell.

Due to the small signal amplitude used in EIS, they are able to
use a small-signal approximation and solve the electrochemical
equations in the Laplace domain. With this they get a closed-form
analytical expression for the impedance spectrum that sheds light
on the contribution of the different physical processes to the
resulting spectrum, and allows the spectrum to be calculated under
different limiting conditions.

Their model produces results that are very close to numerical
simulations, and are an order of magnitude faster. Due to the ac-
curacy of the model, physical parameters of a battery can be esti-
mated using experimental data.

5. Simulation example

The parameters for both circuit and electrochemical models can
be tuned so that the simulations produce very similar results. An
equivalent circuit model is usually easier to build, but might be more
difficult to expand and incorporate some of the battery physical
behaviours. Hence, one has to decide what battery model to use
depending on the type of application. As a comparison between the
two modelling approaches, the simulation results from both equiv-
alent circuit and electrochemical models are shown in Fig. C.8, and
compared to experimental data taken from Fig. 5 of Ref. [24]. The
equivalent circuit model, its parameters, and its current discharge
curve are the same as those used by Chen and Rincén-Mora in Ref.
[24], and the electrochemical model’s parameters have been tuned
to match it. The sizes of the electrodes on the electrochemical model
were tuned to ensure that the two models have the same capacity.
See Table D.1 for the parameters used in the electrochemical model,
and Appendix A for the parameters used in the equivalent circuit
model. We were able to make the two curves match up closely with
each other with little effort in parameter tuning.

To investigate the sensitivity of the models to parameter un-
certainty or variation, a sensitivity analysis was performed on the
equivalent circuit and electrochemical models used to generate
Fig. C.8. Parameters were assigned to the equivalent circuit model
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equations presented in Appendix A, yielding the following
equations:

Ceap = P

Voc = P2 xp(P3Vsac) + Pg + PsVsoc + PsVioe + P7Veo
Rseries = Pg exp(PoVsoc) + P1o

Rshort = P11 €xp(P12Vsoc) + P13

Cshort = P14€XP(P15Vsoc) + P16

Riong = P17€Xp(P18Vsoc) + P19

Ciong = P20€XpP(P21Vsoc) + P22

Parameters were also assigned to the electrochemical model.
The non-constant parameters that had non-zero sensitivities were
assigned the parameter names appearing in Table D.2.

The model sensitivities were found using the RMS difference
between the simulated voltage, Viim(t), and the experimental
voltage, Vexp(t), using the following equation:

Lend

/ (Vsim(t) - Vexp(t))zdt
0

RMS =

and the sensitivity for parameter » is defined as:

 RMS, —RMS, 7,
B = 7RMS, 1, — g

where vp, and »g are the perturbed and nominal parameter values,
respectively, and RMSp, and RMSg are RMS values corresponding to
the perturbed and nominal v values, respectively. The sensitivity
represents the fraction change in the RMS fit of the simulation to
the experimental data given a fraction change in one of the pa-
rameters of the simulation.

By using vp = 1.01yg for each of the parameters in the equivalent
circuit and electrochemical models, and tenqg = 20,000 s for the
simulation, Fig. C.9 was generated, and used the data from Fig. 5 of
Ref. [24] as the experimental data. Parameters that had zero
sensitivity were omitted from the figure.

As can be seen from Fig. C.9, the parameters of greatest sensitivity
for the equivalent circuit model are the total battery capacitance and
the parameters expressing the polynomial component of the open
circuit voltage, followed by the constant parts in the expressions of
the resistor and capacitor components. The parameters in the
exponential functions are of much lower sensitivity than the others.

For the electrochemical model the electrode area, thickness,
radius of intercalation, volume fraction, and maximum Li* ion
concentration for the positive and negative electrodes were the
most important, with the separator being significantly less sensitive.

In EV/HEV simulations, the Li-ion models simulate quickly, as
anticipated. As an example, we simulated an EPA drive cycle with a
series HEV model comprising a mean-value engine, power control
unit, complete cooling system, and battery pack, a block diagram of
which can be seen in Fig. C.10. The battery pack consisted of 70 Li-
ion cells which were modelled from the rigorous PDAE, and the
results of the simulation are plotted in Fig. C.11.

Using a 2.0 GHz PC laptop computer and a Runge-Kutta numeric
integrator with 1 ms time step, it took 12 s to simulate the model in
MapleSim™6.0.

The execution time is reduced largely due to the symbolic model
reduction techniques performed by MapleSim, which reduces the
number of symbolic equations from 874 to 79 with no loss of
fidelity.

6. Conclusions

Battery modelling is a broad and complicated field, with no single
model capable of meeting the requirements for all applications.

Two of the most common techniques, equivalent-circuit
modelling and electrochemical modelling, were discussed in
detail, and battery models suitable for real-time simulation, control
systems, battery state estimation, state of health, thermal effects,
and high-fidelity modelling were touched upon.

Which model to use in one’s application depends on the
application constraints and the specific quantities of interest one is
interested in simulating.
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Appendix A. Equivalent-circuit model parameters

Fig. C.12 and the following equations show the circuit diagram
and circuit parameters used in the equivalent circuit model of
Fig. C.8. The charge storage circuit is on the top, and the time-
response circuit is on the bottom. The current I(t) flowing
through the time-response circuit is made to flow in the charge
storage circuit. The voltage across the charge storage circuit, Vs,
represents the SOC. The state of charge determines the values of the
circuit elements in the time-response circuit. The terminals of the
time-response circuit represent the terminals of the battery. The
parameters used in this model are identical to those used by Chen
and Rincén-Mora [24].

Ccap = 3060

Voc = —1.031 exp(—35Vsoc) + 3.685 + 0.2156Vsoc
—~0.1178V2 +0.3201V3 .

Reeries = 0.1562 exp(—24.37Vioc) + 0.07446
Report = 0.3208 exp(—29.14Vioc) + 0.04669
Cehort = —752.9 exp(—13.51Vsoc) + 703.6
Riong = 6.603 exp(—155.2Vsoc) + 0.04984

Clong = —6056 exp(—27.12Vsoc) + 4475

Appendix B. Nomenclature

Ak surface area of electrode k (k = p,n,s), [m?]

ay specific surface area of electrode k (k = p,n), [m~]

bruggy Bruggman coefficient of region k (k = p,n), [1]

Ceapprx  assumed solution for electrolyte-phase concentration of
Li*, [mol m~3]

Cek electrolyte concentration in region k, [mol m—3]

Ce k0 initial electrolyte concentration in region k, [mol m‘3]
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concentration of Li* ions in the intercalation particle of
electrode k, [mol m~3]

initial concentration of Li* ions in the intercalation
particle of electrode k, [mol m~3]

average concentration of Lit ions in the intercalation
particle of electrode k, [mol m~3]

concentration of Lit ions on the surface of intercalation
particle of electrode k, [mol m~3]

electrolyte diffusion coefficient, [m? s]

Li* ion diffusion coefficient in the intercalation particle of
electrode k, [m? s]

Faraday’s constant, [C mol~]
applied current density, [A m™
wall-flux of Li* on the intercalation particle of electrode k,
[mol m2 s 1]

intercalation/deintercalation reaction-rate constant of
electrode k, [mol%° m?® s71]

total thickness of cathode—separator—anode, [m]
thickness of region k, [m]

negative electrode

number of node points for Galerkin’s approximation
positive electrode

volume-averaged concentration flux of Li* ions in the
intercalation particle of electrode k, [mol m~3 s~1]
radial coordinate [m]

universal gas constant

residual function for concentration of Li* in electrolyte-
phase

radius of intercalation of electrode k, [m]

residual function for electrical potential in electrolyte-
phase

separator

Li* transference number in the electrolyte

absolute temperature, [K]

open-circuit potential of electrode k, [V]

spatial coordinate, [m]

charge transfer coefficient

]

Keffk

Pi
Ok
Oeffk
]

q)O
De

q)e.apprx

D

volume fraction of region k

volume fraction of fillers in region k

over-potential, [V]

time-dependent variable of i basis function for
electrolyte-phase concentration, [s]

dimensionless concentration of Li* ions in the
intercalation particle of electrode k (6k = Csk/Cs k. max)
ionic conductivity of electrolyte, [S m™!]

activity coefficient

effective ionic conductivity of the electrolyte in region k,
[Sm™]

stoichiometric coefficient

time-dependent variable of i" basis function for
electrolyte-phase potential, [s]

electronic conductivity of solid phase of electrode k,
[Sm™']

effective electronic conductivity of solid phase of
electrode k, [S m™!]

electrical potential, [V]

electromotive force at standard conditions, [V]
electrolyte-phase potential, [V]

assumed solution for electrolyte-phase potential, [V]
solid-phase potential, [V]

Appendix C. Captions and figures
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Fig. C.7. Anatomy of Li-ion cell.
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+ Table D.2
Electrochemical sensitivity symbols and names
Cea I(t
P ( ) Vioc Symbol Parameter Symbol Parameter Symbol Parameter
_ name name name
R series Rshort Riong An An &fn efn Ly Ln
+ Ap Ap ep efp Ly Lp
A As en en L Ls
I(t Vbattery Ce,0 ce0 £p ep Rsn Rsn
Chort Clong ( ) Cs,nmax csnmax e es Rsp Rsp
{1— Csp.max cspmax
Fig. C.12. Battery circuit.
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