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ABSTRACT — A model for forward dynamic simulation of the rapid tapping motion of an index finger
is presented in this paper. The one-degree-of-freedom finger model is actuated by two muscle groups
(one as a flexor and the other as an extensor). The goal of this analysis is to investigate the maximum
tapping motion frequency that the modelled muscles can achieve. To solve the muscle force-sharing
problem, each muscle excitation signal is parameterized by a sixth-order polynomial function of time.
The results show that the model can match the maximum achievable tapping frequency observed in
experimental studies. Using this modelling technique, we can postulate on the mechanisms that limit
human capabilities in producing motion.

1 Introduction

Human motions are produced by muscle contractions. To study the human motions, one should solve a problem
where the number of unknowns (muscle contraction levels) is much greater than the number of degrees-of-freedom
(DoF). This problem is usually referred to as the muscle force-sharing problem in musculoskeletal system mod-
elling, for which there is no unique solution. To pick one solution out of the many possible solutions, extra criteria
should be considered. A common practice is to search for a solution that minimizes some physiological index
through an optimization process.

When the goal is to find the optimal time-history of a signal (e.g. muscle forces or activations through the
course of an action) one must solve an Optimal Control Problem (OCP). In the books by [1, 2, 3], several ap-
proaches for solving a general optimal control problem are presented, including linear quadratic regulator (LQR)
control, linear quadratic Gaussian (LQG) control, variational approaches such as direct collocation (DC), model
predictive control (MPC), and parameterization. For all techniques, pros and cons are involved. It should be noted
that not all of those approaches are applicable to musculoskeletal modelling; for instance, LQR and LQG are for
linear systems only, MPC normally works in linear or linearized systems with quadratic optimization form only,
and DC requires a complicated implementation, and has been scarcely applied recently [4].

Dynamic Optimization (DO), in spite of high computation cost, results in more realistic results as it considers
all the time-course in the optimization procedure, and solves for the time-history of the decision signals. Therefore,
in contrast to Static Optimization (SO), DO takes into account the effect of previous time instants on the current
instant of simulation.

Local parameterization has been used by a few researchers, e.g., [5, 6]. Locally parameterizing the control
signals or state variables sounds like a promising approach as it captures the local dynamics of the system as
long as the local considered windows are small enough. However, by increasing the number of parameterization
windows, the scale of the optimization problem, and therefore CPU time, increases significantly.

Using a control signal parameterization method, the OCP is converted to a nonlinear optimization problem by
using parametric pattern functions as the control inputs. Different parameterization functions might be used, based
on the information of the system, degree of nonlinearity, and a priori data. Global and local parameterization might
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Fig. 1: The schematic of the musculoskeletal finger model

be utilized. For instance, different types of functions can be used for the global control parameterization, such as
Fourier series [7, 8, 9], or local functions within finite windows of the simulation using splines [6]. Although
global parameterizing, compared to local parameterization, seems to be possibly missing some local dynamics of
the system, this approach will provide good sub-optimal results in general. Also, for applications with no drastic
changes in the control signals (a priori knowledge of the system behaviour is required), global parameterization
will output reasonable results. In addition, global parameterization will reduce the number of decision variables
considerably, which results in significant reduction of the CPU time.

The goal of this study is to develop and present a musculoskeletal model for the index finger, which can be
used to investigate the dynamics of a fast tapping movement, and to estimate the maximum tapping frequency. The
forward dynamics nature of the simulations enables us to study what-if scenarios that are necessary in design op-
timization and ergonomics. For this purpose, we have used dynamic optimization using a global parameterization
to solve the optimal control problem.

In this paper, first we introduce the details of the musculoskeletal index finger model. Then the optimization
problem and our approach to solve it is presented. Selected simulation results and the discussion are presented
next, which are followed by the paper conclusions.

2 Finger Tapping Musculoskeletal Model

In this section, the musculoskeletal model for forward dynamic simulation of the rapid finger tapping motion is
presented. The model consists of a rigid index finger rotating around the metacarpal-phalangeal joint (e.g. a
one-dof pendulum, see Fig. 1) with two muscle groups: one as flexor and the other as extensor.

The muscle model is a three-element Hill model based on [10]. The activation and contraction dynamics
expressions employed for this model are presented in the Appendix.

The following assumptions are made for the finger modelling and simulation:

1. The maximum isometric force Fm
max is assumed to be 100 N for both the extensor and the flexor muscles. It

seems reasonable for the flexor muscle since it is supposed to act as a resultant of all flexor muscles. For the
sake of similarity of the flexor and the extensor, the same value is assumed for both.

2. Anthropometric properties of the index finger, including length, mass and moment of inertia are taken from
[11]. The composite moment of inertia is calculated given the moments of inertia of the three phalanges of
the index finger.

3. Muscle moment arms are assumed to be constant during the motion because of small finger rotation ampli-
tude, and both radii are assumed to be 10 mm, which agrees with the dimensions of metacarpophalangeal
joint [12].

The dynamics of the index finger can be summarized as follows:

θ̈ =
1
I
(mgd cos(θ)+ r f Ff − reFe) (1)

where θ is the index finger angle (positive in flexion direction), and m and d are the finger mass and the centre of
mass location, respectively. r f and re are the flexor and extensor moment arms, which are multiplied by flexor and
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parameter value

I 2×10−5 kg.m2

m 0.25 kg
d 0.040 m

Fmax 100 N
Lopt

ce 0.178 m
r f ,re 0.01 m

Tab. 1: List of simulation parameters

extensor muscle forces, Ff and Fe, to produce the joint moments. The list of all the simulation parameters and their
numerical values are listed in Tab. 1.

For the tapping motion, the desired joint angle is defined as follows:

θd(t) = 0.21sin(ωdt) (2)

where 0.21 rad is the amplitude of the considered motion according to [13], and ωd = 2π fd , in which fd is the
frequency of the sinusoidal motion.

Forward dynamics is the simulation approach. The inputs to the simulations are the two muscle excitation
signals, which result in muscle forces. The equations of motion are then integrated forward in time to find the
changes in finger kinematics. The forward dynamics simulation allows us to study the maximum frequency of
the tapping motion through mathematical modelling. This is the advantage of forward dynamics over inverse
dynamics, since “what-if” questions can be answered.

3 Optimization Problem Description

To define the control signals through the course of the tapping motion, they are globally parametrized by 6th-order
polynomials:

u =
6

∑
i=0

pit i (3)

where pi is the ith polynomial coefficient. The first reason for assuming such a pattern is that filtered, rectified, and
normalized EMG signals are quite smooth and can be curve-fitted by a suitable continuous mathematical function
such as a polynomial, and the second is that assuming a continuous and continuously differentiable function like
a polynomial will help the optimizer to meet the nonlinear constraints on the excitation signal within the opti-
mization problem definition. Thirdly, assuming a parametric continuous function may possibly lead to symbolic
simplifications and analytical solutions.

Therefore, the optimizer job is to look for the optimal coefficients of the two control signals, for a total of
14 variables. A set of nonlinear constraints will be imposed to the problem to meet the bounds on the neural
excitations, i.e., 0≤ u≤ 1.

The objective function for simulating this model is defined as a linear combination of two cost functions
J = µJ1 +(1−µ)J2:

J =
µ

τd

2

∑
j=1

∫
τd

0
a2

j dt +
1−µ

τd σ(θ 2
d )

∫
τd

0
(θs−θd)

2 dt (4)

where the first term in the objective functional describes the physiological effort index based on [14], whereas
the second term accounts for the tracking error. In (4), τd = 1/ fd is the desired motion period, j is the muscle
index, θs and θd are the simulated and desired joint angles, respectively, and σ refers to standard deviation. The
weight factor µ indicates the relative importance of the physiological term against the tracking error. Since in this
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Fig. 2: The simulation results for three different frequencies: 2 Hz (top), 6 Hz (middle), and 7 Hz (bottom). Column (a) shows the tracking performance,
and columns (b)-(d) show the muscle force, excitation, and activation respectively.

simulation, tracking of the motion is much more important, the weight factor is assumed to be µ = 0.1. It must be
noted that the objective functional is written so that each term is dimensionless.

The optimization procedure was similar to that used in [7, 8, 9]. In brief, Sequential Quadratic Programming
(SQP) as implemented in the fmincon function in the Optimization Toolbox of Matlab R© is used as the optimizer.
For the initial guess needed in SQP, results of the same case using a Genetic Algorithm as the optimizer were used.
For more details on the optimization set up and the convergence criteria, refer to [7, 8].

4 Results

Different sets of simulations were run. In the first set of simulations, the major focus has been on motion frequency
variation. A separate set of simulations was also done to see the finger mass effect. Also, it was investigated how
the optimization weight factor would affects the results.

The first set of results is presented in Fig. 2. In this investigation, the focus has been on how increasing the
motion frequency affects the results. The purpose was to find the maximum frequency that this biomechanical
system could follow. Motion frequency started from 2 Hz (top row in Fig. 2) and was increased to 3, 4, 5, 6
(middle row), and 7 Hz (bottom row), where it was observed that the system was not able to produce the desired
motion any more. The plots show θd and θs (desired and simulated motions), muscle forces, excitations, and
activations (respectively, from left to right). When the system fails to follow the desired motion, the value of the
total cost function increases significantly (see Tab. 2), and the created motion differs from the desired motion.

A separate study was also done to investigate the sensitivity of the simulation results to the finger mass. To this
goal, finger mass and moment of inertia are reduced to 50%, and the optimal control problem is resolved for this
case at fd=2 Hz. Optimal muscle excitations, activations, and forces of this case are shown in Fig. 3. Comparing
these results with the same case in Fig. 2 (top row, fd=2 Hz) shows that the quality of the motion tracking is the
same, but the excitation values in the case with 50% mass is roughly half the original values. This is reasonable
since the dominant term in the dynamics of the finger is the inertia. Moreover, the motion velocity is not high
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Frequency (Hz) J J1 J2

2 0.041 0.101 0.035
4 0.196 0.145 0.201
5 0.211 0.176 0.215
6 0.898 0.109 0.986
7 1.553 0.097 1.714

Tab. 2: Variation of motion frequency and cost function values
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Fig. 3: Optimal results for fd=2 Hz and 50% of index finger mass: (a) motion tracking, (b) forces, (c) activations, and (d) excitations

enough to significantly affect the force-velocity relation.

5 DISCUSSION

There are a number of studies in the literature on finding the maximal frequency or speed at which a finger can
move. Kuboyama et al. [15] mentioned 6.46 Hz while Morrison and Newell [16] reported 6.92±0.56 Hz. The
results of this study imply that this maximal frequency is around 6 Hz which is close to the available values in the
literature. These mentioned references have measured the desired value experimentally, so the maximal motion
frequency extracted from the results of this study predicts the experiments reasonably well.

When fd=2 Hz, the simulated and the desired motions are identical, resulting in a small value for J2 (see
Tab. 2). Furthermore in this small frequency, the extensor activity is much more than the flexor. This is due to the
fact that the muscles are uni-articular (they span only one joint), and theoretically no co-activation should occur
in the optimal results [17]. The results imply that at a low frequency, the gravity can produce enough flexion
acceleration; thus, the flexor muscle has negligible activity.

As the motion frequency increases, the ability of the finger to follow the desired motion decreases, which can
be observed from the increased J2 values in Tab. 2. Also the physiological effort to track the desired motion is
increased (greater J1 value). From 6 Hz on, it is observed that, although the total cost function increases, the
physiological term, J1, decreases; it means that in high frequencies, increasing the muscle activations does not help
to better follow the desired trajectory. By looking at Fig. 2, it is seen that the optimization process has found the
simulated trajectories at the least activation efforts, although those trajectories do not look similar to the desired
ones.

Multiple phenomena may contribute to the inability of the finger to follow the desired trajectory. The excita-
tion/activation coupling model causes a time delay between neural excitation and activation signals, as well as a
small scaling between these two signals [18]. These dynamics are an important cause of the inability to follow
fast oscillations. The excitation/activation dynamics essentially performs as a low-pass filter with bandwidth of
∼4.5 Hz (defined as 3 dB amplitude attenuation). At 6 Hz, the amplitude attenuation is 4 dB; i.e., the amplitude of
the activation signal is 63% of that of the excitation.

The attenuation of the activation signal amplitude is exacerbated by the muscle properties. A muscle’s force
production capacity drops as the muscle contraction velocity increases (see Fig. 4). At high motion frequencies,
the required contraction velocity is more than the velocity at which the muscle can produce the force to satisfy the
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Fig. 4: The force-length-velocity relation in the muscle model

equations of motion. Figure 4, which shows the force-length-velocity relationship, implies that when the concentric
contraction velocity increases, the force production ability decreases. Therefore, the muscle can move faster only
if it can produce enough force to satisfy the equations of motion. At around 6 Hz (the maximal frequency), the
muscle must contract with the maximum velocity of 79.2 mm/s, which along with the filtering effect, will lead to
small force generation ability. Since the muscle cannot create enough force at such a velocity in order to satisfy
the equations of motion, it is not able to move at this velocity, and can not track the desired motion.

The simulation with altered finger mass showed that the modelling framework is able to simulate the system
response even with a large change in model mass. This is a necessary feature for subject-specific simulations. With
a more detailed sensitivity analysis, we can investigate the effects of system parameters on the system dynamics, as
well as the intended outcomes. For example, including contact dynamics in the musculoskeletal models can allow
for design optimization of musical instruments, such as the piano keys, or enhance the ergonomics of computer
keyboards.

6 CONCLUSIONS

In this paper we presented a musculoskeletal modelling framework to study the fast finger tapping motion. The
forward dynamics simulations show that maximum achievable motion frequency is roughly 6 Hz, matching the
experimental observations. We have made arguments that the limiting factor in this case is the excitation/activation
filtering effect, as well as the inability of muscles to produce enough force at high contractile velocities. Fur-
ther studies using non-linear system analysis tools can provide more insight about the limits and requirements of
musculoskeletal systems during task executions.
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Appendix: Thelen’s Muscle Model Formulation [10]

Excitation/Activation Dynamics

The excitation/activation dynamics is described as:

ȧ(t) =
u−a

τ(u,a)
(5)

where

τ(u,a) =

{
t1â u≥ a
t2/â u < a

(6)

and

â = 0.5+1.5a (7)

The parameter values of t1 = 15 ms and t2 = 50 ms are taken from [10].

Tendon Force

The tendon force is normalized to muscle maximum isometric force Fm
max, and is represented as an exponential

function of the tendon strain:

f̃ t =


f̃ t
toe

ektoe−1
(e

ktoeε t

ε t
toe −1) ε t ≤ ε t

toe

klin(ε
t − ε t

toe)+ f̃ t
toe ε t > ε t

toe

(8)

where ε t is engineering strain of tendon (calculated based on the slack length lslack), ε t
toe is a limit after which the

tendon relation switches to the linear expression, ktoe is a shape factor, klin is the linear slope of the second condi-
tion, and f̃ t

toe is the function value at ε t=ε t
toe. Values of the parameters are adopted from [10]: ktoe=3, f̃ t

toe=0.33,
ε t

0=0.04, ε t
toe=0.609ε t

0, and klin=1.712/ε t
0.

Parallel Elastic Element

The relation for muscle passive force normalized to muscle maximum isometric force Fm
max is expressed as:

f̃ pe =
e

kpe(l̃ce−1)
εm

0 −1
ekpe−1

(9)

where l̃ce is the muscle fiber length normalized to lce
opt , kpe is a shape parameter set to 5, εm

0 is called the passive
muscle strain and adopted to be 0.6 (for young adults).

Force-Length-Velocity Relation

The force-length relation is written as:

f ce
isom = e

−
(l̃ce−1)2

γ (10)
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where γ is a shape factor and is set to be 0.45.
Afterwards, the total force-length-velocity in this muscle model can be formulated as the following:

vce =(0.25+0.75a)vce
max

f̃ ce−a f ce
isom

b
(11)

where

b =


a f ce

isom + f̃ ce/A f f̃ ce ≤ a f ce
isom

(2+2/A f )(a f ce
isom f̂ − f̃ ce)

f̂ −1
f̃ ce > a f ce

isom
(12)

Here, vce is the fiber velocity (velocity of CE element), f̃ ce is the force of CE element normalized to maximum
isometric force, f̂ is the normalized asymptotic eccentric force (equal to 1.4 for young adults), A f is a shape
parameter (adopted to be 0.25), vce

max=10 lce
opt m/s is the maximum contraction velocity of the muscle fiber.
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