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Abstract. By combining linear graph theory with the principle of virtual work, a dynamic formula-
tion is obtained that extends graph-theoretic modelling methods to the analysis of flexible multibody
systems. The system is represented by a linear graph, in which nodes represent reference frames on
rigid and flexible bodies, and edges represent components that connect these frames. By selecting
a spanning tree for the graph, the analyst can choose the set of coordinates appearing in the final
system of equations. This set can include absolute, joint, or elastic coordinates, or some combination
thereof. If desired, all non-working constraint forces and torques can be automatically eliminated
from the dynamic equations by exploiting the properties of virtual work. The formulation has been
implemented in a computer program, DynaFlex, that generates the equations of motion in symbolic
form. Three examples are presented to demonstrate the application of the formulation, and to validate
the symbolic computer implementation.
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1. Introduction

A main goal of multibody dynamics is to develop formulations that automatically
generate the equations of motion for complex mechanical systems. It has been
shown [1] that, for systems of rigid bodies, a graph-theoretic (GT) formulation
can generate a smaller set of equations than those obtained using traditional ab-
solute and joint coordinate formulations. Furthermore, the analyst can choose the
coordinates to appear in the equations of motion, by selecting a spanning tree for
the system graph. GT-based approaches explicitly separate the linear topological
equations for the entire system from the nonlinear constitutive equations for indi-
vidual components, resulting in very modular and efficient algorithms [2]. These,
and other positive features of GT formulations, have been addressed in a number
of previous analyses of rigid multibody systems [3–5].

However, these systematic procedures have yet to be extended to the dynamic
analysis of flexible multibody systems, with the exception of two ad hoc formula-
tions. In the first, Richard and Tennich [6] incorporate models of Euler–Bernoulli
beams experiencing small deflections relative to a local frame. The change in
moments of inertia of these components is neglected, as is the coupling between
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the gross motion of the frame and the deformations of the elastic beams. Their
formulation is essentially the same as earlier kineto-elastodynamic formulations
[7, 8].

In a subsequent publication, Tennich [9] uses a finite element representation of
flexible beams and shells relative to a local moving frame. Although the flexibility
effects are treated quite rigorously, the linear graph of the system is only used
to generate kinematic constraint equations for the absolute coordinates employed
by the author. The dynamic equations are generated using an assembly procedure
very similar to that proposed by Shabana [10], which does not require (or exploit)
the topological equations available from the GT model. As a result, a very large
system of differential-algebraic equations (DAEs) are obtained for relatively simple
systems.

In a previous paper [11], we have proposed and validated the use of virtual
work as a graph-theoretic ‘through variable’, a choice that is not intuitive to GT
practitioners. By using virtual work (VW) as a new through variable, we have
developed a GT formulation that is capable of automatically generating the motion
equations for both rigid and flexible multibody systems, given only a description of
the system as input. In this paper, the details of this new GT formulation are given,
and its application to the dynamic analysis of rigid and flexible multibody systems
is discussed.

In the next section, our linear graph representation of a multibody system is
presented, and the associated topological equations are discussed. In order to create
a system graph that results in correct kinematic and dynamic equations for any
choice of spanning tree, it is necessary to introduce a new ‘dependent virtual work’
element. Thus, our linear graph is somewhat different from the representations
used in previous graph-theoretic approaches [1–6]. The constitutive (or ‘terminal’)
equations for the dependent virtual work element and other components in the
system model are given.

By combining the system topological equations with the elemental constitutive
equations, a systematic formulation procedure is obtained. The details of this for-
mulation are presented and a symbolic computer implementation, developed using
Maple and named DynaFlex, is described. A planar slider-crank mechanism is used
to demonstrate the steps in the formulation procedure. The DynaFlex program has
been validated by its application to a number of benchmark multibody systems;
two spatial examples are presented here. The first is an open-loop system of ri-
gid bodies, while the second is a spatial slider-crank mechanism with a flexible
connecting rod.

2. System Representation by Linear Graph

Our linear graph representation of a multibody system is most easily described
by means of an example: the planar slider-crank mechanism shown in Figure 1.
The system consists of only two rigid bodies, a crank and a connecting rod, with
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Figure 1. Planar slider-crank mechanism.

Figure 2. Graph for slider-crank.

mass centersC1 andC2, respectively. A driving torqueT causes the crank to rotate
about the revolute jointJ1, and a second revolute jointJ2 attaches the crank to
the connecting rod. The connecting rod is in turn attached to the ground by a
revolute-prismatic jointJ3, i.e. a pin moving in a horizontal slot. The variablesα1–
α3 represent angular displacements of the three joints, whiles is the translational
displacement of jointJ3.

The linear graph representation of the slider-crank is shown in Figure 2. As in
previous graph-theoretic models [1, 4], nodes (or vertices) are used to represent
reference frames in the system, while edges (lines) represent physical elements
that connect these frames. Thus, edgee22 represents the position and orientation
of a reference frame at the distal end of the crank relative to a reference frame at
C1. A similar interpretation applies to the other ‘rigid-arm’ elementse21,e23, and
e24. Edgese61 ande62 represent revolute jointsJ1 andJ2, respectively, while the
compound revolute-prismatic jointJ3 is represented by edgese64 (for translation)
ande63 (for rotation). Edgese11 ande12 represent the motion of the two rigid
bodies relative to the inertialXY frame, represented by the datum node, and edge
T is the driving torque.
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Similar to conventional graph-theoretic representations, the structure of the
physical system is easily seen in the linear graph; this point has been emphasized
by drawing the crank and connecting rod in dotted lines on top of the graph. Unlike
some previous approaches though, a single linear graph is used to represent both
translational and rotational motions of the individual components. This provides an
advantageous simplification of the graph representation. This is also a disadvantage
though, since different spanning trees cannot be selected for individual translational
and rotational graphs in order to further reduce the number of kinematic equations
in a systematic manner [1].

A second difference between previous linear graphs and that shown in Figure 2
is the appearance of ‘dependent virtual work’ elementse71–e75. They are shown
in dashed lines because they can be automatically added to the system graph once
the topology is defined, as explained below. Quite simply, they must be added to
the system graph in order to generate the correct topological equations at every
vertex, as described next.

2.1. DYNAMIC EQUATIONS: VIRTUAL WORK

There are two main types of topological equations that can be automatically gen-
erated from any graph: the vertex equations and the circuit equations. The vertex
equations, from which the cutset and chord transformation equations are obtained,
represent a balance of through variables at every node in the graph. They take the
form of Kirchoff’s current law for electrical systems, and provide dynamic equilib-
rium equations when used with multibody systems. For the slider-crank example,
the vertex equation for the node representing the distal point of the crank is

F 22+ F 72− F 62 = 0, (1)

by using conventional through variables: force vectors. WithF 72 defined to be zero
for the dependent virtual work element, it is clear that the resulting vertex equation
F 22 = F 62 represents a balance of forces at the corresponding node. Based on the
results in [11], we can also use virtual workδW as a through variable:

δW 22+ δW 72− δW 62 = 0, (2)

where each term corresponds directly to a physical component.
By definition, the virtual work of the pin reaction forceF 62 on the crank

depends upon the absolute displacement of the distal point of the crank. Since
edgee62 represents only relative displacements, it is necessary to introduce the
dependent virtual work elemente72 to correctly capture the virtual work done by
joint J2 on the crank. In a similar manner, edgee73 represents the virtual work
done by the same joint on the connecting rod. In general, whenever two bodies are
connected by a component (e.g., joint, spring, damper), two dependent virtual work
elements should automatically be included in the system model, each originating
from the datum node and terminating at the end points of the component.
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For ideal joints, the net virtual work must equal zero, since a frictionless joint
cannot add or remove energy from the system. As an example,δW 62 = 0 for
revolute jointJ2. Furthermore, the sum of the virtual works done by jointJ2 on the
crank and connecting rod must also be zero:

δW 72+ δW 73 = 0. (3)

This fact can be exploited in our GT formulation to eliminate all joint reactions,
which appear in the constitutive equations for dependent virtual work elements,
from the final equations of motion. Alternatively, joint reactions can be retained in
the GT formulation by means of Lagrange multipliers.

An alternative to the vertex equations is the set of ‘cutset equations’, in which
there is one independent equation for each edge in a spanning tree of the graph.
A tree is a collection of edges that connects all nodes and doesn’t contain any
closed loops, or ‘circuits’. The tree for the slider-crank, shown in bold in Figure 2,
contains 7 edges, or ‘branches’. The remaining edges making up the complement
of the tree, or cotree, are known as chords. The 7 cutset equations corresponding
to the branches can be generated automatically [2] from the system graph. As an
example, the cutset equation for the tree joint elemente62 is

δW 62+ δW 73+ δW 12+ δW 74− δW 63 = 0 (4)

which could also be written with force or torque in place of the virtual workδW .
The cutset equations represent linear combinations of the vertex equations and, as
such, they provide dynamic equilibrium equations for entire bodies or subsystems.
Equation (4), for example, is the sum of vertex equations for all nodes on the
connecting rod. Thus, it represents the equation that would be obtained by applying
the principle of virtual work to a free body diagram of the connecting rod.

2.2. KINEMATIC EQUATIONS: THREE-DIMENSIONAL ROTATIONS

The second main set of topological equations, the circuit equations, can be gen-
erated automatically from the set of cutset equations. There is one independent
circuit equation for each chord in the graph. As an example, the circuit equation
for edgee12 is

r 12+ r 23− r 62− r 22+ r 21− r 61 = 0, (5)

wherer represents the translational displacement of the corresponding element. It
is easy to see that this linear equation represents the vector loop closure condition
for the circuit containinge12. Since each circuit equation only contains one cotree
displacement, the circuit equations can be solved for the cotree displacements
as functions of the tree displacements, giving the so-called branch transforma-
tion equations. These transformation equations are used in the GT formulation to
eliminate all cotree variables from the final equations of motion.
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The across variabler in Equation (5) can be replaced with the translational
velocity v or accelerationa , or the angular velocityω or accelerationω̇ . The
resulting velocity and acceleration equations are equally valid, and can also be re-
written as branch transformation equations. We can also replacer with the virtual
displacementδr or even the virtual rotationδθ , since infinitesimal rotations will
satisfy the resulting vector sum.

However, one cannot replacer with a finite rotational displacement, since
three-dimensional rotations do not satisfy the parallelogram law for vector ad-
dition. Instead, one must define an ‘equivalent’ circuit equation in terms of the
rotation transformation matrices associated with each element. As an example, the
corresponding equation for edgee12 would take the form:

[R12][R23][R62]T [R22]T [R21][R61]T = [1], (6)

where[1] is unit matrix. Examining Equations (5) and (6), one can see that the
additive nature of the conventional circuit equation is replaced by a multiplicative
expression in its rotational counterpart, and the direction of edges around the cir-
cuit is now accounted for by using (or not) the transpose operator. It is clear that
the rotational equation (6) can easily be generated from the conventional circuit
equation (5).

If desired, Equation (6) can be re-written as a branch transformation equation:

[R12] = [R61][R21]T [R22][R62][R23]T , (7)

making use of the orthogonal nature ([R]−1 = [R]T ) of rotation transformation
matrices. Each of the rotation matrices will be functions of the rotation variable(s)
for the corresponding element, i.e.[R61] = [R61(α1)]. Thus, equation (7) can be
used to express the orientation of the connecting rod as a function of the angular
variables associated with all edges selected into the tree.

In summary, these branch transformation equations can be used to express the
kinematic and dynamic equations solely in terms of the across variables associated
with branches in the tree. For obvious reasons, these unknown tree across variables
are called ‘branch coordinates’ [1]. Thus, a powerful feature of a GT formulation
is that the analyst has control over the branch coordinates appearing in the final
equations of motion, through the selection of edges into the spanning tree.

3. Component Models

To generate a complete set of motion equations for a multibody system, the to-
pological cutset and circuit equations must be supplemented by constitutive, or
‘terminal’, equations for individual components. These terminal equations are em-
pirical relationships between the through and across variables for the element, and
time. In terms of the conventional through and across variablesr , v , a , ω , ω̇ , F ,
andT , the terminal equations for a number of components that commonly appear
in multibody system models are given in [1] and [4]. In this section, we present
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Figure 3. Graphs of body and arm elements.

the terminal equations for many of the same components, but expressed in terms
of virtual displacements and virtual work.

3.1. BODY ELEMENTS

A body element represents a rigid or flexible body in the system. As shown in
Figure 3, the graph for this element consists of an edgee1 from the datum node
O to a localxyz reference frame on the body. For a rigid body, the local origin
is taken to coincide with the center of mass. For a flexible body, the location and
orientation of the local frame will depend upon a number of factors, including the
approach taken to represent its flexibility.

For a rigid body, the virtual work terminal equation is

δW 1 = −m1r̈ 1 · δr 1−
[
I

1
· ω̇ 1+ ω 1× I

1
· ω 1

]
· δθ 1, (8)

wherem1 is the mass andI
1

is the inertia dyadic of the body,r̈ 1 andω̇ 1 are the
translational and rotational accelerations of the element, andδr 1 andδθ 1 are vir-
tual translational and rotational displacements. Again note that the virtual rotation
δθ 1 can be treated as a vector. It is clear that Equation (8) represents the virtual
work δW 1 done by the inertial force and torque associated with the body.

For a flexible body, the constitutive virtual work equation is

δW 1 = −
∫
V

{δε}T {σ } dV +
∫

V

{δr}T ({fb} − γ {r̈}) dV, (9)

where{δε} is the column matrix of varied strain components in the local frame,
{σ } contains the corresponding stress components,{fb} is the body force, including
gravity, and−γ {r̈} is the inertial force per unit volume. The first volume integral
in Equation (9) represents the strain energy, while the second integral is the virtual
work of body forces, including gravity and inertial forces. For use with our dynamic
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formulation, all terms in Equation (9) should be written in terms of generalized
elastic coordinatesqf (t) that describe the deformation of the flexible body. One
method for doing this is described in [12], using Euler–Bernoulli beam theory,
polynomial shape functions, and a second-order deformation field.

3.2. ARM ELEMENTS

An arm element is used to represent the relative position and orientation of two
reference frames on the same body. As shown in Figure 3, the graph for an arm
element consists of an edgee2 from the origin of the localxyz body frame to
another point on the body. This second reference frame may be needed to locate
the point of application of a force, torque, joint, or imposed motion.

If the body is rigid, the relative orientation of the two body-fixed reference
frames is constant and the terminal equations in terms of virtual displacements
are

δθ 2 = 0, (10)

δr 2 = δθ 1× r 2, (11)

wherer 2 is the position vector associated with the rigid-arm element; it is a func-
tion of θ 1 since the direction ofr 2 varies as the rigid body rotates. For an arm on a
flexible body, the relative displacements and rotations will also be functions of the
elastic coordinatesqf describing the deformation of the body [12].

3.3. ABSOLUTE DRIVERS

A ‘driver’ element is one for which the through or across variables are explicit
functions of time. A motion driver is used to specify the time-varying position or
orientation of a body-fixed reference frame with respect to an inertial frame, while
a force driver is used to model an external force or torque applied to some point on
a body.

In either case, the graph of the element consists of a single edge from the datum
node to the body-fixed point, and the virtual work terminal equation is

δW = F · δr + T · δθ , (12)

where the forceF or torqueT are given functions for force drivers, and the
position r or orientationθ are known functions of time for motion drivers. This
does not imply thatδr or δθ are equal to zero for motion drivers; they cannot be,
since the virtual work is not zero. Instead,δr andδθ are expressed in terms of the
variations of branch coordinates using the branch transformation equations.
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3.4. DEPENDENTVW ELEMENTS

As discussed in a previous section, this new element is used to correctly represent
the virtual work done on each of two bodies by a physical component (e.g. joint,
spring, damper, actuator) that connects the two bodies. If the force and torque asso-
ciated with this inter-body component are designated asF I andT I , respectively,
the terminal equation for a dependent virtual work element is simply:

δW = F I · δr + T I · δθ , (13)

whereδr andδθ are the virtual displacement and rotation of the dependent virtual
work element. The graph of this element consists of an edge from the datum node
to the point on the body where the inter-body component is attached.

3.5. INTER-BODY COMPONENTS

Included in this category are ideal joints, springs, dampers, motion drivers between
bodies, and force and torque actuators (motors). Although the conventional ter-
minal equations for these components are very different [13], these components all
have the same terminal equation in terms of virtual work:

δW = 0. (14)

This is because the virtual work done by these components is accounted for by
a pair of dependent virtual work elements that terminate at the endpoints of the
inter-body component. Thus, the linear graph representation of any one of these
components consists of three edges: one between the two endpoints, and two de-
pendent virtual work elements. Several examples of this 3-edge model for an ideal
joint have already been shown in Figure 2 and discussed.

4. Automated Formulation of Equations

Together, the topological and terminal equations form a necessary and sufficient
set of motion equations for a multibody system. Thus, one could obtain the kin-
ematic or dynamic response of a system by generating all of the cutset, circuit, and
terminal equations and solving them simultaneously. A more efficient approach
is to reduce the number of equations that need to be solved simultaneously by
using the branch transformation equations for a particular tree selection. Such
an approach has been taken in the graph-theoretic formulation that is presented
in this section. A symbolic computer implementation of this 4-step formulation
procedure, developed using Maple, is also described.

From a description of the physical components making up a multibody system
model, a linear graph representation can be automatically generated. It is then
necessary to select a spanning tree for the graph; this can also be automated, or left
to the analyst to choose. In either case, the arm elements should always be selected
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into the tree first, since their across variables are essentially known quantities. This
has the desirable effect of reducing the number of branch coordinates{q} and,
consequently, the final number of equations to be solved [1].

By allowing the analyst to choose the tree, the set of coordinates appearing
in the final equations can be controlled. As an example, the equations can be
generated in joint coordinates [14] by selecting as many joints as possible into
the tree (hereafter called a ‘joint tree’). Alternatively, the equations will be in terms
of absolute coordinates [15] if all bodies are selected into the tree. In either case,
the elastic coordinatesqf will also appear in the equations of motion if there are
flexible bodies in the system. A mix of bodies, joints, or even force and torque
elements, can be selected into the tree to obtain a hybrid set of branch coordinates
and equations. The freedom to control the coordinates appearing in the equations
generated by a GT formulation has both practical and pedagogical advantages.

With the ability to generate equations in terms of absolute, joint, or elastic
coordinates, or some combination thereof, our GT formulation represents a gen-
eralization of traditional absolute and joint coordinate formulations. We know
of one other formulation [16] that allows the user to choose absolute or joint
coordinates, or some mix of both, but this is accomplished through the use of
object-oriented programming techniques. Thus, one cannot easily see the effects
of different coordinate selections on the symbolic form of the equations of motion.

Our GT formulation also allows the analyst to retain non-working constraint
reactions in the dynamic equations via Lagrange multipliers, or to eliminate these
reactions by exploiting the principle of virtual work. These two approaches have
been called [10, 14] the ‘augmented formulation’ and the ‘embedding technique’,
respectively, although other names have been used in the literature. Both ap-
proaches have been included in our GT formulation. In the embedding technique,
it is necessary to identify a subset of{q} that are independent. For a system with
f degrees of freedom, there will bef independent coordinates{qi}. Once again,
these independent coordinates can be selected automatically [17], or specified by
the analyst.

Once the linear graph has been constructed, the equations of motion for the
multibody system can be automatically generated by systematically applying the
following 4-step procedure.

4.1. STEP1: BRANCH TRANSFORMATIONS

The first step is to generate the branch transformation equations, described previ-
ously in Section 2.2, for all bodies, springs, dampers, actuators, forces, torques,
and dependent virtual work elements in the cotree. These transformations will be
used in subsequent steps to replace the across variables for these cotree elements
with expressions involving only the branch coordinates{q}. If a joint tree is used,
then these transformation equations for cotree bodies will be identical to the velo-
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city transformation equations [18, 19] employed by other researchers in multibody
dynamics.

The chord transformation equations that are used in conventional graph-
theoretic formulations [1, 4] are not required in this virtual work approach.

4.2. STEP2: KINEMATIC EQUATIONS

Depending on the topology of the physical system and the tree specified for the
linear graph, the branch coordinates{q} may not be independent quantities. If the
number of coordinatesn is greater than the degrees of freedomf , thenm = n− f

kinematic ‘constraint’ equations are required to express the dependency between
coordinates.

These constraint equations are obtained directly from the joints and motion
drivers in the cotree, by projecting their circuit equations onto the joint reaction
space [1]. One can obtain an independent set of branch coordinates for an open-
loop system by selecting all of the joints into the tree, thereby avoiding the need
for constraint equations. For systems with closed kinematic chains however, an
independent set of{q} cannot be obtained by a clever tree selection; at least one
joint will appear in the cotree, giving constraint equations in terms of{q}.

Upon substitution of the terminal and branch transformation equations from
Step 1 into these circuit equations, the constraint equations are obtained in the
following form:

{8(q, t)} = 0 (15)

which constitute a set ofm nonlinear algebraic equations. By generating the circuit
equations with displacements replaced by velocities, one obtains

{8}q{q̇} = −{8}t , (16)

where theq and t subscripts indicate partial derivatives with respect to{q} and
time, respectively. Replacing the velocities with accelerations, one gets

{8}q{q̈} = −
({8}q{q̇})q {q̇} − 2{8}qt{q̇} − {8}t t . (17)

Alternatively, the velocity and acceleration equations (16) and (17) can be obtained
by direct symbolic differentiation of the position-level constraint equations (15).

Symbolic differentiation can also be used to obtain a transformation from{q}
to the set off independent coordinates{qi}, which is needed for the embedding
technique. This is done by partitioning{q} into {qi} andm dependent coordinates
{qd}:

{q} =
{

qd

qi

}
(18)

and then taking the variation of Equation (15):

{8}qd
{δqd} + {8}qi

{δqi} = 0, (19)



366 P. SHI AND J. McPHEE

where{8}qd
is a symbolicm × m matrix that is non-singular as long as the given

physical constraints are not redundant. Thus, this last equation can be solved for
the dependent variations:

{δqd} = {8}−1
qd
{8}qi
{δqi} (20)

= [J ]{δqi} (21)

which can be used to express the virtual work equations solely in terms of the
independent variations{δqi}. Equation (21) can also be obtained from the velocity
constraint equation (16) by using the ‘kinematical approach’ described by Ginsberg
[20].

If f independent motion drivers are acting on the system, then a kinematic
analysis is required. In this case, the number of branch coordinates (unknown tree
across variables) is reduced ton − f = m, which are obtained from the solution
of Equation (15). Subsequently, Equations (16) and (17) can be solved for{q̇} and
{q̈}, respectively.

If less thanf motion drivers are given, then the problem requires a dynamic
analysis. In this case, them constraint equations must be supplemented by the
dynamic equations that are generated by the next two steps.

4.3. STEP3: CUTSET EQUATIONS

The dynamic equations will be extracted from a single expression for the virtual
work of the entire system, consistent with a conventional application of the virtual
work principle [20]. To get the contribution of all physical components to the sys-
tem virtual work, the cutset equations are written for all bodies and ‘border joints’
in the tree. A border joint connects the ground body to one or more bodies that
are in the cotree, through an unbroken path of branches. By summing the cutset
equations for all tree bodies and border joints, the contributions of all physical
components to the system virtual work equation are captured:

δW =
n∑

j=1

Qj δqj = {Q}T {δq} = 0, (22)

whereQj is the generalized force associated with branch coordinateqj . Note that
only a subset of the system cutset equations are needed.

4.4. STEP4: DYNAMIC EQUATIONS

The last step is to extract the dynamic equations from the system virtual work
equation (22). One can take two different approaches to do this [10, 13, 14], de-
pending upon whether one wishes to include the reaction loads for cotree joints in
the dynamic equations.
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4.4.1. Augmented Formulation

In the augmented formulation, alln branch coordinates are treated as independent,
so that the corresponding generalized forces can be set equal to zero:

Qj(q, q̇, q̈, λ, t) = 0, j = 1, . . . , n, (23)

giving n differential equations in which the reaction forces and torques for cotree
joints appear as Lagrange multipliers{λ}. Equation (23) can be written in matrix
form as

[M]{q̈} + {8}Tq {λ} = {F(q, q̇, t)}, (24)

where[M] is the symmetric mass matrix, and{F } contains forcing and quadratic
velocity terms.

In general, the branch coordinates are not independent, but are related by
the m kinematic constraint equations (15). Thus, these constraint equations must
be appended to the set of dynamic equations (24), givingn + m differential-
algebraic equations (DAEs) to solve for{q(t)} and them reaction loads{λ(t)}. If
the branch coordinates are independent, the Lagrange multipliers disappear from
Equation (24), which reduces to a set ofn ordinary differential equations in{q}.

4.4.2. Embedding Formulation

In the embedding technique, Equation (21) is used to eliminate the dependent
variations{δqd} from the system virtual work equation (22), giving

δW = {Q}T
[

J

1

]
{δqi}

= {Qi}T {δqi} = 0, (25)

whereQi is the generalized force associated with the independent variationδqi.
By employing independent variations in this second approach, the joint reaction

loads{λ} are automatically eliminated from the virtual work expression. This is
because the virtual work of the two dependent elements associated with each joint
are guaranteed to cancel out, as predicted by equations such as (3). Extracting the
generalized forces associated with each independent variation gives one kinetic
equation for each system degree of freedom:

Qi(q, q̇, q̈, t) = 0, i = 1, . . . , f, (26)

or, in matrix form:

[M̃]{q̈} = {F̃ (q, q̇, t)}, (27)

where[M̃] is an unsymmetric (f ×n) mass matrix. Together, them+f DAEs (15)
and (27) can be solved for then branch coordinates{q}. Clearly, this is a smaller
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Figure 4. DynaFlex flowchart.

number of motion equations than those generated by the augmented formulation,
which is used in many commercial multibody computer programs.

4.5. COMPUTER IMPLEMENTATION

Using the symbolic language Maple, we have implemented the four steps of the
previous formulation into a computer program called DynaFlex. Given only a phys-
ical description of a multibody system, this program automatically generates the
equations of motion in symbolic form. A joint tree is used to keep the numbern of
branch coordinates, and therefore the numberm of constraint equations, relatively
small. This is particularly important for the embedding technique because the trans-
formation equation (21) requires the symbolic inversion of anm × m matrix. For
large systems with many closed kinematic chains, a ‘dummy’ matrix inverse can
be used in the symbolic formulation, with the matrix entries evaluated during the
subsequent numerical solution. This symbolic-numeric approach was successfully
demonstrated on the inverse dynamic analysis of a Gough–Stewart platform [21].

Using a joint tree, only the cutset equations for tree border joints are needed
for the system virtual work expression, since all bodies must be in the cotree. For
open-loop systems, a joint tree results in independent branch coordinates and a set
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of ordinary differential equations, which are generally easier to solve than DAEs.
Finally, the automatic use of a joint tree relieves the user of the task of selecting
a tree for the system. Instead, the only extra input required is the selection of the
augmented or embedding formulation and, for the latter case, the identification of
the independent coordinates{qi}. Thus, the user is not required to have a deep
understanding of graph-theoretic modelling.

The flowchart for the DynaFlex algorithm is shown in Figure 4. One can see
that the computer algorithm closely mirrors the steps of the formulation given
above. The use of Maple greatly facilitates the manipulation of variables and sym-
bolic extraction of dynamic equations. By generating the equations of motion in
symbolic form, it is easier to check the validity of the equations and to extract
additional information regarding their structure and any first integrals of motion. To
obtain numerical solutions for the system response, DynaFlex exports the system
equations in optimized C or Fortran format, and solves them using established
numerical algorithms for differential-algebraic equations [13]. Numerical methods
must also be used to handle lockup or bifurcation configurations, for which the
Jacobian matrices{8}q and {8}qd

become singular when evaluated. There are
several numerical methods for singularity handling [14, 15] that can be applied
to our symbolic equations. Although a detailed discussion is beyond the scope of
this paper, we speculate that these methods might by facilitated by our formulation,
which could re-generate system equations in a new set of coordinates whenever a
singular configuration is approached.

5. Examples

In this section, the dynamic analyses of three different multibody systems are
presented. In the first example, the 4-step derivation of the equations of motion for
the slider-crank mechanism from Figure 1 is presented in some detail, to illustrate
the formulation procedure. The second example is a three-dimensional chain of
rigid bodies, for which the symbolic equations of motion are generated using Dyn-
aFlex. The third example is a spatial slider-crank with a flexible connecting rod; the
results from a numerical solution of the differential-algebraic equations generated
by DynaFlex are compared against the results from a finite element approach.

5.1. SLIDER-CRANK RE-VISITED

As mentioned previously, the joint tree for the linear graph representation of the
slider-crank is shown in bold in Figure 2. The branch coordinates{q} consist ofα1,
α2, ands, the coordinates associated with tree joint elementse61, e62, ande64,
respectively. We have used the embedding formulation to eliminate the reaction
force for cotree joint elemente63, and selectedα1 as the independent generalized
coordinate for this one degree of freedom system.
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Step 1. From the linear graph representation, the following branch transformation
equations are automatically generated.

For cotree edgeT ,

θT = θ61 = α1, (28)

noting that two-dimensional angular displacementsθ can be treated as vectors.
For body edgee11,

θ11 = θ61− θ21 = α1, (29)

{r11} = {r61} − {r21}
= [R(θ11)]{r21}′, (30)

where{r21}′ is a 2× 1 column matrix containing the constant components ofr 21
in a local frame attached to the crank, and

[R(θ11)] =
[

cosθ11 − sinθ11

sinθ11 cosθ11

]
(31)

is the rotation transformation matrix from this local frame to the inertialXY frame.
For body edgee12,

θ12 = θ61− θ21+ θ22+ θ62− θ23 = α1+ α2, (32)

{r12} = {r61} − {r21} + {r22} + {r62} − {r23}
= [R(θ11)]({r22}′ − {r21}′)− [R(θ12)]{r23}′, (33)

where, once again, the symbol{ }′ denotes components in a frame fixed to the body
on which the arm resides.

Note that kinematic terminal equations, such as{r61} = 0 andθ61 = α1 have
been substituted into the branch transformation equations (28–33). Note also that
these equations can be written directly in terms ofv , a , ω , and ω̇ . Using the
branch transformation equations, all displacements (velocities, accelerations) can
be written as explicit functions of{q} = [α1, α2, s]T .

Step 2. Since the system hasf = 1 degree of freedom andn = 3 branch coordin-
ates,m = 2 constraint equations are required. These are obtained from the circuit
equations for cotree joints and motion drivers: in this case, only joint elemente63.
The corresponding circuit equation, projected onto the joint reaction space, is

{r61} + {r22} − {r21} + {r62} + {r24} − {r23} − {r64} = 0, (34)

or, after substitution of kinematic terminal equations,

[R(θ11)]({r22}′ − {r21}′)+ [R(θ12)]({r24}′ − {r23}′)− {r64} = 0. (35)
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Substituting the branch transformation equations (29, 32) into this circuit equation
and evaluating, one obtains the two constraint equations:

{8(q)} =
{

l11 cosα1− l12 cos(α1+ α2)− s

l11 sinα1− l12 sin(α1+ α2)

}
= 0, (36)

wherel11 andl12 are the lengths of the crank and connecting rod, respectively.
Using symbolic differentiation of the constraint equation (36) as described in

the previous section, one gets the transformation corresponding to Equation (21):{
δα2

δs

}
=
[

l12 sin(α1+ α2) −1
−l12 cos(α1+ α2) 0

]−1{ −l11 sinα1

l11 cosα1

}
{δα1}

=
{

l11 cosα1/ l12 cos(α1+ α2)

l11 sinα1− l11 cosα1 tan(α1+ α2)

}
{δα1}

= [J ]{δα1}. (37)

Step 3. Only tree joint elemente61 connects the system of bodies back to the
ground body through a path consisting entirely of branches. Writing the cutset
equation for this tree body joint in terms of virtual work,

δWT + δW 71+ δW 61+ δW 11+ δW 72

+ δW 73+ δW 12+ δW 74− δW 63 = 0. (38)

Note thatδW 61 and δW 63 are both zero by virtue of their terminal equation in
Section 3.5, and thatδW 72 andδW 73 cancel out by virtue of Equation (3). Since
the ideal jointse61 ande63 can do no work when connected to the ground body,
the virtual work of the corresponding dependent elementsδW 71 andδW 74 must
also equal zero. Thus, the system virtual work equation reduces to

δW = δWT + δW 11+ δW 12 = 0 (39)

which includes the contributions of all physical elements capable of doing work.
Substituting the terminal equations from Section 3 into Equation (39),

δW = T δθT −m11{a11}T {δr11} − I11 ω̇11δθ11

−m12{a12}T {δr12} − I12 ω̇12δθ12 = 0, (40)

using the two-dimensional form of the rigid body terminal equations, whereI11

and I12 are the centroidal moments of inertia of the crank and connecting rod,
respectively, about a localz axis. Substituting the branch transformation equations
into Equation (40), one obtains an expression for the system virtual work entirely
in terms of the branch coordinates:

δW = Q1 δα1+Q2 δα2 = 0, (41)
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where the generalized forcesQ1 andQ2 are complicated functions ofα1, α2, and
their derivatives:

Q1 = T −
[
I11+ I12+ m11l

2
11

4
+m12

(
l2
11+

l2
12

4

)
−m12l11l12 cosα2

]
α̈1

−
[
I12+m12

l2
12

4
−m12

l11l12

2
cosα2

]
α̈2

−m12
l11l12

2

(
α̇2

2 + 2α̇1α̇2
)

sinα2, (42)

Q2 = −
[
I12+m12

l2
12

4
−m12

l11l12

2
cosα2

]
α̈1

−
[
I12+m12

l2
12

4

]
α̈2+m12

l11l12

2
α̇2

1 sinα2. (43)

It is interesting to note that the branch coordinates does not appear in the
expanded form of Equation (41); this is because the torqueT and the two bodies
do no work for a virtual displacement of jointe64, which is not in the path of
branches between the two bodies and the ground. This situation would change
if a sliding mass was included in the system model, or if one selected a tree that
included jointse64 ande63.

Step 4. To express Equation (41) solely in terms of the independent variationδα1,
the transformation equation (37) is used to eliminateδα2:

δW = (Q1+Q2J1) δα1

= Qi δα1 = 0, (44)

whereJ1 is the first row of the matrix[J ]. One can now set the coefficient ofδα1

equal to zero, to obtain the single differential equation:

Qi(q, q̇, q̈) = 0, (45)

which can be solved simultaneously with the two constraint equations (36) for the
three branch coordinates.

5.2. OPEN KINEMATIC CHAIN: PENDULATING ROTOR

The pendulating rotor shown in Figure 5 is taken from Ginsberg [20]. The system
consists of two massless shafts and a uniform disk connected in series by revolute
joints D, A, andB. The spin rateφ̇ of the disk relative to the second shaft, of
lengthL, is maintained at a constant value by a servomotor at jointB. Similarly,
the precession ratėψ about a vertical axis is also kept constant by a servomotor at
joint D. We have used DynaFlex to obtain the differential equation governing the
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Figure 5. The spinning disk (from Ginsberg [20]).

Figure 6. Graph of the spinning disk.

nutation angleθ , and to derive expressions for the torquesT1 andT2 generated by
the two servomotors.

A linear graph of the pendulating rotor is shown in Figure 6. The three rigid
bodies are represented by edgese1, e2, ande3, while jointsB, A, andD are rep-
resented by edgese11, e10, ande6, respectively. Note that the DynaFlex program
does not require any particularly numbering of edges. The servomotors atD andB

are represented by the motion driverse8 ande13, respectively, while the locations
of the three joints on the two massless shafts are given by the rigid-arm elements
e4, e5, e7, ande12. Finally, the weight of the disk is represented by the force
driver elemente15. Once again, the structure of the physical system is visible in
the linear graph representation. Note that two dependent virtual work elements for
each interbody component are automatically included by the DynaFlex code; for
reasons of clarity, they are not shown in Figure 6.
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For this open-loop system, all three joints can be selected into the spanning
tree, which is shown in bold in Figure 6. From this choice of tree selection, one
obtains the set of branch coordinates{q} = [ψ, θ, φ]T . Since these coordinates are
independent, the dynamic equations of motion will consist of three ordinary differ-
ential equations, i.e. there are no constraint equations or corresponding Lagrange
multipliers.

Note that joint elementse6 ande11 were selected into the tree instead of the
corresponding motion driverse8 ande13, in order to obtain explicit expressions
for the torques associated with these two servomotors. Had the motion drivers been
selected into the tree, a single differential equation in terms of the nutation angleθ

would be generated.
The previous topological information is entered into DynaFlex, which generates

the equations of motion using a default set of symbolic geometric and inertial para-
meters. To convert these default parameters into the notation shown in Figure 5, the
following data file is read in:

> r7z:=-L/2; r12z:=L/2; J31:=(m3*R^2)/4;
> J35:=J31; J39:=(m3*R^2)/2;
> Gamma.8(t):=T.1(t); Gamma.13(t):= T.2(t);
> theta.6(t):=psi(t); theta.10(t):=theta(t);
> theta.11(t):=phi(t);

r7z := − 1

2
L, 08( t ) := T 1( t )

r12z := 1

2
L, 013( t ) := T 2( t )

J31 := 1

4
m3R2, θ6( t ) := ψ( t )

J35 := 1

4
m3R2, θ10( t ) := θ( t )

J39 := 1

2
m3R2, θ11( t ) := φ( t )
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whereJ31,J35, andJ39 are the default DynaFlex symbols for the principal mo-
ments of inertia of the disk, andR is the disk radius. Upon substitution of these
parameter and variable names, the following equations are obtained:

dyn :=[(
1

4
m3R2+ 1

4
m3R2 cos( θ( t ) )2−m3L2 cos( θ( t ) )2+m3L2

)
(

∂2

∂t2
ψ( t )

)
− 1

2
m3R2 cos( θ( t ) )

(
∂2

∂t2
φ( t )

)
+ 1

2
m3R2 sin( θ( t ) )

(
∂

∂t
φ( t )

) (
∂

∂t
θ( t )

)
+
(
− 1

2
sin( θ( t ) ) m3R2 cos( θ( t ) )+ 2m3cos( θ( t ) ) L2 sin( θ( t ) )

)
(

∂

∂t
ψ( t )

) (
∂

∂t
θ( t )

)
− T 1( t )

]
[(

1

4
m3R2+m3L2

) (
∂2

∂t2
θ( t )

)
+
(
−m3cos( θ( t ) ) L2 sin( θ( t ) )+ 1

4
sin( θ( t ) ) m3R2 cos( θ( t ) )

)
(

∂

∂t
ψ( t )

)2

− 1

2
m3R2 sin( θ( t ) )

(
∂

∂t
ψ( t )

) (
∂

∂t
φ( t )

)
−W sin( θ( t ) )

(−sin( ψ( t ) )2 L− cos( ψ( t ) )2 L
)]

[
− 1

2
m3R2 cos( θ( t ) )

(
∂2

∂t2
ψ( t )

)
+ 1

2
m3R2

(
∂2

∂t2
φ( t )

)
+ 1

2
m3R2 sin( θ( t ) )

(
∂

∂t
θ( t )

) (
∂

∂t
ψ( t )

)
− T 2( t )

]
,

where the expressions between brackets[ ] are equal to zero.
As expected, three equations are generated in terms of the branch coordinates

ψ , θ , andφ, and the driving torquesT1 andT2 of the two servomotors. Note that
DynaFlex leaves the equations in this general form until the exact nature of the
motion drivers is specified. In this case, the desired equations are obtained by
substitutingψ̈ = 0 andφ̈ = 0 into the preceding general expressions:

> dyn1:=map(eval,subs(diff(psi(t),t$2)=0,
> diff(phi(t),t$2)=0, eval(dyn)));
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dyn1:=[
1

2
m3R2 sin( θ( t ) )

(
∂

∂t
φ( t )

) (
∂

∂t
θ( t )

)
− T 1( t )

+
(
− 1

2
sin( θ( t ) ) m3R2 cos( θ( t ) )+ 2m3cos( θ( t ) ) L2 sin( θ( t ) )

)
(

∂

∂t
ψ( t )

) (
∂

∂t
θ( t )

)]

[(
1

4
m3R2+m3L2

) (
∂2

∂t2
θ( t )

)
+
(
−m3cos( θ( t ) ) L2 sin( θ( t ) )+ 1

4
sin( θ( t ) ) m3R2 cos( θ( t ) )

)
(

∂

∂t
ψ( t )

)2

− 1

2
m3R2 sin( θ( t ) )

(
∂

∂t
ψ( t )

) (
∂

∂t
φ( t )

)
+WL sin( θ( t ) )

]

[
1

2
m3R2 sin( θ( t ) )

(
∂

∂t
θ( t )

) (
∂

∂t
ψ( t )

)
− T 2( t )

]
.

This set of three equations agrees exactly with those given by Ginsberg [20].
The second equation is the ordinary differential equation governing the nutation
angleθ . Given constant values foṙψ andφ̇, this equation can be solved forθ(t),
after which the servomotor torques atD andB can be found by solving the first
and third equations forT1 andT2, respectively.

It is noteworthy that, although the masses and moments of inertia for the two
shafts are set to zero in the Maple input file, this does not cause any singularity
difficulty, as it often does with a purely numerical approach. This certainly is one
of the advantages of a symbolic approach over a numerical one.

5.3. SPATIAL SLIDER-CRANK WITH FLEXIBLE CONNECTING ROD

The three-dimensional slider-crank shown in Figure 7 has been previously ana-
lyzed by Jonker [22]. It is obtained from a two-dimensional slider-crank (moving
in theXOY plane) by rotating the joint axis atO by 45◦ about the globalY axis,
so that the crankOA spins to form a cone whose apex is located atO. Instead
of revolute joints at pointsA and B, as in the planar case, there is a spherical
joint at A and a universal joint atB. CrankOA and linkAB are initially aligned
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Figure 7. Spatial flexible slider-crank.

Figure 8. Graph of the spatial flexible slider-crank.

with the globalX axis. In this configuration, the link’s local body reference frame
BX2Y 2Z2 is coincident with that of the slider, i.e.,BX3Y 3Z3.

The rigid crank has a length of 0.15 m and is rotated at a constant rate ofω =
150 rad/s. The link is flexible, with a length of 0.3 m, a circular cross-sectional
area of 2.826×10−5 m2, an area moment of inertia of 6.361×10−11 m4, a Young’s
modulus of 2.0× 1011 N/m2, and a mass density of 7.87× 103 kg/m3. The rigid
slider has a mass of 3.34× 10−2 kg, which is half that of the link.

The graph of the system is shown in Figure 8. Numbers assigned to the edges
are random, and edges shown in bold comprise the spanning tree. Edgese9, e10,
ande11 are for the crank, withe10 being the rigid body ande9 ande11, both rigid
arm elements, representing the body-fixed locations of the revolute and spherical
joints at O and A, respectively. Edgese2 ande6 model the flexible link, with
flexible arm elemente6 locating the spherical joint on it and flexible body element
e2 representing the link. Edgee3 models the rigid slider body. The prismatic joint
at D is represented by two edges:e1 for the translational motion ande4 for the
constant orientation of the slider relative to the ground. The spherical joint atA
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and universal joint atB are represented by joint edgese8 ande5, respectively. The
revolute joint atO is modelled with joint edgee12 and rigid arme16, which has
zero length but a constant rotation matrix for the orientation of the revolute joint
axis relative to the globalOXYZ frame. Finally, the input motion to the crank
is modelled by a motion drivere13, which is in parallel with the revolute joint
elemente12.

The flexible link has been modelled using Euler–Bernoulli beam theory and a
complete second-order deformation field [12]. The bending of the link about the
Y 2 andZ2 axes is represented by the deformation variablesv(x, t) andw(x, t),
while the twist and longitudinal deformation are neglected for this particular ex-
ample [22]. The two deformation variables are each discretized using three Taylor
monomials, for a total of six generalized elastic coordinatesqf .

To obtain the smallest number of constraint equations corresponding to loop
closure, the spherical joint edgee8 is selected into the cotree. When the correspond-
ing circuit equation is projected onto the reaction space of the joint (i.e. theX, Y ,
andZ axes), three algebraic constraint equations are obtained. With the other joints
in the tree, the final system equations will be in terms ofqr = [s1, α5, β5, θ12]
(the subscripts correspond to edge numbers), in addition to the elastic coordinates
qf for the link.

With 10 branch coordinates{q} = [qr , qf ]T and three constraint equations,
the system has seven degrees of freedom. We have used DynaFlex to generate
the system equations using the embedding formulation, withθ12 selected as an
independent generalized coordinate; the elastic coordinatesqf are automatically
chosen to be independent. Ten equations of motion, equal in number to{q}, are
then generated and truncated to second order in the elastic coordinates. The seven
dynamic equations and three constraint equations are symbolically generated in the
form of (15) and (27) as{ [M̃]{q̈} = {F̃ (q, q̇, T13, t)},

{8(q, t)} = 0,
(46)

in which T13, which appears in only one of the dynamic equations, is the torque
required to drive the crank with the prescribed motion.

As in the previous example, these 10 symbolic differential-algebraic equa-
tions (46) can be solved for any set of 10 unknown variables. For this problem,
the motion of the crankθ12(t) is specified, and the remaining nine generalized
coordinates are to be calculated, along withT13. This was accomplished by numer-
ically integrating the six dynamic equations that do not containT13, simultaneously
with the three constraint equations written at the acceleration level, i.e. in the
form of Equation (17). The HHT-α numerical integration method [23] was used,
and corrections to the displacements{q} and velocities{q̇} were computed using
Equations (15) and (16), as described in [24]. The driving torqueT13(t) was then
obtained by substituting the solution for{q(t)} back into the remaining dynamic
equation.
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Figure 9. Mid-point link deflection onXOY (—) andXOZ (- - -) planes.

Shown in Figure 9 are the numerical results for the deflection of the mid-point
on the link, projected onto the globalXOY andXOZ planes, and plotted against
the crank angleθ12. The results are in good agreement with those obtained in [22],
in which a finite element analysis of the flexible link was employed. From a series
of numerical experiments, it was found that this good agreement requires that the
inertial forces associated with the flexible link be expanded to at least second order
in the elastic coordinatesqf . When the dynamic equations were truncated to first
order and solved, this good agreement was lost. A detailed examination of the order
of qf used in the deformation field for a flexible beam, and the effects of this order
on numerical simulation results for flexible multibody systems, is presented in [12].

6. Conclusions

By combining linear graph theory with the principle of virtual work, graph-
theoretic modelling methods have been extended to the dynamic analysis of flexible
multibody systems. Given a description of a physical system, a linear graph rep-
resentation can be systematically constructed, from which the governing kinematic
and dynamic equations are automatically generated. Using the principle of virtual
work, all non-working constraint forces can be eliminated from the equations of
motion, if the analyst desires. Alternatively, constraint reactions can be included
using Lagrange multipliers. Thus, both the embedding technique and the augmen-
ted formulation are encompassed by our graph-theoretic formulation, which was
demonstrated using a planar slider-crank mechanism as an example.

A notable feature of this formulation is that the analyst can choose the set of
coordinates appearing in the final equations of motion, by simply selecting the
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spanning tree for the linear graph. This set can include absolute, joint, and elastic
coordinates, or some combination thereof.

Due to the systematic nature of this formulation, it was relatively easy to
develop a Maple implementation called DynaFlex that generates the symbolic
equations of motion in terms of joint coordinates, using either an augmented
formulation or the embedding technique. The analyses of two spatial multibody
systems, one open-loop system of rigid bodies and one closed-loop system with a
flexible body, were presented to validate both the graph-theoretic formulation and
the DynaFlex algorithm.

In the future, it is desirable to extend this formulation to the analysis of
mechatronic and other multidisciplinary systems, by again exploiting the attractive
features of linear graph theory and virtual work.
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