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Abstract: Model Predictive Control (MPC) can be an interesting concept for 
designing a power management strategy for Hybrid Electric Vehicles (HEVs) 
according to its capability of online optimisation by receiving current 
information from the powertrain and handling hard constraints on such 
problems. In this paper, a power management strategy for a power split plug-in 
HEV is proposed using the concept of MPC to evaluate the effectiveness of this 
method on minimising the fuel consumption of those vehicles. Also, the results 
are compared with dynamic programming. 
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1 Introduction 

Air pollution and rising fuel costs is an important concern for transportation industry. 
Hybrid Electric Vehicles (HEV) have come to existence as a solution to this problem.  
Other sources of energy in hybrid vehicle powertrains have made the engines smaller  
and more efficient. Therefore, these vehicles have less emissions, and also better fuel 
economy. HEV powertrains consist of an efficient engine and electric motor/generator in 
addition to a power storage device that is usually a battery. With the development of 
advanced battery technologies, the energy storage capacity of batteries has significantly 
improved. The plug-in hybrid electric drive train is designed to fully or partially use the 
energy of the energy storage to displace part of the primary energy source (Ehsani et al., 
2010). In Plug-in Hybrid Vehicles (PHEVs), the battery is fully charged before starting 
off with the conventional home electric plugs. Therefore, plug-in hybrid vehicles can go 
longer in pure electric mode. According to Markel (2006) about half of the daily driving 
distance is less than 64 km (40 miles). If a vehicle is designed to have 64 km (40 miles) 
of pure electric range, that vehicle will have half of its total driving distance from the 
pure Electric Vehicle (EV) mode (Ehsani et al., 2010). In that case, there will be rarely 
need for starting the engine in most urban travels. This leads to a better fuel economy in  
plug-in hybrid vehicles with respect to conventional hybrids. 

According to the Electric Power Research Institute (EPRI), more than 40% of the 
USA generating capacity operates at a reduced load overnight, and it is during these  
off-peak hours that most PHEVs could be recharged. Recent studies show that if PHEVs 
replace one-half of all vehicles on the road by 2050, only an 8% increase in electricity 
generation (4% increase in capacity) will be required (Electric Power Research Institute 
(EPRI) Report, 2007). At today’s electrical rates, the incremental cost of charging a 
PHEV fleet overnight will range from $90 to $140 per vehicle per year. This translates to 
an equivalent production cost of gasoline of about 60 cents to 90 cents per gallon  
(Parks et al., 2007). So, PHEVs are a very interesting option for the future of 
transportation. 

Designing the power management is as important as choosing the architecture of a 
hybrid powertrain architecture. The best architecture can operate poorly in case of using 
an inappropriate control strategy. One way to design power management strategy for a 
PHEV is extending the strategies applied on conventional hybrid vehicles (Wirasingha 
and Emadi, 2011). Of course, design of a power management strategy needs some 
considerations, for instance the choice of the correct objective function to be minimised, 
forecasting the future load based on the information available at runtime, and also the 
characteristics of the vehicle (Ceraolo et al., 2008). 

It should be mentioned that most of the strategies in commercial hybrid vehicles are 
rule-based (Bergh et al., 2009). 
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Rule-based approaches put a constraint on the power split between different power 
sources on-board based on the current state of the powertrain (e.g., vehicle/engine speed, 
battery charge, power demand, etc.) through some maps, or rules (Powell et al., 1998). 
Then some rules can be to ensure that the states of the system are as close as possible to 
the desired scheme. Those decisions can be conducted through some maps. These maps 
can be constructed from engineering expertise and insight, or using more formal methods 
such as optimisation (Rousseau et al., 2007) or fuzzy logic (Vahidi et al., 2006). 
Stochastic Dynamic Programming (SDP) method is quite appealing in this context 
because of its ability to optimise the system performance with respect to a probabilistic 
distribution of some different drive cycles (Liu and Peng, 2008). However, this method 
has some computational complexity issues (Bertsekas, 1995). Moura et al. derived an 
optimal power management strategy for a plug-in hybrid vehicle (power split 
architecture) based on stochastic dynamic programming, which rations battery charge by 
blending engine and battery power in a manner that improves engine efficiency and 
reduces total charge sustenance time (Moura et al., 2010). 

Freyermuth et al. (2008) simulated and compared four different control strategies for 
a power split PHEV with 16 km AER (All Electric Range) battery pack for a vehicle with 
similar performances with for couple of strategies. 

In Electric Vehicle/ Charge Sustaining (EV/CS), the engine only turns on when the 
power demand is higher than available power of battery. Differential Engine Power 
strategy is similar to EV/CS but the engine-turn-on threshold is lower than the maximum 
power of electrical system. In Full Engine Power strategy, if the engine turns on it will 
supply all the power demand of the drive cycle and no power will drain from the battery. 
The aim of this strategy is to force the engine to operate in higher power demand and 
consequently in higher efficiency. Optimal Engine Power Strategy, similar to previous 
strategy, seeks to propel the engine more efficiently in higher power by restricting the 
engine operation close to peak efficiency. 

Freyermuth et al. (2008) concluded EV/CS is equivalent to Differential Engine Power 
and Full Engine Power is the best of all and much better than optimal Engine Power 
(Freyermuth et al., 2008). 

Rule-based strategies are rigid and their performance is considerable for a known 
pattern of drive cycle (for taxi cabs or bus routes) but they’re not optimised. The same 
thing is expected for the offline optimisation methods through which the strategy is 
designed according to a predefined drive cycle. So this strategy is not necessarily 
optimised for a deviated drive cycle. But more advanced control techniques are based on 
real-time optimisation. Also referred to as causal systems, they rely on real-time feedback 
to optimise a cost function that is developed using past information (Wirasingha and 
Emadi, 2011). This gap is covered in the approach we present in this paper. 

Trajectory power management algorithms require knowledge of future power 
demand. This approach uses this information to specify the future power contribution of 
different sources of energy on board. Such optimisation can be performed offline for 
drive cycles known a priori using Deterministic Dynamic Programming (DDP)  
(Brahma et al., 2000), and can also be performed online using optimal model predictive 
control (Lin et al., 2003). 

Gong et al. (2008a, 2008b) suggested that it is possible to improve the control 
strategy of PHEV if the trip information is determined a priori by means of recent 
advancements in Intelligent Transportation System (ITS) based on the use of Global 
Positioning System (GPS) and Geographical Information System (GIS). 
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In this paper a model-based strategy is proposed with the use of Model Predictive 
Control (MPC) concept. MPC seems a proper method to exploit the potentials of modern 
concepts and to fulfil the automotive requirements since most of them can be stated in  
the form of a constrained multi-input multi-output optimal control problem and MPC 
provides an approximate solution of this class of problems (Del Re et al., 2010).  
In general, MPC is the only advanced control technology that has made a substantial 
impact on industrial control problems: its success is largely due to its almost unique 
ability to handle, simply and effectively, hard constraints on control and states (Mayne, 
2001). 

The popularity of MPC stems from the fact that the resulting operating strategy 
respects all the system and problem details, including interactions and constraints,  
which would be very hard to accomplish in any other way. Indeed, often MPC is used for  
the regulatory control of large multivariable linear systems with constraints, where the 
objective function is not related to an economical objective, but is simply chosen in  
a mathematically convenient way, namely quadratic in the states and inputs, to yield  
a ‘good’ closed-loop response. Again, there is no other controller design method 
available today for such systems that provides constraint satisfaction and stability 
guarantees (Borrelli et al., 2011). 

The only serious drawback of this method is the volume of calculations for any time 
step of control. This is the reason that MPC was mostly used for controlling chemical 
processes that are considered as slow systems. But by having faster processors nowadays, 
there is an obvious motivation for using this model-based control method for rather fast 
systems especially for the automotive systems.  

Application of MPC to hybrid vehicles has been investigated before. Wang (2008) 
integrated the MPC controller and proposed a real time control system. The system can 
be used for all kinds of hybrid architectures based on engine and electric motor. They 
used a number of different performance indices that can be applied to the control system. 
By changing the operational weights in the cost function, the power control system can 
achieve different goals. Borhan et al. (2009) applied MPC to a power split HEV, whereas 
they ignored the dynamics of powertrain against other faster dynamics for the model 
inside the controller. They proposed that the fuel economies achieved with MPC are 
better than those reported by the rule-based PSAT simulation software. 

In fact, this method has not been applied to design a power management strategy for  
a plug-in power split HEV; the goal we seek in this paper. It should be mentioned that 
plug-in powertrain is different from conventional hybrid vehicles in terms of initial 
conditions and constraints. In a PHEV, the battery capacity is larger and it can be charged 
from another source out of powertrain; the battery can be fully charged before vehicle is 
started, whereas it is an impossible option for a HEV. In a HEV powertrain, the battery 
State of Charge (SOC) should be maintained inside a definite range (for instance between 
0.60 to 0.65 in Borhan et al. (2009) and final SOC value at the end of simulation time 
should be the same as initial SOC (Ehsani et al., 2010). But generally in PHEVs,  
the battery is discharged from a high level and when SOC drops to a reference value, the 
control strategy tries to keep it as close as possible to that level. This reference value  
is lower than what it is in a HEV. The strategies that are applied on HEVs can be 
implemented on PHEVs, but should be modified for the best performance.  
Therefore, these are originally two different problems with different constraints. 

To compare MPC results, we solved Dynamic Programming (DP) for this problem 
with the same dynamics and constraints as well. DP has been extensively used in 
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literature in order to find a global solution for HEVs control strategies. DP cannot be 
implemented online. Therefore, it is just a benchmark for developing heuristic strategies. 

Dynamic programming yields results that are close to being global optimal.  
In the context of optimal control, DP and Pontryagin’s Minimum Principle (PMP) are 
two different approaches to obtain optimal trajectories for deterministic optimal control 
problems. In the minimum fuel consumption problem of HEVs, the DP method 
guarantees a global optimal solution by detecting all possible control options (Kim et al., 
2009). 

Moreover, we will compare the MPC performance with the result, that has been 
proposed in Kim et al. (2009) according to PMP for a PHEV. 

According to Li and Williamson (2008) for urban driving conditions, the power split 
showed best fuel economy in comparison with series and parallel configurations.  
In highway driving condition, power split and parallel architectures showed similar and 
better efficiency in comparison to series architecture. 

At first the theory of MPC will be explained in brief. After designing the power 
management strategy, it will be implemented on the model and results of simulation will 
be compared to Dynamic Programming. The discussion and the conclusion sections come 
afterwards. 

2 Theory 

The general design objective of MPC is to compute a trajectory of a future input to 
optimise the future behaviour of the plant output. The optimisation is performed within  
a limited time window based on the information of the plant at the start of the time 
window. 

Moving horizon window is the time interval in which the optimisation is applied.  
The length of this window is called prediction horizon (Np). It determines how far we 
wish to predict the future. The objective of solving an MPC problem is to find a vector 
that contains the variation of inputs in order to reach the desired trajectory of outputs.  
The length of this vector is called control horizon (Nc). 

In the planning process, we need the information about state variables at time ti in 
order to predict the future. This information is denoted as x(ti) which is a vector 
containing many relevant factors, and is either directly measured or estimated. A good 
dynamic model will give a consistent and accurate prediction of the future (Wang, 2009). 

Meanwhile an integrator is naturally embedded into the design, leading to the 
predictive control system tracking constant references and rejecting constant disturbances 
without steady-state errors. 

For linear MPC, the model inside the controller is an augmented one which contains 
an integrator for each output. 

For an augmented discrete system like: 

(  1) ( ) ( )
( ) ( ) ( )

x k Ax k Bu k
y k Cx k Du k

+ = +
= +

 (1) 

where x, u and y are state variable, input and output of the linear system. 
Note that D = 0 due to the principle of receding horizon control, where a current 

information of the plant is required for prediction and control. 
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The relation between the predicted output of the system inside the prediction window 
(Y), time step ki, measured states at ti and the designed variation of the inputs will be 
(prediction equation): 

( ) iY Fx k U= + Φ∆  (2) 

where 

2

3 2

1 2 3

0 0 ... 0
0 ... 0

; ... 0
... ... ... ... ... ...

... P CP P P P N NN N N N

CA CB
CA CAB CB

F CA CA B CAB CB

CA CA B CA B CA B CA B−− − −

   
   
   
   = Φ =
   
   
      

 (3) 

[ (  1 | ) (  2 | ) . . .  ( | )]

[ ( ) (  1) . . . ( 1)]

T
i i i i i i

T
i i i c

Y y k k y k k y k Np k

U u k u k u k N

= + + +

∆ = ∆ ∆ + ∆ + −
 (4) 

where y(ki + 2|ki) means the predicted output on ki + 2 step based on the measurement on 
ki step (Wang, 2009).

 The performance of a control system can deteriorate significantly when the control 
signals from the original design meet with operational constraints. But with a small 
modification, the degree of performance deterioration can be reduced if the constraints 
are incorporated in the implementation, leading to the idea of constrained control.  
For modifying the controller, all the constraints must be changed in the form of variation 
in input signal. For the constraints on the amplitude of the input, variation of the inputs 
and the outputs: 

min max
1 2

min max

min max

( ( 1) )  

( ) 

i

i

U C u k C U U
U U U

Y Fx k U Y

≤ − + ∆ ≤
∆ ≤ ∆ ≤ ∆
≤ + Φ∆ ≤

 (5)

 
where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

...

...
, .

... ... ... ... ...
...

c c c c c c c c

c c c c c c c c

c c c c c c c c

N N N N N N N N

N N N N N N N N

N N N N N N N N

I I o o
I I I o

C C

I I I I

× × × ×

× × × ×

× × × ×

   
   
   = =   
   
      

 (6) 

If a quadratic objective function is used for the optimisation, this is a quadratic 
programming problem. 

3 Model description 

Among the different architectures for a HEV, power split configuration seems to be the 
most efficient one for a limited capacity of battery. In a power split configuration,  
the engine, the electric motor and the generator are connected to each other by means of  
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a planetary gear set. The start off the vehicle is pure electric. It means that the engine is 
shut off. This status continues for driving with low speed until the battery SOC drops to a 
predefined level or the velocity increases. Hereby the engine is started and delivers power 
to the drivetrain and simultaneously charges the battery with the help of the generator. 
For full performance, the battery empowers the electric motor to propel  
the vehicle with the help of the engine. With regenerative braking, a part of dissipated 
energy returns to the battery by the electric motor. 

For deriving the dynamics of the system it is assumed the mass of the pinion gears is 
small, there is no friction, no tire slip or efficiency loss in powertrain. By considering  
the vehicle longitudinal dynamics, the equation of the system will be according to 
equations (7), (8) and (9) which is derived by Liu et al. 2005. 

2 2 2 2 2 2( ) ( ) ( ) ( )v v
r m e g

e g e g e g e g

I R S I S R S S R S S R S SR T T T C
RI K RI K RI RI I I RI K RI K

ω
     ′ ′+ + + ++ + = + + + − +          ′ ′ ′ ′ ′ ′ ′ ′     

  

 (7) 

2 2 2 2

( )
( ) ( ) ( ) ( )

e e
e e m g

v g v g v g v

I R K I S R K S KR S RR S T T T C
R S I R S I R S I R S I I I I

ω
   ′ ′

+ + + = + + − −      ′ ′ ′ ′ ′ ′ ′+ + + +   
 (8) 

2
batt

batt batt

4( )
.

2

k k
oc oc m r m g g gV V T T R

SOC
R Q

ω η ω η−− − −
= −   (9) 

In this relation: 
2

2
30.5

( )

tire
v m r

g g s

e e c

r
r tire d tire

r g e

RI m I K I K
K

I I I
I I I

C mgf R Ac R
K

R S R S

ωρ

ω ω ω

′ = + +

′ = +
′ = +

 = +  
 

+ = +

 (10) 

where the variables and parameters are defined in the appendix. 
If the macroscopic behaviour of the battery is to be represented within a more 

complex system, as is typically the case in vehicle modelling, the battery is often 
represented by an equivalent circuit. We can use a simple circuit for modelling the 
battery. The external resistance represents the effect of chemical reactions. Since only 
one resistance is considered, the complex nonlinear effects such as diffusion and battery 
surface capacitance are not directly considered (Lukic, 2008). Therefore a simple internal 
resistance model for the battery is considered. 

In PHEVs, the battery pack is discharged from a fully charged status to a reference 
SOC, where the vehicle is then operated as a regular hybrid (Lukic, 2008). The value we 
have chosen here as the reference SOC is 30% regarding to the life of the battery pack. 
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These idealised assumptions will result in a more optimistic fuel economy prediction. 
In this system there are 3 states: ring speed (ωr), which is proportional to the vehicle 
velocity, engine speed (ωe), and battery SOC. Also there are 3 inputs: Engine (Te), Motor 
(Tm) and Generator Torque (Tg). ηm and ηg represent motor drive and generator drive 
efficiency respectively (Including DC/DC convertor and DC/AC inverter) (Liu, 2007). 
The readers are referred to Pengwei Sun et al. (2010) for an empirical estimation of the 
power electronics efficiency. When the battery is discharged k = 1. But k = –1 for battery 
charging. 

4 Problem statement 

The goal of this research is to design a control strategy for a plug-in hybrid vehicle with 
power split architecture. The battery in a plug-in hybrid vehicle is fully charged before 
vehicle start off. We assume that the vehicle goes in the pure electric mode until the 
charge of the battery drops to a reference state of charge, then the strategy enters a loop 
governed by MPC. This controller tries to keep the SOC around the reference and 
simultaneously minimise the fuel consumption. In this problem there are 3 inputs that 
give flexibility to the control problem. 

In each prediction window we need a cost function to be minimised that results in 
maximum fuel economy and tracking a predefined level of battery charge while 
following a predefined drive cycle. The cost function is: 

2 2
1 2

1 Minimizing Fuel ConsumptionControl of SOC

2 2
3 4

Minimizing MotMinimizing Generator Torque Variation

( ) ( ( ) ( )) ( ( ))

( ( )) ( ( ))

pN

ref
i

g m

J k SOC k i SOC k i m k i

T k i T k i

γ γ

γ γ

=

 
 = + − + + + 
  

+ ∆ + + ∆ +

∑

1 or Torque Variation

cN

i=

 
 
 
  

∑

 (11) 

where 

( ) ( 1) ( ).T k i T k i T k i∆ + = + + − +  

The first term is related to keep the SOC around reference. The second term is for 
minimising the fuel consumption. The third and fourth terms try to minimise the input 
variations inside the prediction horizon. γ1, γ2, γ3, γ4 are weighting parameters that are 
chosen according to the predicted maximum value of the weighted variables. In most 
optimisation problems except in rather rare cases (e.g., Soltis and Chen, (2003) and Cheli 
et al., (2006)), only minimising fuel consumption is the objective, and pollution limitation 
is considered as a constraint of the process; as long as pollution is within predefined 
limits, it does not influence the optimisation process (Ceraolo et al., 2008). 

We chose the FTP75 drive cycle to estimate fuel consumption. Also there are some 
constraints on this problem that are defined as following: 
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min max

min max

min max

min max

min max

min max

min max

min max

min max

e e e

m m m

g g g

m m m

g g g

e e e

r r r

g g g

T T T
T T T
T T T

T T T
T T T

SOC SOC SOC

ω ω ω
ω ω ω
ω ω ω

− −

− −

− −

− −

− −

− −

− −

− −

< <
< <
< <

∆ < ∆ < ∆
∆ < ∆ < ∆

< <
< <
< <

< <

 (12) 

For finding a simpler form of the controller and also using the linear MPC, the equations 
of the system were linearised for each time step around the operating point. Moreover,  
we use receding horizon control principle where the actual control input to the plant only 
takes the first sample of the control signal, while neglecting the rest of the trajectory. 
Also the fuel consumption map of the engine was estimated as:  

2
e e em Tαω β ω= +   (13) 

where α, β are constant. 
As mentioned before, the current optimisation problem can be converted to a 

quadratic form. Assume that the cost function is written in the form of 

1( )
2

T TJ k U H U U E

M U N

= ∆ ∆ + ∆

∆ ≤
  (14) 

where M and N are specified by the constraints of equation (12). Note that input for MPC 
problem is the inputs variation, with length of control horizon. Typical solution to this 
problem using Lagrangian multipliers can be found (Michael et al., 2007): 

1 1 TU H E H M λ− −∆ = − −   (15) 

where 
1 1 1( ) ( ).TMH M N MH Eλ − − −= − +  

Since this problem must be solved in every time step we need a fast approach. Identifying 
active constraints in each time step would be helpful to accelerate the calculation 
procedure. In this paper we used Hildreth’s quadratic programming procedure that 
suggests an iterative approach to identify the active constraints in order to solve the 
problem and find the second term in equation (15). Figure 1 summarises the algorithm of 
MPC. 

For Dynamic Programming, we only considered the fuel consumption inside the cost 
function. The quadratic term in equation (11) for controlling SOC was replaced with a 
hard constraint on SOC in charge sustaining mode. Other constraints and dynamics have 
remained unchanged.  

Fuel consumption map of the engine is shown in Figure 2. 
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Figure 1 MPC structure (see online version for colours) 

 

Figure 2 Engine fuel consumption map (see online version for colours) 

 
Source: Liu (2007) 

5 Results of simulation 

The simulation was done in the MATLAB environment. The requested torque was 
calculated based on 2 sequential FTP drive cycles. This torque is one of the inputs to the 
controller. Power management strategy uses this input and a linearised model of the 
powertrain to predict the future contribution of each power source on board. Outputs of 
the controller are applied to the nonlinear model of the powertrain (equations (7)–(9)) so 
that we can find out critical state variables like battery SOC, vehicle velocity and 
especially fuel consumption. Figure 3 shows the fuel consumption for different values of 
MPC parameters. Control horizon (Nc) is less than the prediction horizon (Np). The input 
horizon should be as large as the expected transient behaviour. In practice, a value  
of Nc ≥ 3 often seems to give performance close to the ‘global optimal’. To achieve 
closed-loop behaviour close to open-loop behaviour, Nc = 1 will often be sufficient 
(Rossiter, 2004). 
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Figure 3 Fuel consumption vs. control and prediction horizon (see online version for colours) 

 

It can be seen that the least fuel consumption can be found with Nc = 8 and Np = 10.  
All simulations have been done with respect to these values. Therefore, fuel economy 
will not necessarily be improved by increasing prediction horizon. 

Figure 4 shows the simulation procedure that has been followed in this paper. 

Figure 4 Simulation procedure 

 

The battery is fully charged at the beginning of the drive cycle and the vehicle goes on  
a pure electric mode until the SOC drops to 0.3, the reference state of charge. Fuel 
consumption in this period is zero. 

Figure 5 and Table 1 show the electric range of the PHEV for different reference 
states of charge. 

Figure 5 Electric range of PHEV for different reference SOCs 
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Figure 6 shows the torque, speed and efficiency of the electric motor. As shown in  
Figure 7 the generator torque in the pure electric mode is equal to zero since there is no 
need to charge the battery (SOC is higher than the reference). Figure 8 shows the 
cumulative fuel consumption which is around 1.4 litres per 100 km. Engine is shut off  
and on many times to maximise the fuel economy. 

Figure 6 Motor torque, speed, efficiency 

 

Figure 7 Generator torque, speed, efficiency 
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Figure 8 Engine torque, speed, fuel consumption 

 

Figure 9 shows the cost function value along the drive cycle. For non-pure electric mode 
portion there is a tiny deviation from zero for the most time steps and for some points  
the cost function is not minimised according to the driving condition. 

Figure 9 Cost function value (see online version for colours) 

 

Figure 10 shows fuel consumption increase by considering the input variation inside the 
cost function. 

Figure 10 Fuel consumption vs. reference SOC (see online version for colours) 

 

Figure 11–14 show the result of Dynamic Programming which is applied for charge 
sustaining mode. 
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Figure 11 Dynamic programming result: motor torque, speed, efficiency 

 

Figure 12 Dynamic programming result: generator torque, speed, efficiency 

 

Figure 13 Dynamic programming result: engine torque, speed, fuel consumption 
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Figure 14 SOC comparison for dynamic programming and MPC in charge sustaining mode 

 

6 Discussion 

It is evident that by reducing the reference state of charge we can reduce fuel 
consumption (Table 1) and also increase the electric range of the PHEV. Reducing the 
SOC reference is restricted by health parameters and life time of the battery. When SOC 
drops to a predefined level, the controller switches to Charge Sustaining (CS) mode and 
tries to maintain the SOC as close as possible to the reference (0.3). 

Table 1 All electric range/ fuel consumption for different SOCs 

Reference SOC AER (km) Fuel Consumption (l/100 km) 

0.3 19.14 1.41 
0.35 17.80 2.06 
0.4 17.26 2.33 
0.45 14.01 3.37 

According to Figure 6 the motor torque will increase upon accelerating especially in  
the full electric range. Also MG2 can capture a part of braking torque as shown by the 
negative torques. In Figure 7 the generator speed is negative because of the power split 
device. Since the carrier part is stationary to keep the engine off, the sun gear which  
is connected to the generator rotates in the reverse direction of the ring gear which is 
connected to the motor. In charge sustaining mode, depending on the engine speed,  
the direction of sun gear rotation will change as shown in the speed plot Figure 8. The job 
of the generator is to recharge the battery and also restart the engine (an effect that is 
ignored in the present work). The generator never stops rotating while the vehicle is 
moving so it can potentially produce electricity. But it needs a share of engine power 
which is sometime sufficient for both contributing to the power needed for vehicle 
propulsion and also recharging the battery. So, the power management strategy can 
connect or disconnect the generator to or from the battery when required to keep the SOC 
as close as possible to the reference. Generator efficiency is not as high as that of the 
motor. 

Figure 8 must be closely investigated with Figure 9 since fuel consumption is one of 
the terms inside the cost function. In the electric range of travel, cost function value is 
proportional to the squared difference of SOC with reference SOC. Therefore by getting 
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closer to the charge sustaining mode, the cost function value decreases and finally 
reaches to zero upon start of CS mode. From now on the main part of cost function value 
relates to fuel consumption and input variation constraints. Because of some constraints 
on engine, motor and generator torque, this value cannot be matched to its global 
minimum. It should be noted that the cost function is the summation of squared predicted 
input variations and fuel rate along the prediction window at any time step. One of our 
important concerns is sustaining the battery SOC closely to the reference. Changing the 
corresponding weight parameter (γ1) inside the cost function in simulation has revealed 
that the least fuel consumption is obtained when γ1 equals the inverse of lower and upper 
bounds average of SOC. 

It is evident that by increasing the reference SOC, fuel consumption will decrease as 
shown in Figure 10. In plug-in hybrid the reference SOC is set to a lower value if it is 
possible. This value is closely related to the battery life time. By removing the terms 
related to input variations from the cost function, we obtain better fuel economy as 
expected. Considering constraints in order to make a more realistic decision leads to fuel 
consumption increase. Another important issue is the trend of curves, which was 
predictable. The general solution to equation (15) is proportional to the E matrix.  
It should be mentioned that the reference SOC can be factorized from the E matrix. 
Therefore the solution of the quadratic programming problem has a proportional relation 
to the reference SOC. According to equation (13), we can justify the linear behaviour 
shown in Figure 10. By adding the input variation to the cost function, fuel consumption 
behaviour has been changed to a piecewise linear curve. 

The results of DP in charge sustaining mode are illustrated in Figures 11–13. 
According to Figure 12, there is no need for the generator to capture higher torque values 
to make a sudden increase in SOC (this issue was important for MPC) because of the 
constraint on SOC in charge sustaining mode. Also, the generator speed goes on higher 
levels in DP in comparison to Figure 7, since the average speed of the engine is more 
than what it is in MPC. This makes operating points get closer to the engine sweet spot. 
Therefore, the resultant fuel consumption is 204.3 gr, although the engine never stops 
operating. The fuel consumption for MPC without considering input variation inside 
MPC cost function while SOCref = 0.3 is 233.7 gr. This shows 14.4% increase in fuel 
consumption regarding DP result. 

According to Figure 14, SOC for DP is free to fluctuate in specific range around 
reference SOC and this makes fuel consumption less than MPC where the controller was 
enforced to maintain SOC around the reference.  

Kim et al. (2009) applied Pontryagin’s minimum principle (PMP) to a power split 
PHEV based on FTP 72 (UDDS) drive cycle. They predicted 1.53 l/100 km as the fuel 
consumption. By sticking to the same controller proposed in this paper and just changing 
the driving schedule it was revealed that MPC suggests even better fuel economy  
(1.29 l/100 km). Moreover, MPC can also be implemented online. 

By adding the variation of inputs inside the cost function and choosing appropriate 
MPC parameters, we can obtain fuel consumption equal to 1.41 l/100 km according to the 
FTP 75 drive cycle. 

Moreover, it took 35.4s in real time for 2828s simulation (for two successive FTP 75 
drive cycles) to be completed. The simulation is conducted in the MATLAB environment 
and on a machine which is powered by a 3.16 GHz dual core CPU and a 4 GB memory. 
It would be even faster if the controller was implemented as a C-code. It means that MPC 
is capable of being implemented online. 
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In summary, a model-based controller was proposed to effectively handle the hard 
constraints on power management strategy design problem of a PHEV. In this work the 
effect of MPC parameters was investigated without ignoring the powertrain dynamics. 
MPC problem was solved by considering input variation inside the cost function to not 
even consider them as a hard constraint but to make the system operate as smoothly as 
possible. 

7 Conclusion 

In this paper, a power management strategy for a plug-in hybrid vehicle was designed 
according to the discrete MPC concept with appropriate parameters and compared to 
dynamic programming. The model inside the controller was linearised and discretised. 
Simulation was done along 2 successive FTP 75 drive cycles to get an insight into the 
electric range of the PHEV. It was revealed that fuel economy will not necessarily be 
improved by increasing the prediction horizon. Also for making the analysis more 
realistic, the input variations were considered inside the cost function that should be 
minimised in each time step. 

Simulation results showed a promising fuel consumption of 1.41 l/100 km by 
following the FTP 75 drive cycle. 
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Appendix 

Table 2 reviews the model parameters and variables. 

Table 2 Variables and parameters description 

Symbol Unit Value Description 

α (kg/h)(rad/s)–2 0.02 Engine speed coefficient 

β (kg/h)(W)–1 1.86 Engine power coefficient 

m  Kg/h – Fuel rate 

gI  kg⋅m2 0.1 Generator equivalent inertia 

sI  kg⋅m2 0.1 Sun equivalent inertia 

eI  kg⋅m2 0.5 Engine equivalent inertia 

cI  kg⋅m2 0.1 Carrier equivalent inertia 

mI  kg⋅m2 0.1 Motor equivalent inertia 

rI  kg⋅m2 0.1 Ring equivalent inertia 

tireR  m 0.3 Tire radius 

K – 6.75 Gear ratio  

m kg 1380 Vehicle mass 

g m/s2 9.81 Gravity acceleration 

rf   0.02 Friction coefficient 

ρ  kg/m3 1.2 Air density 

A m2 2.5 Vehicle frontal area 

dc  – 0.2 Drag coefficient 

R – 78 Ring teeth No. 

S – 30 Sun teeth No. 

ocV  V 345.6 Battery open circuit voltage 

battR  Ω 0.85 Battery open circuit resistance 

battQ  As 54167 Battery capacity 

refSOC  – 0.3 Reference SOC 
 




