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Abstract

An optimized forward dynamic model of baseball pitching was developed to assess
muscle contributions to valgus torque on the elbow, with the goal of minimizing
ulnar collateral ligament loads without compromising ball speed. A musculoskele-
tal model was created in OpenSim 4.5 to replicate the motion of Major League
Baseball pitchers, incorporating the muscles responsible for resisting or producing
valgus moments, which are known to affect ulnar collateral ligament loads. Using
an optimal control framework in OpenSim Moco, muscle activations and actua-
tor contributions were evaluated at various pitch speeds. Results demonstrated
how optimized pitching motions differed from traditional techniques, suggest-
ing kinematic adjustment strategies to reduce ligament load. For instance, faster
pitches exhibited greater contralateral trunk tilt and higher arm slot, while slower
pitches demonstrated greater ipsilateral trunk tilt with a lower arm slot (sidearm).



These findings show the potential of our methods to provide actionable insights
into injury prevention for pitchers by identifying movement modifications that
can reduce loads on the ulnar collateral ligament while maintaining competitive
pitching speeds. By presenting a novel predictive simulation of baseball pitching,
this work demonstrates the balance between performance and injury mitigation
through biomechanical modelling and optimization, which can be transferred into
player training strategies.

Keywords: Baseball, Injury, Optimal Control, Pitching, Predictive Simulation, Ulnar
Collateral Ligament

1 Introduction

Professional baseball pitching is a complex, high-speed motion that places significant
biomechanical demands on the body, particularly the elbow joint. The ulnar collateral
ligament (UCL) is highly susceptible to injury during pitching due to the extreme
valgus torques experienced during the arm-cocking and acceleration phases of the pitch
[1, 2]. These ligament loads are amplified by the explosive movement of the shoulder
and elbow [1, 3]. UCL injuries have become increasingly prevalent among elite pitchers
and often require surgical intervention to reconstruct the ligament (i.e. Tommy John
surgery), which can result in long recovery times and can impact career longevity.

Given the growing concern over UCL injuries, there is a critical need for methods
to optimize pitching mechanics in a way that reduces ligament loads while maintaining
competitive performance. Traditional approaches to injury prevention often focus on
limiting pitch counts or adjusting training regimens, but these methods do not directly
address the mechanics of the pitching motion and usually require physical testing
of the athletes [4]. A promising alternative is to use biomechanical modelling and
optimization to develop pitching techniques that balance performance with injury
mitigation, without imparting undue workloads on the pitcher.

The purpose of this study is to develop a forward dynamic model of professional
baseball pitching using OpenSim, an open-source musculoskeletal modelling software
[5]. The forward dynamic approach differs from traditional inverse kinematic anal-
yses in that it uses muscle-driven simulations to predict optimal motion based on
applied forces and joint dynamics [6-8]. The model constructed in this study aims to
replicate the anatomical features and capabilities of a Major League Baseball (MLB)
pitcher, focusing specifically on the muscles responsible for resisting or generating
valgus moments at the elbow [9]. Unlike previous research that relies on kinematic
tracking of experimental pitching data, this study uses optimal control theory to
predict novel pitching motions [6, 7]. This strategy discovers the optimal muscle acti-
vations and joint motions required to minimize UCL loading without compromising
ball speed [1, 3].

The novelty of this work lies in the combination of musculoskeletal modelling,
optimal control, and a focus on minimizing injury risk without compromising per-
formance [10]. Unlike models that rely heavily on input data from athlete motions,



this work predicts motions that are optimized for a combination of performance and
safety. We simulated several pitching scenarios, including standard MLB-level pitch
speed and extreme conditions, to understand how unique simulated kinematic adjust-
ments could alter UCL loading [1-3]. The results highlighted mechanical differences
between optimized and traditional pitching techniques, particularly in the tilt of the
trunk and shoulder abduction. For instance, increasing ipsilateral trunk tilt and low-
ering the arm slot substantially reduced valgus moment, although these changes came
at the expense of reduced ball speed; in contrast, pitches with greater ball speeds had
greater contralateral trunk tilt and a higher arm slot [1, 3].

2 Methods

A musculoskeletal model was developed using OpenSim 4.5, an open-source software
for creating and analyzing biomechanically accurate musculoskeletal models of human
movement [5]. The model was based on a validated open-source model, which we
modified to better represent the anatomy of an elite MLB pitcher (see Section 2.1).
Key modifications included the removal of kinematic joint coupling constraints, the
inclusion of relevant muscles involved in valgus moment production, the addition of
reserve actuators to supplement the muscle-generated joint moments, and the use of
primary actuators to drive joint coordinates that were not actuated by muscles (i.e.
all joints except those of the throwing arm). Ligaments were also removed from the
original model.

The model was designed through a series of pre-processing steps, which used 43
fastball pitches that were recorded using markerless motion capture from a single start-
ing MLB pitcher during a single game, and were anonymized and shared by KinaTrax
(Boca Raton, FL, USA). Each set of pitching data contained transformation matrices
at each time point (300 Hz) for each tracked body segment. All pitches were four-seam
fastballs. The pre-processing steps for the forward dynamic analysis relied on inverse
kinematic and inverse dynamic analyses of these 43 pitches, which were extracted
using custom Visual3D kinematics and kinetics pipelines, respectively. Visual3D was
used since it integrates directly with KinaTrax motion capture data to build a custom
musculoskeletal model. Consistency across the Visual3D model and forward dynamic
model was maintained by extracting the subject-specific anthropometric and inertial
properties of the model from Visual3D and using them to design the OpenSim forward
dynamic model. Joint trajectories, in the form of Euler angles, from the 43 pitches
were averaged from the inverse kinematic analyses and used to define the OpenSim
model’s initial pose, inform the joint motion limits, and provide joint trajectory ini-
tial guesses for the optimization. Peak net joint forces and torques were extracted
from the inverse dynamic analyses, averaged over the 43 pitches, and used to define
the peak optimal torques of the musculoskeletal model’s actuators. The initial pose,
joint motion bounds, and actuator peak torque values used in the musculoskeletal
model can be found in Appendix A. The inputs from the inverse kinematic and inverse
dynamic analyses serve to better approximate the performance capabilities of an elite
pitcher, compared to the default model’s performance capacity. The model’s starting
pose was set at the instant of peak lead knee height and simulations proceeded to ball



release, as this interval represents the most strenuous portion of the pitching motion
[1, 11-13]. The motion duration, spanning from peak lead knee height to ball release,
was 0.7 s, averaged over the inverse kinematic analyses; simulation completion bounds
were set to between 0.4 s and 1.0 s to align with literature values [14].

Consistency between Visual3D and OpenSim in our workflow was ensured by
exporting motion that was expressed in OpenSim’s joint space, axes, and constraints,
as described in the Visual3D documentation [15]. Specifically, Visual3D (i) computes
subject-specific segment scale factors and writes them to an OpenSim scaling file, (ii)
performs inverse kinematics against the OpenSim gait model to fit both the static
calibration trial and the dynamic trial, and (iii) outputs an OpenSim-ready .mot file
that obviates the need to re-run OpenSim’s Scale and IK Tools. Thus, what OpenSim
received from Visual3D was a kinematic solution conforming to OpenSim’s own joint
definitions. We then used subject-specific inertial properties derived from the same
source to build the forward model, preserving parent—child frames and mass proper-
ties across platforms. Together, these steps maintained cross-platform consistency in
poses and loads despite differences in platform-specific angle parameterizations.

In the remainder of this section, details of the model revisions aimed at improving
simulated pitching plausibility are given, including adjustments to the musculoskeletal
model, muscle and actuator architecture, joint ranges of motion (ROM), and the
modelling of the baseball and ground reaction forces (GRF).

2.1 Musculoskeletal Model of Pitching

The base musculoskeletal model used in this research was adapted to reflect the
physical characteristics and capabilities of a professional pitcher. In OpenSim model
development, it is common to adapt existing models for specific use cases [16]. This
study required a model with full-body anatomy, including bones and muscles relevant
to valgus loading on the UCL of the throwing arm. Since no validated open-source
model exists for dynamic athletic motions like baseball pitching, the open-source
“Upper and Lower Body Model” was chosen as the base model. This model combines
lower-limb components from Delp et al. and upper-limb components from Holzbaur
et al., including bones and most muscles with validated musculoskeletal dynamics
[5, 9, 10, 17-20].

In the original model developed by Holzbaur et al. [18], the thoracolumbar orienta-
tion was defined following the International Society of Biomechanics (ISB) convention
with the 3 degrees of freedom (DOF) being the plane of elevation, elevation, and
axial rotation. Using this parameterization, shoulder flexion and abduction are not
independent DOF's; rather, they are the sagittal- and frontal-plane components of a
single elevation magnitude, coupled through the plane-of-elevation angle. This cou-
pling compactly represents shoulder motion and is consistent with how clinicians
describe scapulohumeral rhythm. For the present work, all joint coupling was removed
to simplify the motion of the shoulder and we instead reported shoulder flexion, abduc-
tion, and rotation directly, which are more commonly used in the analysis of baseball
pitching. Practically, we edited the thoracohumeral joint’s coordinate set with a cus-
tom 3-DOF ball joint (via a CustomdJoint/SpatialTransform in OpenSim). The new



joint defined three independent rotational coordinates named shoulder_flexion, shoul-
der_abduction, and shoulder_rotation, each applied about anatomically meaningful axes
in the parent/child (thorax/humerus) frames, with an X-Y-Z rotation sequence, cor-
responding to flexion/extension (X), abduction/adduction (Y), and axial rotation (Z)
of the shoulder. This X-Y-Z sequence provided the most comparable and realistic
joint angles when compared to literature [21]. The rotation sequence was selected in
Visual3D during the inverse kinematic analysis pre-processing stage [22]. We acknowl-
edge that this decoupling may cause deviations when compared to the native ISB
description presented by Holzbaur et al. (e.g., changes in the planes of motion of
the 3-DOF joint at the shoulder), but it improves reproducibility and domain rele-
vance in baseball applications. Muscle paths, objects around which muscles wrap, and
rigid-body inertial properties were retained from the original model of Holzbaur et al.

The base model was also adapted to meet the demands of MLB pitchers, as follows.
Muscles not relevant to this study were removed. Joint motion coupling constraints
were removed to permit the ROM expected in elite pitchers, with the bounds of the
ROM informed by the inverse kinematic analyses of 43 pitches (described above).
Fifteen muscles were identified as resisting or producing valgus moments at the elbow
during pitching and were retained: pronator teres (PT), flexor carpi radialis (FCR),
flexor carpi ulnaris (FCU), palmaris longus (PL), four flexor digitorum superficialis
muscles (FDSL, FDSR, FDSM, FDSI), biceps (BIClong, BICshort), triceps (TRImed,
TRIlat, TRIlong), anconeus (ANC), and brachialis (BRA) [10, 23-25]. Muscle paths
were not changed and all ligaments were removed.

A baseball with appropriate dimensions and inertial properties was rigidly con-
nected to the right (throwing) hand at the base of the second metatarsal, reflecting a
fastball grip. The baseball was designed with a mass of 0.145 kg, a radius of 0.0364 m,
and principal moments of inertia of 7.68x 107 kg-m? (modelled as a solid sphere) with
the centre of mass being located at the centre of the ball.

A pre-processing step was conducted to scale the model’s dimensions to match
those of a typical MLB starting pitcher (height 6’3" or 1.905 m, weight 215 b or mass
97.5 kg). Scaling was performed using OpenSim’s Scale Tool, which adjusted the seg-
ment lengths and mass properties to match the anthropometry of the pitcher [5]. The
OpenSim Scale Tool updates the dimensions of a model to match a particular individ-
ual by minimizing the error between experimental marker position data and markers
placed on the musculoskeletal model [5]. Integration between Visual3D and Open-
Sim permitted direct scaling of body segments using the dimensions of the Visual3D
model, which were already scaled to the individual pitcher. Specifically, a set of scale
factors (multipliers) representing the relative scale of the Visual3D model’s segments
to those of the OpenSim model was generated. Inputting the scale factors and the
desired height and mass of the model into the Scale Tool produced a model with the
desired proportions and body segment mass properties.

The muscle models used in this research employed the Millard 2012 Equilibrium
Muscle Model, a Hill-type muscle model that estimates muscle force generation assum-
ing that the muscle fibers and tendon remain in equilibrium [26]. Reserve actuators
were added to supplement the force-generation capabilities of the muscles, ensuring
that the model could generate sufficient joint moments during the pitching motion



[10, 27]. The remaining joints, without the support of muscles, were driven by primary
actuators. Actuator peak torques were extracted from the inverse dynamic analyses
conducted in Visual3D (Appendix A).

Some muscle parameters were adjusted to better reflect the athletic capabilities
of an elite pitcher; these changes were informed by literature [7, 10, 28, 29]. Mus-
cle maximum isometric forces were increased by 30% from their default values in the
base model, as outlined in papers by Buffi et al. and Hortobdgyi and Katch [7, 28].
Hortobdgyi and Katch [28] examined peak net joint torques in low- and high-strength
populations and found that, on average, the high-strength group had a 25% greater
peak net torque in elbow flexion and elbow extension than the low-strength group.
Buffi et al. assumed that this difference in peak net joint torque was due to a pro-
portionate increase in maximum isometric force, but further increased the maximum
isometric force to 30%, presumably to model a collegiate athlete population with
greater-than-average joint torques (though this is not stated explicitly) [7]. One would
expect a professional athlete population to have even greater maximum isometric
forces than a collegiate population; however, the expected increase is speculative and
requires experiments to calibrate. For consistency with the work of Buffi et al., we
also increased the maximum isometric forces in the original model by 30%. Reserve
actuator maximum torques were also increased by 30%, but with respect to the mean
peak torques extracted from the inverse dynamic analyses in Visual3D. Namely, peak
throwing shoulder rotation actuation was set to 450 N-m, shoulder abduction/ad-
duction and horizontal flexion/extension actuation were also set to 450 N-m, elbow
flexion/extension and pronation/supination actuation were set to 350 N-m, and wrist
flexion/extension and deviation were set to 300 N-m and 120 N-m, respectively. Pri-
mary actuator maximum torques were doubled with respect to the mean peak torques
for their respective joints determined from the inverse dynamic analyses in Visual3D.
Primary actuators were assigned higher peak torques than reserve actuators because
the joints that they actuate do not have any modelled muscles to support the gen-
eration of motion. These changes were informed by Hortobdgyi and Katch [28] and
Buffi et al. [7]. Optimal fiber lengths and tendon slack lengths were scaled using the
multipliers identified from the model scaling process for their respective body seg-
ments. The muscle activation time constant was reduced from 0.01 s to 0.005 s and
the maximum normalized force achievable during eccentric contraction (force—velocity
multiplier) was increased from 1.4 to 1.8, as outlined by Buffi et al. [7]. The halving
of the muscle activation time constant was informed by a review of literature examin-
ing the sensitivity of Hill-based muscle models to perturbations in model parameters,
where it was found that 0.005 s was the lower bound of commonly used values in the
literature whereas 0.01 s was the upper bound [30]. The lower bound was selected to
better represent the high speed of the pitching motion.

The final model included 34 DOF, with each joint actuated either by muscles with
reserve actuators or by primary actuators. The pelvis served as the root segment of
the model with 6 DOF's relative to the ground (3 translations, 3 rotations). The joint
limits were modified to allow for a full ROM that is typically seen in elite pitchers,
which surpasses the bounds of average joint ranges included in the default model [9)].



The ROM bounds were relaxed by +10% on each end based on mean joint angle
trajectories from Visual3D. The joint DOF and ROM are tabulated in Appendix A.

GRF's were modelled using contact spheres in OpenSim, which were placed on the
leading (left) foot to simulate interactions with the ground during pitching [5, 17, 31].
Two contact spheres were used with one fixed to the calcaneus at the heel and one
fixed to the toes at the ball of the foot, with radii 0.03 m and 0.015 m, respec-
tively. The stiffness, damping, and friction properties of these contact spheres were
based on those used in previously validated gait models [5]. The height of the mound
was ignored in this study for simplicity, resulting in a flat lead-foot contact with the
ground (whereas the inclusion of a mound would result in a declined lead-foot con-
tact). We acknowledge that more than two contact spheres have been used in previous
predictive simulations of three-dimensional movement [32, 33]. The balance and sta-
bility of our model could be compromised with the use of only two contact spheres,
potentially affecting the model’s kinematics. We used only two spheres because our
simulations began at peak lead knee height, where the lead foot was suspended in the
air and made contact with the ground only briefly at the end of the simulation (the
lead foot was in the air for 87.3%, 86.7%, and 83.6% of the simulation duration for
Cases 1-3, respectively). Using two contact spheres improved Moco’s convergence and
numerical stability for our simulation goals. Additional spheres would have introduced
additional contact states and controls, increasing computation time. With only two
contact spheres, the Jacobians/Hessians were smaller and better conditioned, accel-
erating line searches and reducing solver chatter. Because Moco (via CasADi) relies
on smooth derivatives, fewer simultaneous contacts with SmoothSphereHalfSpaceForce
also produce cleaner sensitivities, since there are fewer overlapping sharp force ramps,
improving the performance of the adjoint/auto-differentiation algorithm. Ultimately,
this is a limitation of the present study. In future work, we will increase the number of
spheres on the lead foot, calibrate the contact model parameters, and validate against
experimentally collected force-plate GRFs to more faithfully reproduce stance-phase
mechanics while maintaining solver stability.

The right (rear) foot was attached to the ground using a point constraint that
enforced coincidence between a point on the distal end of the third metatarsal and
a fixed point on the ground. This modelling simplification avoided the use of contact
spheres on the right foot, which decreased computation time dramatically. In OpenSim,
a point constraint prohibits relative translation between the two constrained points
while permitting relative rotation about all three axes [34]. As such, this constraint is
appropriately classified as a spherical (ball-and-socket) joint. The ROM of the ankle
and subtalar joints were selected and enforced to ensure that the motion permitted via
the spherical joint did not cause the foot to pass through the ground (see Appendix
A). The constraint was placed specifically at this location to permit both the pivoting
and heel lift expected at ball release during a pitch (see Fig. 2). The lift of the rear-
foot heel was achieved through a combination of ankle flexion/extension and subtalar
movement via inversion/eversion (see Appendix A). The assumption that the rear foot
remained in contact with the ground through ball release was a simplification that was
mechanically consistent with our simulation horizon (i.e. ending at ball release) and is
supported by recent evidence on leg-specific impulse generation. In particular, Liu et



al. [35] reported that the rear leg generates substantial positive angular impulse while
the rear foot is in contact with the ground at ball release, with only a small backward
(braking) linear impulse. These contact forces produce a ground reaction moment
that helps to rotate the body about its vertical axis, supporting the generation of
peak whole-body angular momentum near ball release, which is when our simulation
terminated. Modelling the rear foot as remaining in contact with the ground until ball
release therefore preserved the mechanism by which the rear leg contributes angular
impulse to the trunk—arm complex, a pathway plausibly linked to ball velocity via
transfer of angular momentum up the kinetic chain [35]. Enforcing rear-foot contact
with the ground until ball release did not constrain post-release recovery mechanics,
yet it ensured that the model could realize the rear-leg contribution to angular impulse
that coaches often emphasize and that serves an important function in pitching [35].
These findings support the modelling decision to enforce contact between the rear foot
and the ground with a point constraint from peak lead knee height to ball release.
The original and revised models are shown in Fig. 1.

Fig. 1 (a) Base OpenSim musculoskeletal model developed by combining the models from Delp et
al. and Holzbaur et al., and assembled by Andrea Menegolo [5, 9, 10, 17-20]. (b) Revised OpenSim
musculoskeletal model for use in forward dynamic simulations of pitching. The revised model was
scaled to the proportions of an MLB starting pitcher, includes a baseball, contains the 15 essential
muscles for our study of UCL loads, and includes the ground. Ground contact was modelled with
contact spheres (left foot) and a spherical joint (right foot). Developed in OpenSim.



2.2 Optimal Control of the Pitching Motion

Optimal control of the model was used to determine the pitching motion that min-
imized UCL loading while maintaining pitching speed. The OpenSim Moco software
was used to solve the optimal control problem, which involved minimizing actuation
effort while achieving a competitive pitch speed [36]. Constraints were imposed on joint
angles and speeds, muscle activations, and ball speed to reflect realistic bounds for
elite athletes. The final cost function of the optimal control problem rewarded reaching
a desired pitch speed threshold, achieving a lead-foot speed of zero at ball release (to
maintain balance and prevent slipping), and minimizing the actuation of the shoulder
rotation reserve actuator in particular, which tends to further load the UCL [2, 7, 11].
All actuator outputs (muscles and reserve actuators) were minimized to reduce oscilla-
tions in the actuator controls that are products of the time discretization used by the
Moco optimization [36]. Each muscle and reserve actuator was assigned a relatively
low cost weight (0.001), with the exception of the shoulder rotation reserve actuator
(1), given its contributions to UCL loading (see Section 2.3). The ultimate goal of the
optimizer was to minimize actuation effort (with particular attention to the throwing
shoulder rotation DOF), subject to endpoint constraints of zero lead-foot speed and
achieving the desired ball speed at release.

Actuation effort represented the absolute values of torque (for reserve actuators)
and force (for muscles) as a function of their control input, integrated over the motion
duration. Controls were parameterized as piecewise linear functions of time that rep-
resented the amplitude of control signals (for reserve actuators) and excitations (for
muscles). The controls vector sampled the value of reserve actuator controls/muscle
excitations at 1 ms intervals, where the vector size was equal to the combined number
of muscles (15) and actuators (34) in this model (49 total) times the number of time
points. All simulations were of 1 s duration to maintain consistency in the number of
states and controls in each iteration of the optimization. A duration of 1 s was suf-
ficiently long to complete the throwing motion. Simulation results were truncated to
retain only the pitching phases of interest, from peak lead knee height to ball release.
The instant of ball release was identified as the frame corresponding to the maxi-
mum linear velocity of the throwing hand in the direction of home plate (the positive
X-axis). The simulation results following ball release (which were often nonphysical)
were ignored in subsequent analyses.

Cost functions and equality constraints were not defined directly in Moco’s opti-
mization framework. They were implemented using Moco’s custom optimization
functions, which can be tailored to different problems. Actuation minimization was
achieved using the MocoControlGoal, where muscle and reserve actuator effort were
specified, while MocoFinalOutputGoal was used to assign the endpoint constraints on
foot and ball speed. MocoFinalOutputGoal provides functionality to assign weights to
the endpoint constraints, which was done in this model to penalize deviations from the
desired final values. Considering the weighted endpoint constraint terms as penalties
(soft constraints), the cost function was as follows:

2 2
J = Wl <Uball, final — Uball, desired) + W2 < Ufoot, final )

Uball, desired Vfoot, maximum



+

n s i 2
actuators C actuation effOI'ti
maximum effort;

subject to |Uball, final — Uball, desired| < 0.0001 m/s
|Ufoot, ﬁnal| < 0.0001 m/S
— 1 < controls actuators < 1

0 < controls pmuscles < 1

where Wi=15, Wy =5

1 =1...Nactuators

L for the shoulder rotation actuator
L 0.001, otherwise

The absolute magnitudes of the cost function weights were less important than
their relative magnitudes (see Section 3.1). The hierarchy we used reflects the prioriti-
zation of a pitcher’s performance when pitching, where the magnitudes were identified
through trial and error. Each cost function term was squared to ensure that the
terms were positive and the function was smooth and differentiable, which simplifies
the search space and derivative calculations for the direct collocation optimal control
method used in OpenSim Moco [36]. Additionally, the cost function terms were all
normalized to ensure a unitless output.

A two-step optimization approach, commonly used in Moco-based optimal control,
was employed to enhance robustness and ensure convergence [37]. The first step uti-
lized a tracking optimal control simulation (Moco TrackingGoal) which used the mean
joint angle trajectories from the inverse kinematic analyses extracted from Visual3D
as input, and minimized the sum of squared errors between the experimental and sim-
ulated joint trajectories. The output of this simulation provided joint trajectories for
each DOF in addition to the actuator controls and muscle excitations responsible for
producing this motion, as was done by Buffi et al. [7]. This step provided a good initial
guess for muscle excitations and joint angle trajectories, given that the excitations and
joint angles were fit to an observed pitching motion. The second step minimized UCL
load while maintaining the desired pitch speed, using the joint trajectory and control
outputs of the first simulation as an initial guess. This two-step approach resulted in
feasible pitching motions while addressing both performance and safety. This approach
also ensured that the final solution was unique and did not simply track the kinematics
of the initial guess.

2.3 Post-Processing and UCL Load Calculations

Simulation outputs included kinematic states (joint positions and speeds) and con-
trol inputs (muscle and actuator controls), along with joint and actuator forces and
moments. To analyze UCL loading, post-processing followed Buffi et al.’s framework,
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employing OpenSim’s Joint Reaction Analysis to compute forces and moments respon-
sible for maintaining elbow joint stability [7]. The analysis assumes that there is a
force and moment balance at the varus—valgus centre of rotation of the elbow. In the
force balance equation, the terms representing the varus—valgus contributions of the
muscles are cancelled by relating the net moment imposed by the subject’s motion
to the counter-moments from the musculoskeletal anatomy, as described by Buffi et
al. [7]. This approach identifies the contributors to valgus loading as the indirect val-
gus torque at the elbow due to the arm’s inertia and shoulder rotation, while the key
resistor to a valgus load was shown to be the osseous articulation (joint compression)
moment [6, 7]. The compression force of the elbow joint was necessary to calculate the
osseous articulation moment. This moment was found by isolating the component of
the compression force vector aligned with the radius’s longitudinal axis and orthogo-
nal to the varus—valgus axis of the elbow. This component of the osseous articulation
moment represents the compressive load experienced by the elbow joint over time and
is denoted by Fjc(t). To calculate the UCL load, Mycr(t), where Mycy(t) is defined
as the net elbow valgus moment being resisted by the UCL, a method following the
work of Buffi et al. was implemented [7]:

MuycrL(t) =T(t) — Mayw(t) =T(t) — (Fyc(t) - dart) (2)

where T'(t) is a valgus torque—generating actuator that uses results from the predictive
simulation (according to Buffi et al., this is a varus—valgus torque), and Mu(t) is
a valgus-resisting moment, known as the osseous articulation or joint compression
moment. In the work of Buffi et al., da,; was half the length of the vector from the joint
centre to the medial edge of the elbow (radius), perpendicular to the varus—valgus axis
of rotation, and functioned as a moment arm. Based on measurements in the scaled
musculoskeletal model, da,; was found to be 18.6 mm.

For each simulation, the joint compression force profile in the elbow and the cor-
responding UCL load were calculated. Equation (2) shows that the valgus load on the
UCL is driven by torque from the reserve actuator at the varus—valgus DOF, T'(¢),
while the joint compression force provides an opposing varus moment for stability. The
model of Buffi et al. included an additional varus—valgus DOF at the elbow, which
appears as T(t) in Eq. (2) [7]. Their decision to add an additional varus—valgus DOF
at the elbow may not be physiologically justifiable, despite them restricting that DOF
with no range of motion, as valgus loading at the medial elbow is an inertial byprod-
uct of shoulder external rotation during pitching [1-3, 11, 38]. Instead, we attribute
this torque to the shoulder rotation reserve actuator, which is more consistent with
anatomy while maintaining the dynamic consistency of Eq. (2) [1, 3]. This adjustment
shifts the rotational driver, T'(¢), found in the throwing arm from the distal end of the
humerus (elbow) to the proximal end (shoulder). Consistency is maintained given that
the shoulder’s axis of rotation remained parallel to the elbow’s varus—valgus axis of
rotation because of the definitions of the model’s local joint coordinate systems. While
the decision of Buffi et al. to add an additional varus—valgus DOF at the elbow with
no range of motion is a valid approach, we have included in our calculation the phys-
iologically justified contributions of shoulder rotation to valgus loading of the elbow

11



[1-3, 7, 11, 38]. As such, we set T'(¢) to represent the shoulder rotation reserve actu-
ator torque. A figure of the forces and torques considered when calculating the UCL
loads is included in Appendix B.

Post-processing of the simulations extracted key metrics from the Moco output.
Metrics of interest included inputs for the UCL loading equation, muscle forces, and
actuator contributions to UCL torque. Additionally, joint states and reaction forces,
particularly elbow compression forces, were analyzed to assess their role in resisting
moments on the UCL. UCL loading patterns were visualized during the critical arm-
cocking and acceleration pitching phases using Python. The study employed MATLAB
algorithms and OpenSim tools to analyze UCL loading, focusing on shoulder rotation
actuator control and elbow joint compression forces. The magnitude of shoulder rota-
tion actuator torque was derived as a function of its control signal. The control values
(ranging from -1 to 1) were multiplied by the maximum shoulder rotation torque of
450 N-m, which was determined from the inverse dynamic analyses in Visual3D.

2.4 Case Studies

Three case studies were evaluated to study the effects of the optimization process on
the simulated motion: (1) a 93 MPH (41.6 m/s) pitch, (2) a 110 MPH (49.2 m/s)
pitch, and (3) a pitch optimized to minimize valgus moment at the elbow [39]. Each
simulation produced unique pitching techniques and kinematic variations, with Case 3
incorporating an additional cost function term for directly minimizing valgus moment,
Mycw(t), at the elbow. All case studies used the previously described optimization
framework, with some noted adjustments. See Appendix C for a detailed description
of the cost function and mathematical expression used in Case 3. We augmented
the original cost function (Eq. (1)) with a term that directly penalizes the elbow’s
valgus joint-reaction moment, which corresponds to the load resisted by the UCL.
This new cost function term was integrated over time so that the optimizer favoured
solutions that reduced medial-elbow torque across the entire motion rather than at
only one instant. In OpenSim Moco, this cost function term was implemented with a
MocoJointReactionGoal targeting the elbow joint and the valgus component (about
the negative Y-axis), expressed in the upper-arm (parent) frame.

In this work, UCL loading was computed in post-processing of simulations and
was not part of the primary optimization objectives of Cases 1 and 2 (Eq. (1)). To
explore the implications of considering this metric directly in the cost function, Case 3
included an additional term that penalized valgus torques throughout the motion (see
Eq. (3) in Appendix C). While this additional cost function term reflects the trade-
off between UCL load mitigation and performance, it also prevented the model from
achieving competitive ball speeds (see Section 3), suggesting that directly minimiz-
ing UCL load can constrain the solution and prevent the kinetic-chain coordination
required for high-velocity pitching. All cost functions penalized recruitment of the
shoulder rotation reserve actuator (a proxy for UCL load; see Section 2.3), which pre-
served the performance—load balance by discouraging extreme valgus torques while
allowing the optimizer to redistribute effort to attain target velocities. The inclusion,
and subsequent results, of the additional UCL-load term in the cost function for Case 3
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suggests that UCL loads and pitch speed are in direct competition. Although increas-
ing the weight of the shoulder-rotation reserve actuator term may be analogous to the
additional cost function term in Eq. (3), this additional term directly addressed the
desired intent of the third case study, which was to explore the effect of directly min-
imizing valgus loads. Increasing the weight of the shoulder-rotation reserve actuator
term penalized that input; the optimizer can evade that penalty by shifting effort to
other joints or timings while still producing a similar valgus moment at the elbow.
The extra term in Eq. (3) instead penalized the elbow’s valgus load over the entire
motion, and therefore could not be evaded by redistributing torques, passive forces,
or interaction effects.

3 Results and Discussion

The first case study simulated a 93 MPH (41.6 m/s) pitch, the MLB average speed,
by solving an optimization problem that constrained solutions to this threshold. The
simulated motion, completed in 0.44 s, resembled traditional pitching mechanics, with
some notable differences, but compared favourably with the inverse kinematics data
(see Section 3.4). The optimized solution produced adjustments in trunk tilt and arm
slot position that have been correlated with elevated UCL loads and increased ball
speeds in the literature [40]. Notably, adopting kinematics with slight contralateral
trunk tilt and an arm slot not aligned with the shoulder (Fig. 2a) produced a com-
petitive pitch speed with expected UCL loads (Fig. 3) [7, 40]. However, the level of
shoulder abduction was inconsistent with what one would expect from a competitive
pitcher [40].

The second case study simulated a 110 MPH (49.2 m/s) pitch, exceeding the fastest
in-game MLB pitch by 5 MPH [39]. The motion, completed in 0.47 s, prioritized ball
speed but deviated from typical pitching mechanics, resembling a cricket bowl (Fig.
2b). Extreme contralateral trunk tilt and an overhead arm slot were observed, along-
side destabilizing lower-body mechanics, such as crossed-over feet during the stance
phase. Adopting these extreme kinematics produced greater loads on the UCL, aligning
with the claims in the literature that an overhead arm slot and contralateral trunk tilt
increase loads on the UCL (Fig. 3) [40]. However, the overhead arm slot observed was
a result of the extreme contralateral trunk tilt instead of expected shoulder abduction.

The third case study introduced an additional term in the cost function that
minimized valgus torque to directly reduce UCL load (in addition to the default min-
imization of shoulder rotation actuation), targeting a pitch speed of 93 MPH (41.6
m/s). However, the simulation failed to converge at 93 MPH and only succeeded at
75 MPH (33.5 m/s), producing a complete motion in 0.65 s. This pitch featured a
sidearm slot, severe ipsilateral trunk tilt, and low shoulder rotation, characteristics
of low UCL loads but also slow ball speed (Fig. 2c). The limited shoulder rotation
observed when directly minimizing valgus loads at the elbow (Eq. (3)) demonstrates
the effect of shoulder rotation on UCL load and supports its use in the UCL load-
ing equation (Eq. (2)) as T'(t). Despite the only change in this simulation being the
additional cost function term (to minimize elbow valgus torque directly), the results
demonstrated the lowest shoulder external rotation range of motion and, ultimately,
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the lowest overall UCL loads (Fig. 3). This result suggests that reducing shoulder
external rotation may be correlated with reducing UCL loads, which would align with
findings reported in the literature that attribute this shoulder external rotation to
valgus load on the elbow [1-3, 11, 38]. These results may explain why MLB pitcher
Tyler Rogers, who exhibits similar mechanics, has avoided UCL injuries with sim-
ilar fastball velocities [39]. Historically, pitchers with low arm slots as exhibited in
this simulation also have slower-than-average fastball speeds [39]. These pitchers often
rely on deception and change of speeds rather than top-end pitch speeds, so the fact
that this simulation failed to produce competitive speeds supports the idea that these
mechanics limit speed generation.

Fig. 2 Simulated pose of the forward dynamic model at ball release for the a) 93 MPH and b) 110
MPH pitches, and c) for the pitch that minimizes valgus torque at the elbow. Developed in OpenSim.

Comparisons between the case studies highlighted the trade-offs between perfor-
mance and injury mitigation. The analysis of varus—valgus torque at the elbow provides
insights into UCL loading as the simulated kinematics change across the case studies,
particularly at ball release (Fig. 3). The muscle force profiles for all case studies are
shown in Fig. 4.
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Fig. 3 UCL load for three case studies during arm-cocking and acceleration phases to release. 0%
corresponds to initiation of arm-cocking; 100% represents the instant of ball release. Given that liga-
ments can bear only positive loads (tension), a negative torque indicates that the UCL is experiencing
zero load. Developed in Python.
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Fig. 4 Muscle forces across three case studies during arm-cocking and acceleration phases to release.
0% corresponds to initiation of arm-cocking; 100% represents the instant of ball release. 70% to 90%
represents the arm acceleration phase. The muscle abbreviations are as follows: triceps (TRIlong,
TRIlat, TRImed), anconeus (ANC), biceps (BIClong, BICshort), brachialis (BRA), flexor carpi radi-
alis (FCR), flexor carpi ulnaris (FCU), palmaris longus (PL), pronator teres (PT), and the four flexor
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digitorum superficialis muscles (FDSL, FDSR, FDSM, FDSI). Developed in Python.
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Fig. 5 Comparison of arm kinematics between experimental (Inverse Kinematics) and simulated
(Case 1: 93 MPH Simulation) joint trajectories during arm-cocking/acceleration initiation (0%) to
release (100%). Neutral position is defined as a T-pose with the palms facing downwards. Developed

in Python.

17



3.1 Validation of Predictive Simulations

The model was validated by comparing to literature, performing sensitivity studies,
and evaluating simulation consistency. Although direct experimental validation was
constrained by a lack of comparable data, the simulation framework demonstrated
robustness in producing plausible pitching motions.

The model’s ability to estimate valgus loading and muscle coordination was
assessed by comparing to findings from Buffi et al. [7] and Anz et al. [41]. Simulated
peak UCL loads of 117 N-m (Case 1) were similar to the values reported in the lit-
erature, where Buffi et al. and Anz et al. reported loads of 115 N-m and 100 N-m,
respectively. Furthermore, the UCL load profile from the inverse kinematic initial
guess (Fig. 3) closely resembled the UCL load profile reported by Buffi et al. (both
results relied on measured kinematics). Both the literature [7] and this work iden-
tified the three triceps compartments as primary contributors to elbow stabilization
during peak valgus loading, based on their force profiles (Fig. 4). Furthermore, the
inverse kinematic and experimental observations in Case 1 showed some similarities,
but also some notable differences, specifically in shoulder abduction/adduction and
rotation, which will be discussed in Section 3.4 (Fig. 5). However, discrepancies in the
motion compared to Buffi et al. were noted in elbow flexion and forearm pronation
trajectories, which may stem from differences in optimization methodologies and the
scope of analysis. For example, Buffi et al. considered follow-through dynamics while
the present model focused on pre-release phases. Moreover, differences in elbow flex-
ion and pronation trajectories between this model and that of Buffi et al. may have
occurred as a result of the absence of the varus—valgus DOF in our model, which was
instead relocated to the shoulder in our model.

Sensitivity studies were conducted to assess the simulation framework’s robustness.
First, adjustments to initial guesses were considered, including kinematics from other
pitchers and trials. Although the model was developed using data from a single pitcher
(Pitcher 1), data from five pitchers were available. Mean joint angles from Pitchers
2 through 5, as well as ten randomly selected pitching trials for each pitcher, were
selected as initial guesses for use in the sensitivity studies. The simulation of these
initial guesses produced consistent within-pitcher results, reflecting the model’s abil-
ity to adapt to natural variability in a single pitcher’s motion. Specifically, the model
consistently produced similar joint angles, quantified through root mean square error
calculations on joint trajectories (which were always less than 5 degrees), and a sim-
ilar total motion time for a given pitcher. Variability was observed between pitchers,
particularly in arm slot and shoulder abduction, highlighting the influence of indi-
vidualized kinematics on optimization outcomes. While these differences underscore
inter-individual variability, all motions remained biomechanically plausible, as demon-
strated through the observed ROM for all simulations, which remained within the
anatomical boundaries [9].

Next, sensitivity to cost function weights in the optimization problem was studied.
Arbitrary changes to the cost function weights (W7, Wa, and C; in Eq. (1)) were made,
reflecting different orders of importance among the objectives. The sets of weights were
chosen to disrupt the initial hierarchy and evaluate the model behaviour when foot
speed or actuation effort were prioritized over ball speed. The implementation of these
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simulations followed the procedure for Case 1. Simulations consistently converged to
plausible motions when the weights prioritized ball speed over final foot speed with
actuator torque weighted lowest (Table 1), which aligns with the procedure used in the
case studies. Failures to converge occurred when deviations from this hierarchy were
introduced. For example, prioritizing actuator torque minimization yielded insufficient
pitching speed, while reducing the weight of the lead-foot final speed caused the model
to slip and fall.

Table 1 Sensitivity Study Results While Varying Cost Function Weights
(C; = 0.001 for all other actuators in all cases).

Study Ball Speed (W;) Foot Speed (W2) Shoulder Rotation Actuation Effort (C;) Outcome

1 15 5 1 Baseline

2 8 10 15 Failed

3 10 15 2 Failed

4 15 5 3 Converged
5 15 5 10 Failed

6 15 7 1 Converged
7 15 10 2 Converged
8 17 7 1 Converged
9 18 4 2 Converged
10 18 6 1 Converged
11 20 5 1 Converged
12 20 8 2 Converged
13 22 6 2 Converged
14 25 7 3 Converged
15 30 10 1 Converged

In each study that converged, similar outcomes were achieved with respect to
the baseline simulation, reaching the desired ball speed outlined in Case 1/Study 1
(93 MPH), in addition to producing consistent joint angles (as quantified by Study
1). Three unique failure modes were observed when the hierarchy of cost function
terms was disrupted. In Study 5, where the actuation effort weight exceeded the final
foot speed weight, the simulation failed due to the front foot slipping. In Study 3,
prioritizing lead-foot final speed over ball speed resulted in decreased ROM in all
joints of the lower body, which may have led to the observed decrease in ball speed
that prevented convergence [42]. Moreover, in Study 2, prioritizing actuation effort
minimization led to insufficient shoulder rotation ROM, resulting in slow ball speed
and subsequent failures to converge. These findings align with the biomechanics of
real-life pitching scenarios, where performance (i.e. maximizing ball speed and lead-
foot stability /balance) is prioritized over conscious injury mitigation (i.e. minimizing
UCL load). In future studies, a more detailed analysis of the converged cases noted in
Table 1 is warranted to determine the extent to which the simulation results reflect
the expected outcomes when changing cost function weights.

Further examination was conducted to assess the plausibility of the simulated
GRFs. Specifically, we examined the 3D force vectors generated by the lead-foot heel
contact sphere and the reaction forces at the rear-foot point constraint, resolved along
the vertical, anterior—posterior, and medial-lateral axes. The examination was con-
ducted for Case 1, as this simulation represented the most traditional pitching motion.
These results are presented in Fig. E3 and Fig. E4, respectively, in Appendix E. We
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are unaware of publications reporting GRF's in professional pitchers; existing stud-
ies have focused on amateur populations. Comparison to an amateur population is
imprudent as professionals typically produce higher ball speeds and have greater body
mass, likely yielding greater GRFs than those reported in the literature for amateur
pitchers. As such, we have restricted our analysis to observations of the GRF profiles.

First, the vertical GRF remains positive for both feet, confirming that the ground
never pulls the feet downward in the simulation. Second, the trajectories of all GRF
components exhibit the expected qualitative patterns for both feet. The lead-foot heel
contact force (Fig. E3) remained zero until approximately 87.3% of the throwing pro-
gression. Upon initial contact, the vertical heel force exhibited a brief but large spike
exceeding 2x body weight (BW), which then decreased to zero as the forefoot contact
sphere applied a substantial posterior force (nearly 2x BW). These large GRF magni-
tudes are consistent with the impulse required to transfer lower-body momentum up
the kinetic chain to the arm. The spherical joint reaction vertical forces (Fig. E4) also
exhibited expected behaviours. The vertical force began near 1.0x BW at 0% throw
progression (single support on the rear foot), increased to a peak of approximately
1.4x BW as the knees and hips flexed, and then decreased as the model’s weight
shifted forward and the rear foot unloaded approaching ball release. The presence of
anterior and lateral components of the rear-foot GRF reflects the typical demands of
propulsion and balance that drive the centre of mass toward the batter. The lateral
component of the GRF decreased to zero as the rear foot pivoted. Vertical and pos-
terior components of the GRF near ball release reflect the spherical joint enforcing
toe-to-ground contact through the prevention of translation. While these findings are
encouraging and consistent with expected mechanics of professional baseball pitching,
the lack of comparable experimental GRF data remains a limitation. Future work will
include collection of force-plate GRF's to quantitatively validate the simulated forces.

Our results are consistent with literature, consistent across simulations with dif-
ferent inputs, and adaptable to varying initial conditions and cost function weights,
collectively providing confidence in our simulation framework in analyzing MLB
pitches [6, 7, 41]. While some discrepancies were observed, particularly in inter-
individual variability, the results demonstrate the simulation framework’s robustness
and reliability in replicating key aspects of pitching motions. Moreover, the differ-
ences observed between the simulated UCL load of the initial guess simulation and the
three case studies (Fig. 3) are due to the optimization framework’s ability to produce
unique motions, not merely tracking kinematic inputs. Despite these differences, the
subtle similarities across simulations, experimental data, and literature demonstrate
the ability of the forward dynamics approach to produce plausible novel kinematics in
a unique pitching motion.

3.2 UCL Loading

Case 1 (93 MPH) simulated a traditional pitching motion (Fig. 2a) and torque profile
(Fig. 3), showing a peak valgus torque of approximately 117 N-m, which was consistent
with values observed in literature (see Section 3.1) [7, 41]. However, early motion
phases in Case 1 deviated from Buffi et al.’s arm kinematics, which may have stemmed
from actuation minimization in the arm, potentially yielding more subtle movements
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in shoulder abduction and elbow flexion. Despite these early-phase differences, the
critical late phases (e.g., the instant of maximum external shoulder rotation, where
the peak UCL load was observed) show similarities in UCL loading patterns.

Case 2 (110 MPH) exhibited the highest valgus torque (140 N-m) and an atypical
torque profile (Fig. 3), driven by extreme contralateral trunk tilt and an overhead
arm slot (Fig. 2b). These kinematic adjustments suggest that extreme contralateral
tilt impacts valgus torque by increasing the moment arm and mechanical demand on
the elbow, supporting the findings of Hakanson et al. [43].

Case 3 (75 MPH), designed to minimize valgus torque, reduced peak UCL load to
20 N'm (Fig. 3) through extreme sidearm delivery and ipsilateral trunk tilt (Fig. 2c).
These adjustments shortened the valgus moment arm and reduced shoulder external
rotation, kinematic patterns that are consistent with reduced UCL loads [2, 3, 11, 38,
43]. However, these changes reduced ball speed, demonstrating a trade-off between
performance and injury prevention.

Case 3 exhibited loads that were greater in magnitude than those for Case 1 near
the end of the throw progression (ball release), which seems to contradict the optimiza-
tion objective (i.e. we would expect Case 3 to produce the smallest UCL loads). This
discrepancy is a result of the optimizer in Case 3 aiming to reduce valgus torque during
the power-generation (arm-cocking and acceleration) part of the throw, not aiming to
minimize the absolute elbow moment across the entire motion. As a result, the large
mid-throw valgus peak was avoided but a greater late-phase moment was permitted
that was mostly varus, which did not strain the UCL and therefore was not strongly
penalized in the cost function (particularly the term responsible for the actuation of
shoulder rotation). The cost function for Case 3 (see Appendix C) also penalized large
values of valgus torque on the elbow whenever they occurred, not just at one instant.
As such, this additional term could lead to increased torques at some instances com-
pared to Case 1, but overall, the valgus torque magnitude was substantially lower than
in Case 1.

Further simulations examining pitches with ball speed between 75 and 110 MPH
revealed an approximately linear increase in valgus torque as ball speed increased, with
a shallower slope beyond 93 MPH (Fig. 6). This result suggests that UCL loading does
not increase proportionally with higher ball speeds. The results shown in Fig. 6 provide
insight into the biomechanical demands of pitching, suggesting a trade-off between
ball speed and injury risk, offering a basis for future explorations of performance
optimization and injury prevention in baseball pitching.

3.3 Muscle Behaviours

The muscle activations in the 93 MPH simulation highlighted critical phases of the
pitching motion (Table 2). Muscle activations peaked during the arm acceleration
phase (70% to 90%), with the three triceps compartments exceeding activation levels
of 0.8. These muscles may be key contributors to rapid elbow extension, crucial for
generating high velocity at the elbow, as evident by the steep onset of peak activa-
tion of the triceps observed during the arm acceleration phase. This result supports
the findings of Acosta et al. [44], who showed that the three triceps compartments are
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Fig. 6 Peak UCL load vs. ball speed for the three case studies and additional simulations. Case 1:

a 93 MPH (41.6 m/s) pitch, Case 2: a 110 MPH (49.2 m/s) pitch, and Case 3: a pitch optimized to
minimize valgus moment at the elbow. Developed in Python.

the largest contributors to elbow extension velocity during pitching, and strengthen-
ing these muscles leads to increased pitching performance. Furthermore, a study by
McCutcheon et al. [45] showed that pitchers with higher ball speeds also demonstrated
greater elbow extension velocities. The PT, BRA, and biceps also exhibited high acti-
vations, with PT peaking at 0.73 and BRA at 0.68, supporting previous findings that
these muscles are important for stabilizing the forearm and protecting the elbow dur-
ing pitching [7, 46]. The FCR and FCU showed moderate peak activations (0.5-0.6),
supporting existing studies that identify their role in counteracting valgus forces and
stabilizing the medial elbow [46]. Finally, both heads of the biceps showed spikes in
activation during the arm acceleration phase, suggesting their importance in resisting
the rapid elbow extension during pitches.

Table 2: Peak Muscle Activation During Arm Acceleration and Corresponding Throw Progression
for the 93 MPH Simulation

Muscle Peak Activation (% Maximum) Throw Progression at Peak (%)
Anconeus (ANC) 57 90
Biceps Brachii Long Head (BIClong) 58 71
Biceps Brachii Short Head (BICshort) 59 82
Brachialis (BRA) 68 81
Flexor Carpi Radialis (FCR) 58 71
Flexor Carpi Ulnaris (FCU) 55 80
Flexor Digitorum Superficialis Index (FDSI) 58 72
Flexor Digitorum Superficialis Long (FDSL) 51 87
Flexor Digitorum Superficialis Middle (FDSM) 60 72
Flexor Digitorum Superficialis Ring (FDSR) 53 72
Palmaris Longus (PL) 53 79
Pronator Teres (PT) 73 82
Triceps Brachii Lateral Head (TRIlat) 81 83
Triceps Brachii Long Head (TRlIlong) 92 73
Triceps Brachii Medial Head (TRImed) 80 84
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Comparisons of muscle forces (Fig. 4) across the three case studies reveal consistent
patterns in timing and magnitude, with the triceps (TRIlong, TRIlat, and TRImed)
consistently generating the greatest forces during the arm acceleration phase (70%
to 90%). The valgus torque minimization case showed lower overall muscle forces,
reflecting reduced valgus load, while flexor—pronator muscles (e.g., FCU, FCR, and
PT) exhibited greater forces during acceleration, aiding elbow stabilization and coun-
teracting valgus torque. Despite differences in pitching speed and kinematics, muscle
force trajectories were similar across case studies. The triceps compartments and
flexor—pronator group consistently peaked during arm acceleration, suggesting their
importance in elbow stabilization and dynamic protection [46].

Differences in ball speed between the three case studies may be attributed to dif-
ferences in the kinematic contributions of the trunk, pelvis, and lower extremities,
given the similarity of muscle force production across case studies. In the optimized
throwing motion of Case 1, the trajectory of the arm relative to the thorax appears
similar to the initial inverse-kinematic guess despite differences in full-body mechan-
ics (see Fig. 5). For example, the 110 MPH simulation (Case 2) exhibited exaggerated
contralateral trunk tilt and greater angular velocity of the throwing arm than Cases 1
and 3, increasing ball speed but altering arm kinematics and dynamic demands on the
elbow. In contrast, the valgus-torque minimization case (Case 3) used a sidearm motion
with ipsilateral trunk tilt, reducing muscle forces yet maintaining consistent muscle-
force patterns. Differences in the magnitudes of throwing-arm joint angles between
Case 1 and the initial inverse-kinematic guess were observed. Comparisons to Cases 2
and 3 were not possible due to the novelty of these motions and a lack of experimen-
tal data in the literature. Despite the magnitude differences in Case 1 and the inverse
kinematic simulation, the kinematic trajectories exhibited similar patterns over time,
suggesting that the underlying arm path relative to the thorax was conserved. The
similarity of temporal patterns in arm kinematics despite differences in ball speed is
consistent with the view that whole-body mechanics proximal to the arm can mod-
ulate ball release speed [42]. These findings underscore the interconnected nature of
the pitching motion, in which deviations in trunk—pelvis—lower-limb mechanics affect
elbow loads even when arm-trajectory patterns remain relatively consistent (Fig. 5)
[42]. The ability to maintain arm paths across different ball speeds and full-body
mechanics, despite changes along the kinetic chain, underscores the importance of
integrated full-body optimization in analyses of pitching strategies [47]. Future studies
should explicitly quantify trunk—pelvis—lower-limb contributions to ball speed while
controlling for arm-path similarity.

Results of the muscle behaviour analysis align with the study by Seiber et al. [46],
which highlighted the stabilizing role of the triceps, biceps, and brachialis in reduc-
ing varus—valgus laxity during dynamic elbow motion. Furthermore, comparisons to
the results of Buffi et al. [7] revealed similarities in muscle behaviour, where the tri-
ceps, biceps, and flexor—pronator groups demonstrated similar activation peaks and
patterns during arm acceleration. Both studies identified the triceps compartments
as primary contributors to the net varus moment at the elbow during peak valgus
loading. This agreement demonstrates the biomechanical advantages of eccentric con-
tractions during elbow flexion, which enable the triceps to generate high forces [26].
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Furthermore, the dynamic interplay between the biceps and flexor—pronator groups,
acting synergistically to protect the UCL, was consistent across the results of Buffi et
al. [7], van der Pijl [6], and our model.

Reserve actuators are joint torques that are generated to represent moments pro-
duced by unmodelled structures and when the Hill-type muscle models cannot supply
sufficient force at a given instant. Reserve actuators are expected to remain small
(less than 10% of the peak joint torque) in a dynamically well-posed solution [27]. In
our simulations, reserve activations were generally low and stable through the early-
and mid-throw phases, with values typically within £10% of the respective peak joint
moment over the entire motion (see Appendix F). Brief excursions beyond this thresh-
old were generally observed near ball release (approx. 90-100% of progression) for a
subset of DOFs (i.e. shoulder horizontal flexion/extension and abduction/adduction,
and wrist deviation), including brief negative excursions (greater than 10% of absolute
peak joint torque). Namely, the reserve actuator torque for shoulder horizontal flexion
for Cases 1 and 3 peaked at around 12 and 14% of peak joint torque; the reserve actu-
ator torque for shoulder abduction for Cases 1, 2 and 3 peaked at around 25, 12 and
13% of peak joint torque; and the reserve actuator torque for wrist radial deviation for
Cases 1, 2 and 3 peaked at around -22, 13 and -11% of peak joint torque, respectively.
These spikes indicate instants when the modelled actuators approached their func-
tional limits and the solver compensated with reserve actuators to satisfy the dynamic
constraints. We therefore note as a limitation that muscle strength, muscle coordina-
tion, and/or controller fidelity near release may be insufficient to capture the rapid
transients of late-phase throwing without assistance from reserve actuators. However,
given that the peak reserve actuator activations were generally within recommended
bounds, and excursions from these bounds were very brief within rapid phases of the
pitching motion, the reserve actuators did not substantially affect the contributions
of the muscles. Future work will focus on reducing these late-phase reserve actua-
tor torques by refining muscle parameterization, adjusting controller structure and
tracking weights, and exploring targeted model updates (e.g., joint stiffness/damping
and musculotendon properties) so that the reserves remain within the recommended
bounds throughout the motion.

3.4 Simulated Kinematics

Comparison of simulated pitching kinematics revealed unique characteristics across
the three case studies, emphasizing the optimizer’s ability to generate solutions inde-
pendently of input kinematics. Case 1 (93 MPH), which had plausible kinematics,
was compared against the inverse kinematics data from motion capture and literature,
since it most closely resembled the inverse kinematics solution (i.e. a traditional pitch).
While joint trajectories for shoulder horizontal flexion/extension, elbow flexion/ex-
tension, and forearm pronation/supination were within plausible ROM, differences
in magnitudes between experimental and simulated data were observed (Fig. 5). For
example, the optimized Case 1 pitch simulation predicted lower elbow flexion dur-
ing the late cocking phase and less angular displacement in forearm pronation. These
discrepancies likely reflect the optimizer’s minimization of actuation (C; in Eq. (1)).
Furthermore, notable differences were identified in the degree of elbow extension during
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the dynamic phases of the motion (Fig. 5). Rapid elbow extension is a key contribu-
tor to ball speed but also increases UCL loads, as supported by McCutcheon et al.’s
study where they identified that faster pitchers consistently produced greater elbow
extension velocity and greater UCL loads [45]. The differences in elbow extension at
ball release may stem from minimization of joint actuation, but also potentially from
the bound on elbow angular velocity, which was set to 3000 deg/s in our model. Fleisig
[14] cites elbow extension angular velocities up to 2400 deg/s in collegiate pitchers,
which are likely greater in an MLB population. Despite never reaching the bound on
elbow extension angular velocity, the optimizer was still able to achieve competitive
ball speeds, which may be attributed to contributions from the trunk and shoulder. If
true, the optimizer’s ability to consistently achieve desired ball speeds suggests that
pitchers can pitch competitively without the need for the elbow extension velocities
that tend to increase loads on the UCL, through the adoption of altered trunk and
shoulder mechanics. However, while the adoption of minimal shoulder abduction at
ball release (seen in all simulated Cases) may have some benefits on reducing UCL
load, it may increase the risk of injury elsewhere, such as the shoulders, which is also
common and punishing to a pitcher’s career [2, 14].

Notable differences in joint angle magnitudes were observed in shoulder abduc-
tion/adduction, where the optimized motion maintained a relatively static abduction
angle, diverging from the trajectory observed in the inverse kinematic data. This dif-
ference may be a result of the optimizer’s emphasis on minimizing full-body actuation
(C; in Eq. (2)), which can reduce the observed ROM if actuation of that joint does not
contribute to the optimization goal. Given that shoulder abduction/adduction actu-
ation remained relatively constant (around 0.5), the minimized actuation primarily
functioned to keep the arm statically abducted.

Furthermore, differences in the internal/external rotation of the shoulder were
observed between the inverse kinematic and optimized (Case 1) motions (Fig. 5). In
particular, shoulder rotation was positive at the beginning of the simulation in the
inverse kinematics but negative in Case 1, resulting in very different initial postures.
Despite the simulated motion of Case 1 having the inverse kinematics as an initial guess
(internally rotated by approximately 40°), the shoulder in the solution for Case 1 was
externally rotated by approximately 40°. These differences are likely a consequence
of the optimizer’s emphasis on minimizing shoulder-rotation actuation. Because the
model trades kinematic similarity for lower control effort under dynamic constraints,
the solution can move away from the inverse-kinematics initial guess and settle on a
posture that reduces the shoulder-rotation actuation. In the upper limb, several joint
configurations can achieve similar hand paths and release conditions; the optimizer
seeks the configuration that minimizes the shoulder-rotation actuation.

Comparison of kinematics between Buffi et al. [7] and Case 1 revealed both
similarities and differences. Both studies captured consistent patterns in shoulder
internal/external rotation and shoulder horizontal flexion/extension, validating the
simulation’s ability to model shoulder dynamics during arm-cocking and acceleration
phases. However, discrepancies in elbow flexion and forearm pronation were noted. For
instance, Buffi et al. reported a sharper decrease in elbow flexion during acceleration
compared to the smoother transition predicted by our optimizations. These differences
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likely stem from differences in modelling assumptions and optimization methodolo-
gies. The comparison of our optimization results with inverse kinematic data and the
results of Buffi et al. [7] underscores the strengths and limitations of our results. While
the agreement in shoulder dynamics validates the simulation’s plausibility in achieving
the observed mechanics in a pitcher, the discrepancies in elbow and forearm kinemat-
ics reveal areas for refinement, such as the addition of elbow and wrist joint coupling
constraints.

4 Conclusion

This study offers a novel approach to understanding and optimizing the mechanics of
baseball pitching, with a focus on minimizing the risk of UCL injuries while maintain-
ing or enhancing performance. This study is the first predictive dynamic simulation
of baseball pitching: we adopt a two-step approach that does not strictly track input
kinematics and estimate muscle activations based on observed motions, as was done
in previous studies [6, 7, 10]. The optimizer’s ability to produce novel motions is evi-
dent from the unique simulation outputs of Cases 2 and 3, and further emphasized
by the differences in kinematics compared to experimental measurements and results
reported in the literature.

Simulation results highlighted the strategies pitchers likely use to achieve com-
petitive pitch velocities. The model demonstrated that aggressive mechanics, such
as increased shoulder external rotation and excessive trunk tilt, can be effective at
generating greater ball velocities, but they may also increase UCL loads. The anal-
ysis suggests the potentially critical role of the shoulder and elbow musculature,
specifically the triceps and flexor—pronator group, in counteracting valgus torque dur-
ing high-stress phases like arm-cocking and acceleration. The results emphasize the
importance of incorporating full-body dynamics and standardized musculoskeletal
modelling methodologies to capture the complex interplay between pitching mechan-
ics and injury risk. Furthermore, Case 3, which specifically aimed to minimize valgus
torque, demonstrated the direct trade-off between minimizing UCL loads and main-
taining competitive pitch speeds, suggesting that valgus torques may be necessary for
elevated ball speeds.

Future efforts should incorporate broader datasets and refine cost functions to
enhance generalizability and reduce sensitivity to initial conditions. These improve-
ments would strengthen the model’s utility as a tool for understanding performance
and injury mechanisms in baseball pitching. Moreover, while the forward dynamics
model offers insights into pitching biomechanics, it has several limitations. The lack
of directly comparable datasets or computational studies poses challenges for valida-
tion, particularly when novel pitching motions are simulated (Cases 2 and 3). While
the reserve actuator activations (presented in Appendix F) are generally within the
bounds suggested in literature [27, 48], there are some instances, particularily near
ball release, where these bounds are violated. Future work will focus on reducing
these late-phase reserve activations so that reserves remain within the recommended
bounds throughout the motion. Furthermore, a key limitation of this work is the
absence of synchronized experimental EMG data. Without EMG, we cannot directly
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validate the timing, magnitude, or activation patterns of simulated muscle activa-
tions—particularly in late-cocking through ball release, when rapid torque transients
occur and reserve actuators occasionally provided assistance. Access to high-quality
surface or intramuscular EMG would enable stronger validation of the simulated
motions. To our knowledge, no studies present experimental EMG data for profes-
sional baseball pitchers. Future studies will prioritize collecting synchronized EMG to
perform activation-level comparisons and EMG-informed parameter tuning, thereby
strengthening the physiological fidelity of the model and its conclusions. Assumptions
about the contributions of the flexor digitorum superficialis (FDS) compartments to
joint moments were also made and, while biomechanically plausible, also require exper-
imental validation [7]. The model’s reliance on anatomical parameters from multiple
sources introduces potential biases, as noted in prior studies, and the omission of the
scapular motion relative to the thorax limits the accuracy of shoulder dynamics [49].
Moreover, the use of more contact spheres on the lead foot would improve model accu-
racy, as it is difficult to encapsulate 3D GRF's using only two contact spheres. Future
work should strive to use experimentally collected force-plate GRF data to validate
the assumptions associated with using a spherical joint for the rear-foot contact and
only two contact spheres for the lead foot. Future studies should also aim to quan-
tify contributions to ball speed from the pelvis, trunk, and lower extremities, to show
that variations in ball speed are impacted by kinematics outside of the throwing arm.
Finally, the use of mean inverse kinematic joint trajectories to inform the design of
the model’s DOF and scaling the anthropometry to a single pitcher may reduce the
model’s generalizability across diverse sample populations.

In summary, the results of this study bridge gaps in the understanding of pitching
biomechanics. We present a validated framework for simulating and optimizing pitch-
ing motions, emphasizing the importance of balancing performance objectives with
injury prevention. The findings hold significant implications for personalized train-
ing programs, biomechanical interventions, and the development of advanced tools for
real-time assessment of pitching mechanics.
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Appendix A Musculoskeletal Parameters for the
OpenSim Forward Dynamic Model
All units are in degrees unless otherwise indicated. In this model, contralateral refers

to motion towards the opposite side of the throwing (right) arm (i.e. to the left), while
ipsilateral refers to motion towards the throwing side (i.e. to the right).

Degree of Freedom Lower Bound (-) Upper Bound (+) Actuator Optimal Torque (N-m) Initial Position
Pelvis Ipsilateral (+)/Contralateral -) Tilt 75 75 600 11
Pelvis Clockwise(+)/Counterclockwise(-) Rotation -90 90 600 -90.0
Pelvis Posterior(+)/Anterior(-) Tilt -90 90 600 -6.6
Pelvis Posterior(+)/Anterior(-) Translation 0m Llm 650 0m
Pelvis Superior(-+)/Inferior(-) Translation 0.5m 1.5 m 650 LOm
Pelvis Ipsilateral(+)/Contralateral -) Translation 0.3 m 0.3 m 650 0m
Lumbar Ipsilateral(+)/Contralateral(-) Tilt 75 75 500 -15
Lumbar Clockwise(+)/Counterclockwise(-) Rotation -90 90 500 20
Lumbar Posterior(+)/Anterior(-) Flexion -90 40 500 10
Right Hip Flexion(+)/Extension(-) -45 120 750 28
Right Hip Adduction(+)/Abduction(-) -60 40 750 4
Right Hip Internal(+)/External(-) Rotation -90 90 750 14
Right Knee Extension(+)/Flexion(-) -130 10 500 -30
Right Ankle Dorsiflexion(+)/Plantar Flexion(-) 75 75 175 20
Right Ankle Inversion(+)/Eversion(-) -50 50 150 0.6
Left Hip Flexion(+)/Extension(-) 45 120 750 120
Left Hip Adduction(+)/Abduction(-) -60 40 750 10
Left Hip Internal(+)/External(-) Rotation -90 90 750 0
Left Knee Extension(+)/Flexion(-) -130 10 500 -120
Left Ankle Dorsiflexion(+)/Plantar Flexion(-) 75 75 175 0
Right Shoulder Horizontal Flexion(+)/Extension(-) -40 90 450 40
Right Shoulder Abduction(+)/Adduction(-) 0 180 450 20
Right Shoulder Internal(+)/External(-) Rotation -180 20 450 10
Right Elbow Flexion(+)/Extension(-) 0 130 350 120
Right Forearm Pronation(+)/Supination(-) -90 90 350 90
Right Wrist Ulnar(+)/Radial(-) Deviation -10 10 120 0
Right Wrist Flexion(+)/Extension(-) -70 70 300 10
Left Shoulder Horizontal Flexion(+)/Extension(-) -40 90 450 10
Left Shoulder Abduction()/Adduction(-) 0 180 450 10
Left Shoulder Internal(+)/External(-) Rotation -180 20 450 10
Left Elbow Flexion(+)/Extension(-) 0 130 350 105
Left Forearm Pronation(+)/Supination(-) -90 90 350 0
Left Wrist Ulnar(+)/Radial(-) Deviation -10 10 300 0
Left Wrist Flexion(+)/Extension(-) -70 70 120 0
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Appendix B Diagram of the Forces and Torques of
the Throwing Arm used to Formulate
the UCL Loading Equation

Fig. B1 Diagram of the forces and torques in the throwing arm used to formulate the UCL loading
equation (Eq. (2)). EJC and SJC represent the elbow and shoulder joint centres, respectively. The
dotted black line represents the humerus’ longitudinal axis (varus—valgus). The red ellipsoid repre-
sents the UCL, while the red arrow is the UCL line of action. T'(¢) is the shoulder rotation reserve
actuator torque (valgus), while Ma,¢(t) is the varus moment, known as the osseous articulation or
joint compression moment. da;¢ is the moment arm from the joint centre to the medial edge of the
elbow (radius), perpendicular to the varus—valgus axis of rotation, where the joint compression force
(F3c(t)) acts. The joint compression force acts on the posterior elbow (in the direction out of the
page), maintaining joint stability. This is denoted by black arrow originating at the circle with the
dot in it (the circle is commonly used in circuit diagrams to specify current flow out of the page).
The elbow joint compression force (Fjc(t)), which acts along the anterior—posterior axis, creates a
resultant varus moment (Ma,(t)). Not to scale and made in OpenSim and edited in MS Word.
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Appendix C Cost Function Used for Case 3

2 2 t 2
a, nal — a esire: 00 na. 1 M -
T = (’Ub 11, final — Uball, d d) W, (“ftﬁl> Wy / (UCL?/(T)> dr
0

Uball, desired Vfoot, maximum t Mot

Nactuators . 2
actuation effort;
+ C; : 3

; ’ (maxunum efforti> ®)

subject to |Uball, final — Uball, desired| < 0.0001 m/s
[Vfoot, final] < 0.0001 m/s
— 1 < controls actuators < 1
0 < controls puscles < 1

where W1 = 15, W2 = 5, W3 =1

L for the shoulder rotation actuator
0.001, otherwise

i 1= 1...Nactuators

Muycr,—y(7) is the elbow joint moment about the varus—valgus axis
(“—y” axis, where the negative represents valgus torque)

t is the motion duration (included for time-scale invariance)

M.t is a normalization constant (e.g., peak elbow varus—valgus moment)

(the integral penalizes large values whenever they occur, not just at one instant)
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Appendix D Right Toe Spherical Joint Connected
to the Ground

Fig. D2 Representation of the spherical joint, connecting a point on the distal end of the third
metatarsal to the ground, that permits rotation (pivoting) about vertical z-axis («), inversion/eversion
about the y-axis (¢), and heel lift about the x-axis (8).
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Appendix E Ground Reaction Forces for Case 1
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Fig. E3 Lead-foot heel contact sphere GRF of Case 1. GRF's were normalized to percentage of the
model’s body weight (BW), where 97.5 kg = 956.2 N of BW. On the horizontal axis, 0% corresponds
to initiation of arm-cocking; 100% represents the instant of ball release. Developed in Python.
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Fig. E4 Resolved components of the rear-foot GRF at the point constraint for Case 1. GRFs were
normalized to percentage of the model’s body weight (BW), where 97.5 kg = 956.2 N of BW. Along
the horizontal axis, 0% corresponds to initiation of arm-cocking; 100% represents the instant of ball

release. Developed in Python.
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Appendix F Reserve Actuator Activation Across
the Three Case Studies

Throw Progression (%)

e Right Shoulder Horizontal Flexion(+)/Extension(-) g Right Shoulder Abduction(+)/Adduction(-)

g % 4

£ 1% £ ol

s S 20%-

% 10% 1 X

8 8

:E i 15% 4

S 5%+ § 10%+

g s

§

3 0% 4 5 0%

E 5 5%

g -5%1 D

2 y T T T 9 y T y g

& 0 20 40 60 80 100 ¢ 0 20 40 60 80 100
Throw Progression (%) Throw Progression (%)

e Right Shoulder Internal(+)/External(-) Rotation e Right Elbow Flexion(+)/Extension(-)

z z

-~ & 8%

S 6% S 5%

3 $ 294

2 4% + s 2%

5 2% 5 0%

g S oo

i 0% g

S S 5%

5 2% 3 5%

2 2 _8%

< 4%+ g 8%

v P

g 2 -10%1

9 y T T T 2 ™ T y y

& 0 20 40 60 80 100 ¢ 0 20 40 60 80 100
Throw Progression (%) Throw Progression (%)

e Right Forearm Pronation(+)/Supination(-) e Right Wrist Ulnar(+)/Radial(-) Deviation

z z

S S

E 2% x

5 S 10%4

¥ 1% 3

& &

g 0% £ 0%

s S

g 0% H

ER g -10%4

5 5

§ -1% E

< < —20% A

2 2% 3

9 T T T T 2 ™ T y g

& 0 20 40 60 80 100 ¢ 0 20 40 60 80 100
Throw Progression (%) Throw Progression (%)

e Right Wrist Flexion(+)/Extension(-)

g

£ 10%

5,

& 594

8

s

S 0%

<2

5

5 5%

<

¢ Casel

9 y T T T Case2

& 0 20 40 60 80 100 ase

—— Case3

Fig. F5 Reserve actuator activation across the three case studies. On the horizontal axis, 0% cor-
responds to initiation of arm-cocking; 100% represents the instant of ball release. The vertical axis
represents the reserve actuator activation as a percentage of the peak joint torque over the entire

motion. Developed in Python.
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