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Abstract 9 

Advances in computer vision and artificial intelligence are allowing researchers to develop 10 

environment recognition systems for powered lower-limb exoskeletons and prostheses. 11 

However, small-scale and private training datasets have impeded the widespread 12 

development and dissemination of image classification algorithms for classifying human 13 

walking environments. To address these limitations, we developed ExoNet - the first open-14 

source, large-scale hierarchical database of high-resolution wearable camera images of 15 

human locomotion environments. Unparalleled in scale and diversity, ExoNet contains over 16 

5.6 million RGB images of different indoor and outdoor real-world walking environments, 17 

which were collected using a lightweight wearable camera system throughout the summer, 18 

fall, and winter seasons. Approximately 923,000 images in ExoNet were human-annotated 19 

using a 12-class hierarchical labelling architecture. Available publicly through IEEE 20 

DataPort, ExoNet offers an unprecedented communal platform to train, develop, and 21 

compare next-generation image classification algorithms for human locomotion environment 22 

recognition. Besides the control of powered lower-limb exoskeletons and prostheses, 23 

applications of ExoNet could extend to humanoids and autonomous legged robots.  24 

1 Introduction 25 

Hundreds of millions of individuals worldwide have mobility impairments resulting from 26 

degenerative aging and neuro-musculoskeletal disorders like spinal cord injury, 27 

osteoarthritis, Parkinson’s disease, and cerebral palsy (Grimmer et al., 2019). Fortunately, 28 

newly-developed powered lower-limb exoskeletons and prostheses can allow otherwise 29 

wheelchair-bound seniors and rehabilitation patients to perform movements that involve net 30 

positive mechanical work (e.g., climbing stairs and standing from a seated position) using 31 

onboard actuators and intelligent control systems (Krausz and Hargrove, 2019; Laschowski 32 

and Andrysek, 2018; Tucker et al., 2015; Young and Ferris, 2017; Zhang et al., 2019a). 33 

Generally speaking, the high-level controller recognizes the patient’s locomotion mode 34 

(intention) by analyzing real-time measurements from wearable sensors using machine 35 

learning algorithms. The mid-level controller then translates the locomotion intentions into 36 
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mode-specific reference trajectories. This control level typically comprises a finite state 37 

machine, which implements a discrete parametrized control law (e.g., joint position or 38 

mechanical impedance control) for each different locomotion mode. Finally, the low-level 39 

controller tracks the reference trajectories and minimizes the signal error by modulating the 40 

device actuators using feedforward and feedback control loops (Krausz and Hargrove, 41 

2019; Laschowski and Andrysek, 2018; Tucker et al., 2015; Young and Ferris, 2017; Zhang 42 

et al., 2019a). 43 

Accurate transitions between different locomotion modes is important since even rare 44 

misclassifications can cause loss-of-balance and injury. In many commercial devices like 45 

the ReWalk and Indego powered lower-limb exoskeletons, the patient acts as the high-level 46 

controller by performing volitional movements to manually switch between locomotion 47 

modes (Tucker et al., 2015; Young and Ferris, 2017). These human-controlled methods can 48 

be time-consuming, inconvenient, and cognitively demanding. Researchers have recently 49 

developed automated locomotion mode recognition systems using wearable sensors like 50 

inertial measurement units (IMUs) and surface electromyography (EMG) to automatically 51 

switch between different locomotion modes (Krausz and Hargrove, 2019; Laschowski and 52 

Andrysek, 2018; Tucker et al., 2015; Young and Ferris, 2017; Zhang et al., 2019a). 53 

Whereas mechanical and inertial sensors respond to the patient’s movements, the electrical 54 

potentials of biological muscles, as recorded using surface EMG, precede movement 55 

initiation and thus could (marginally) predict locomotion mode transitions. Several 56 

researchers have combined mechanical sensors with surface EMG for automated 57 

locomotion mode recognition. Such neuromuscular-mechanical data fusion has improved 58 

the locomotion mode recognition accuracies and decision times compared to implementing 59 

either system individually (Du et al., 2012; Huang et al., 2011; Liu et al., 2016; Wang et al., 60 

2013). However, these measurements are still patient-dependent, and surface EMG are 61 

susceptible to fatigue, changes in electrode-skin conductivity, and crosstalk from adjacent 62 

muscles (Tucker et al., 2015).  63 

Supplementing neuromuscular-mechanical data with information about the upcoming 64 

walking environment could improve the high-level control performance. Analogous to the 65 

human visual system, environment sensing would precede modulation of the patient’s 66 

muscle activations and/or walking biomechanics, therein enabling more accurate and real-67 

time locomotion mode transitions. Environment sensing can also be used to adapt low-level 68 

reference trajectories (e.g., changing toe clearance corresponding to an obstacle height) 69 

(Zhang et al., 2020) and optimal path planning (e.g., identifying opportunities for energy 70 

regeneration) (Laschowski et al., 2019a; 2020a). Preliminary research has shown that 71 

supplementing a locomotion mode recognition system with environment information can 72 

improve the classification accuracies and decision times compared to excluding terrain 73 

information (Huang et al., 2011; Liu et al., 2016; Wang et al., 2013). Several researchers 74 

have explored using radar detectors (Kleiner et al., 2018) and laser rangefinders (Liu et al., 75 

2016; Wang et al., 2013; Zhang et al., 2011) for environment sensing. However, wearable 76 

vision-based systems can provide more detailed information about the field-of-view and 77 

detect physical obstacles in peripheral locations. Most environment recognition systems 78 

have included either RGB cameras (Da Silva et al., 2020; Diaz et al., 2018; Khademi and 79 

Simon, 2019; Krausz and Hargrove, 2015; Laschowski et al., 2019b; Novo-Torres et al., 80 

2019; Zhong et al., 2020) or 3D depth cameras (Hu et al., 2018; Krausz et al., 2015; 2019; 81 

Massalin et al., 2018; Varol and Massalin, 2016; Zhang et al., 2019b; 2019c; 2019d).  82 
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For image classification, researchers have used learning-based algorithms like support 83 

vector machines (Massalin et al., 2018; Varol and Massalin, 2016) and deep convolutional 84 

neural networks (Khademi and Simon, 2019; Laschowski et al., 2019b; Novo-Torres et al., 85 

2019; Rai and Rombokas, 2018; Zhang et al., 2019b; 2019c; 2019d; Zhong et al., 2020). 86 

Although convolutional neural networks typically outperform support vector machines for 87 

image classification (LeCun et al., 2015), deep learning requires significant and diverse 88 

training images to prevent overfitting and promote generalization. Deep learning has 89 

become pervasive ever since AlexNet (Krizhevsky et al., 2012) popularized convolutional 90 

neural networks by winning the 2012 ImageNet challenge. ImageNet is an open-source 91 

dataset containing ~15 million labelled images and 22,000 different classes (Deng et al., 92 

2009). The lack of an open-source, large-scale research dataset of human locomotion 93 

environment images has impeded the development of environment-aware control systems 94 

for powered lower-limb exoskeletons and prostheses. Until now, researchers have been 95 

required to individually collect training images to develop their classification algorithms. 96 

These repetitive measurements are time-consuming and inefficient, and individual private 97 

datasets have prevented comparisons between classification algorithms from different 98 

researchers (Laschowski et al., 2020b). Drawing inspiration from ImageNet, we developed 99 

ExoNet - the first open-source, large-scale hierarchical database of high-resolution 100 

wearable camera images of human walking environments. In accordance with the Frontiers 101 

submission guidelines for dataset reports, this article provides a detailed description of the 102 

research dataset. Benchmark performance and analyses of the ExoNet database for human 103 

locomotion environment classification will be presented in future work.           104 

2 Materials and Methods 105 

2.1 Large-Scale Data Collection 106 

One subject was instrumented with a lightweight wearable smartphone camera system 107 

(iPhone XS Max); photograph shown in Figure 1A. Unlike limb-mounted systems (Da Silva 108 

et al., 2020; Diaz et al., 2018; Hu et al., 2018; Kleiner et al., 2018; Massalin et al., 2018; Rai 109 

and Rombokas, 2018; Varol and Massalin, 2016; Zhang et al., 2011; 2019b; 2019c), chest-110 

mounting can provide more stable video recording and allow users to wear pants and long 111 

dresses without obstructing the sampled field-of-view. The chest-mount height was 112 

approximately 1.3 m from the ground when the participant stood upright. The smartphone 113 

contains two 12-megapixel RGB rear-facing cameras and one 7-megapixel front-facing 114 

camera. The front and rear cameras provide 1920×1080 and 1280×720 video recording at 115 

30 frames/second, respectively. The smartphone weighs approximately 0.21 kg, and 116 

features an onboard rechargeable lithium-ion battery, 512-GB of memory storage, and a 64-117 

bit ARM-based integrated circuit (Apple A12 Bionic) with six-core CPU and four-core GPU. 118 

These hardware specifications can support onboard machine learning for real-time 119 

environment classification. The relatively lightweight and unobtrusive nature of the wearable 120 

camera system allowed for unimpeded human walking biomechanics. Ethical review and 121 

approval were not required for this research in accordance with the University of Waterloo 122 

Office of Research Ethics.    123 

While most environment recognition systems have been limited to controlled indoor 124 

environments and/or prearranged walking circuits (Du et al., 2012; Hu et al., 2018; Khademi 125 

and Simon, 2019; Kleiner et al., 2018; Krausz et al., 2015; 2019; Liu et al., 2016; Wang et 126 

al., 2013; Zhang et al., 2011; 2019b; 2019c; 2019d), our subject walked around unknown 127 
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outdoor and indoor real-world environments while collecting images with occlusions, signal 128 

noise, and intraclass variations. Data were collected at various times throughout the day to 129 

incorporate different lighting conditions. Analogous to human gaze fixation during walking 130 

(Li et al., 2019), the sampled field-of-view was approximately 1-5 meters ahead of the 131 

participant, thereby showing upcoming walking environments rather than the ground 132 

underneath the subject’s feet. The camera’s pitch angle slightly differed between data 133 

collection sessions. Images were sampled at 30 Hz with 1280×720 resolution. More than 52 134 

hours of video were recorded, amounting to approximately 5.6 million total images 135 

(examples shown in Figure 1B). The same environment was never sampled twice to 136 

maximize diversity among the ExoNet images. Data were collected throughout the summer, 137 

fall, and winter seasons to incorporate different weathered surfaces like snow, grass, and 138 

multicolored leaves. In accordance with the Frontiers submission guidelines, the ExoNet 139 

database was deposited in a public repository (IEEE DataPort) and is available for 140 

download at https://ieee-dataport.org/open-access/exonet-database-wearable-camera-141 

images-human-locomotion-environments. The file size of the uncompressed videos is 142 

approximately 140 GB.  143 

2.2 Hierarchical Image Labelling  144 

Given the subject’s preferred walking speed, there were minimal differences between 145 

consecutive images sampled at 30 Hz. The labelled images were therefore downsampled to 146 

5 frames/second to minimize the demands of manual annotation and increase the diversity 147 

in image appearances. However, for real-time environment classification and control of 148 

powered lower-limb exoskeletons and prostheses, higher sampling rates would be more 149 

advantageous for accurate locomotion mode recognition and transitioning. Similar to 150 

ImageNet (Deng et al., 2009), the ExoNet database was human-annotated using a 151 

hierarchical labelling architecture (see Figure 1C). Images were labelled according to 152 

exoskeleton and prosthesis control functionality, rather than a purely computer vision 153 

perspective. For instance, images of level-ground environments showing either pavement or 154 

grass were not differentiated since both surfaces would use the same level-ground walking 155 

state controller. In contrast, computer vision researchers might label these different surface 156 

textures as separate classes.  157 

Approximately 923,000 images in ExoNet were manually labelled and organized into 12 158 

classes using the following descriptions, which also include the number of labelled 159 

images/class: {IS-T-DW = 31,628} shows incline stairs with a door and/or wall; {IS-T-LG = 160 

11,040} shows incline stairs with level-ground thereafter; {IS-S = 17,358} shows only incline 161 

stairs; {DS-T-LG = 28,677} shows decline stairs with level-ground thereafter; {DW-T-O = 162 

19,150} shows a door and/or wall with other (e.g., hand or window); {DW-S = 36,710} shows 163 

only a door and/or wall; {LG-T-DW = 379,199} shows level-ground with a door and/or wall; 164 

{LG-T-O = 153,263} shows level-ground with other (e.g., humans, cars, bicycles, or garbage 165 

cans); {LG-T-IS = 26,067} shows level-ground with incline stairs thereafter; {LG-T-DS = 166 

22,607} shows level-ground with decline stairs thereafter; {LG-T-SE = 119,515} shows level-167 

ground with seats (e.g., couches, chairs, or benches); and {LG-S = 77,576} shows only 168 

level-ground. These classes were selected post hoc to encompass the different walking 169 

environments encountered during the data collection sessions. We included the other class 170 

to improve image classification performance when confronted with non-terrain related 171 

features like humans and bicycles.  172 

https://ieee-dataport.org/open-access/exonet-database-wearable-camera-images-human-locomotion-environments
https://ieee-dataport.org/open-access/exonet-database-wearable-camera-images-human-locomotion-environments
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Inspired by previous work (Du et al., 2012; Huang et al., 2011; Khademi and Simon, 2019; 173 

Liu et al., 2016; Wang et al., 2013), the hierarchical labelling architecture included both 174 

static (S) and transition (T) states. A static state describes an environment where an 175 

exoskeleton or prosthesis user would continuously perform the same locomotion mode 176 

(e.g., only level-ground terrain). In contrast, a transition state describes an environment 177 

where the exoskeleton or prosthesis high-level controller might switch between different 178 

locomotion modes (e.g., level-ground and incline stairs). Manually labelling the transition 179 

states was relatively subjective. For example, an image showing level-ground terrain was 180 

labelled level-ground-transition-incline stairs (LG-T-IS) when an incline staircase was 181 

approximately within the sampled field-of-view and forward-facing. Similar labelling 182 

principles were applied to transitions to other conditions. The Python code used for labelling 183 

the ExoNet database was uploaded to GitHub and is publicly available for download at 184 

https://github.com/BrockLaschowski2/ExoNet.  185 

3 Discussion 186 

Environment recognition can improve the control of powered lower-limb exoskeletons and 187 

prostheses during human locomotion. However, small-scale and private training datasets 188 

have impeded the widespread development and dissemination of image classification 189 

algorithms for human locomotion environment recognition. Motivated by these limitations, 190 

we developed ExoNet - the first open-source, large-scale hierarchical database of high-191 

resolution wearable camera images of human walking environments. Using a lightweight 192 

wearable camera system, we collected over 5.6 million RGB images of different indoor and 193 

outdoor real-world walking environments, of which approximately 923,000 images were 194 

human-annotated using a 12-class hierarchical labelling architecture. Available publicly 195 

through IEEE DataPort, ExoNet provides researchers an unprecedented communal 196 

platform to develop and compare next-generation image classification algorithms for human 197 

locomotion environment recognition. Although ExoNet was originally designed for 198 

environment-aware control of powered lower-limb exoskeletons and prostheses, 199 

applications could extend to humanoids and autonomous legged robots (Park et al., 2015; 200 

Villarreal et al., 2020). Users of the ExoNet database are requested to reference this 201 

dataset report.    202 

Aside from being the only open-source database of human locomotion environment images, 203 

the scale and diversity of ExoNet significantly distinguishes itself from previous environment 204 

recognition systems, as illustrated in Table 1. ExoNet contains approximately 923,000 205 

labelled images. In comparison, the previous largest dataset contained approximately 206 

402,000 images (Massalin et al., 2018). While most environment recognition systems have 207 

included fewer than 6 classes (Khademi and Simon, 2019; Krausz and Hargrove, 2015; 208 

Krausz et al., 2015; 2019; Laschowski et al., 2019b; Massalin et al., 2018; Novo-Torres et 209 

al., 2019; Varol and Massalin, 2016; Zhang et al., 2019b; 2019c; 2019d; 2020), the ExoNet 210 

database features a 12-class hierarchical labelling architecture. These differences have 211 

practical implications given that learning-based algorithms like deep convolutional neural 212 

networks require significant and diverse training images (LeCun et al., 2015). The spatial 213 

resolution of the ExoNet images (1280×720) is considerably higher than previous efforts 214 

(e.g., 224x224 and 320x240). Poor image resolution has been attributed to decreased 215 

classification accuracy of human locomotion environments (Novo-Torres et al., 2019). 216 

Although higher resolution images can increase the computational and memory storage 217 

requirements, that being unfavourable for real-time mobile computing, research has been 218 

https://github.com/BrockLaschowski2/ExoNet


 Image Database of Human Locomotion Environments 

 
6 

moving towards the development of efficient convolutional neural networks that require 219 

fewer operations (Tan and Le, 2020), therein enabling the processing of larger images for 220 

relatively similar computational power. Here we assume mobile computing for exoskeleton 221 

and prosthesis control (i.e., untethered and no wireless communication to cloud computing). 222 

Nevertheless, an exoskeleton or prosthesis controller may not always benefit from 223 

additional information provided by higher resolution images, particularly when interacting 224 

with single surface textures (i.e., only pavement or grass). With ongoing research and 225 

development in computer vision and artificial intelligence, larger and more challenging 226 

training datasets are needed to develop better image classification algorithms for 227 

environment-aware locomotor control systems. 228 

A potential limitation of the ExoNet database is the two-dimensional nature of the 229 

environment information. Whereas RGB cameras measure light intensity information, depth 230 

cameras also provide distance measurements (Hu et al., 2018; Krausz et al., 2015; 2019; 231 

Massalin et al., 2018; Varol and Massalin, 2016; Zhang et al., 2019b; 2019c; 2019d). Depth 232 

cameras work by emitting infrared light and calculate distance by measuring the light time-233 

of-flight between the camera and physical environment (Varol and Massalin, 2016). Depth 234 

measurement accuracies typically degrade in outdoor lighting conditions (e.g., sunlight) and 235 

with increasing measurement distance. Consequently, most environment recognition 236 

systems using depth cameras have been tested in indoor environments (Hu et al., 2018; 237 

Krausz et al., 2015; 2019; Massalin et al., 2018; Varol and Massalin, 2016) and have had 238 

limited capture volumes (i.e., between 1-2 m of maximum range imaging) (Krausz et al., 239 

2015; Massalin et al., 2018; Varol and Massalin, 2016). Moreover, assuming mobile 240 

computing, the application of depth cameras for environment sensing would require 241 

powered lower-limb exoskeletons and prostheses to have embedded microcomputers with 242 

significant computing power and minimal power consumption, the specifications of which 243 

are not supported by existing untethered systems (Massalin et al., 2018). These practical 244 

limitations motivated our decision to use RGB images.    245 

The wearable camera images could be fused with the smartphone IMU measurements to 246 

improve high-level control performance. For example, if an exoskeleton or prosthesis user 247 

unexpectedly stops while walking towards an incline staircase, the acceleration 248 

measurements would indicate static standing rather than stair ascent, despite the staircase 249 

being accurately detected in the field-of-view. Since environment information does not 250 

explicitly represent the locomotor intent, environment recognition systems should 251 

supplement, rather than replace, automated locomotion mode recognition systems based 252 

on patient-dependant measurements like mechanical and inertial sensors. The smartphone 253 

IMU measurements could also be used for sampling rate control (Da Silva et al., 2020; Diaz 254 

et al., 2018; Khademi and Simon, 2019; Zhang et al., 2011). Faster walking speeds would 255 

likely benefit from higher sampling rates for continuous classification. In contrast, static 256 

standing does not necessarily require environment information and therefore the 257 

smartphone camera could be powered down, or the sampling rate decreased, to minimize 258 

the computational and memory storage requirements. However, the optimal method for 259 

fusing the smartphone camera images with the onboard IMU measurements remains to be 260 

determined.   261 
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Table 1. Comparison of the ExoNet database with previous environment recognition 410 

systems for powered lower-limb prostheses and exoskeletons.  411 

Reference Sensor Position Dataset Resolution Classes 

Da Silva et al 
(2020) 

RGB 
Camera 

Lower-Limb 3,992 
Images  

512×512 6 

Diaz et al (2018) RGB 
Camera 

Lower-Limb 3,992 
Images 

1080x1920 6 

Khademi and 
Simon (2019) 

RGB 
Camera 

Waist 7,284 
Images 

224x224 3 

Krausz and 
Hargrove (2015) 

RGB 
Camera 

Head 5 Images 928x620 2 

Krausz et al (2015) Depth 
Camera 

Chest 170 Images 80x60 2 

Krausz et al (2019) Depth 
Camera 

Waist 4,000 
Images 

171x224 5 

Laschowski et al 
(2019b) 

RGB 
Camera 

Chest 34,254 
Images 

224x224 3 

Massalin et al 
(2018) 

Depth 
Camera 

Lower-Limb 402,403 
Images 

320x240 5 

Novo-Torres et al 
(2019) 

RGB 
Camera 

Head  40,743 
Images 

128x128 2 

Varol and Massalin 
(2016) 

Depth 
Camera 

Lower-Limb 22,932 
Images 

320x240 5 

Zhang et al 
(2019b; 2019c) 

Depth 
Camera 

Lower-Limb 7,500 
Images 

224x171 5 

Zhang et al 
(2019d) 

Depth 
Camera 

Waist 4,016 
Images 

2048 Point 
Cloud 

3 

Zhang et al (2020) Depth 
Camera 

Lower-Limb 7,500 
Images 

100x100 5 

Zhong et al (2020) RGB 
Camera 

Head and 
Lower-Limb 

327,000 
Images 

1240x1080 6 

ExoNet Database RGB 
Camera 

Chest 922,790 
Images 

1280×720 12 
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Figure 1. Development of the ExoNet database, including (A) photograph of the wearable 412 

camera system used for large-scale data collection; (B) examples of the high-resolution 413 

RGB images (1280×720) of human walking environments; and (C) schematic of the 12-414 

class hierarchical labelling architecture.  415 
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