Introducing metaknowledge: Software for Computational Research in Information Science, Network Analysis, and Science of Science

TitleIntroducing metaknowledge: Software for Computational Research in Information Science, Network Analysis, and Science of Science
Publication TypeJournal Article
Year of Publication2017
AuthorsMcLevey, J., and R. McIlroy-Young
JournalJournal of Informetrics
Volume11
Issue1
Pagination176-197
Abstract

metaknowledge is a full-featured Python package for computational research in information science, network analysis, and science of science. It is optimized to scale efficiently for analyzing very large datasets, and is designed to integrate well with reproducible and open research workflows. It currently accepts raw data from the Web of Science, Scopus, PubMed, ProQuest Dissertations and Theses, and select funding agencies. It processes these raw data inputs and outputs a variety of datasets for quantitative analysis, including time series methods, Standard and Multi Reference Publication Year Spectroscopy, computational text analysis (e.g. topic modeling, burst analysis), and network analysis (including multi-mode, multi-level, and longitudinal networks). This article motivates the use of metaknowledge and explains its design and core functionality.