Rapid Fire 2: glaucoma management
COPE Course ID: 62666-GL

John Flanagan, PhD, DSc(Hon), FCOptom, FAAO, FARVO
Derek MacDonald, OD, FAAO
C. Lisa Prokopich, OD, MSc

WOVS CE 2019
June 14 2019

UW School of Optometry and Vision Science

Financial Disclosures

Honoraria: Alcon (DM)
Allergan (DM)
Carl Zeiss Meditec (DM)
Eye Recommend (DM)

The content and format of this course is presented without commercial bias and does not claim superiority of any commercial product or service.
So, you’ve diagnosed, staged, and initiated treatment for glaucoma ... now what?

1. Establishing solid baseline data
2. Staging disease severity
3. Establishing a target IOP
4. Initiating treatment
5. **Detecting disease progression**
6. **Altering treatment**

Detecting progression

From a review of 400,000+ AVFs from 75,000+ patients

- most **reduce** over time, but few (<15%) become **blind** (MD< -22dB)\(^2,3\)
- the likelihood of **improve** (MD< -14dB) is linked to baseline VF loss (MD< -6dB), rate of change (≥ -1.5dB/year), and life expectancy\(^4\)
- VF assessment is variable: many patients "**improve" over time

Risk factors for progression

Progression is more likely in the presence of risk factors including:

Non-modifiable:
- older patient age at baseline
- severe or rapidly progressing disease at baseline
- initial VF loss that is central or involves both hemifields
- exfoliation (in OAG) and disc hemorrhages (in NTG)
- thin CCT (≤555µm) and/or low CH (≤10mmHg)

Modifiable (other than elevated IOP):
- IOP fluctuations, particularly at low IOPs
- compromised/fluctuating ocular perfusion pressure

Detecting progression
Detecting progression through statistical analyses

Trend-based analysis \(^1\)-\(^4\)

- identifies change over time in both structure and function
 - “clinically significant change”
- allows rate of change to be quantified and extrapolated
- requires more tests, and is less sensitive to diffuse loss

\[\text{Rate of Progression: } -0.7 \pm 0.2\% / \text{year (95\% confidence)} \]

Which is better, one (OCT) or two (AVF)?

In “early” (pre-perimetric) glaucoma, VF progression becomes clinically detectable at an average RNFL thickness of \(~75\mu m\) \(^1,2\)

\[\text{MD at RNFL thickness of } 75\mu m = -0.7 \pm 0.2\% / \text{year} \]

However, -3dB MD equates to a 50% loss of retinal ganglion cells \(^3\)

- the logarithmic scale of AVF analysis masks early loss \(^4\)

OCT is also less variable, facilitating earlier detection of change \(^5\)

Which is better, one (OCT) or two (AVF)?

In advanced glaucoma (MD ≥ -12dB), both RNFL and GCIPL reach a measurement floor at ~50μm (glial/vascular/non-neural tissue)\(^1,2\)

![Graphs showing RNFL and GCIPL over Field Loss (dB) and Probability (percent)](image)

However, GCIPL tends to reach its floor later, and a larger area remains above that floor, allowing ongoing progression analysis\(^3\)

VF loss remains detectable, albeit with significant variability\(^4\)

Which is better, one (OCT) or two (AVF)?

Early (including pre-perimetric) glaucoma:
- clinical exam and OCT (RNFL ≥ GCIPL > ONH)
- obtain baseline 24-2 and 10-2 for future reference

Moderate glaucoma:
- clinical exam and OCT (RNFL ≥ GCIPL > ONH)
- AVF (24-2, and 10-2 guided by GCIPL abnormalities)

Advanced glaucoma:
- 10-2 > 24-2 AVF (or 24-2 with stimulus size V)
- clinical exam and OCT (GCIPL > ONH ≥ RNFL)

Utilize all the tools at your disposal:
progression is detected by only one method >90% of the time\(^1,2\)

Leverage OCT in early disease and AVF in advanced disease\(^3\)

6/12/19
Detecting structural progression

Clinical examination: review of ONH/RNFL photos

- **pros:** “backward compatible”; reveals DH and NRR pallor
- **cons:** qualitative; subjective; requires expertise

There can be significant inter-individual (but less intra-individual) variability in estimating both disc margin and rim margin.

Detecting structural progression

The most common ONH changes noted on clinical exam are **rim thinning** (4x faster) and/or **inferior-temporal excavation**.

Detecting structural progression

Optical coherence tomography: Guided Progression Analysis

Event-based analysis:
- highlights change from baseline in both RNFL and GCIPL thickness that exceeds normal variability
 - change on one occasion: possible loss
 - change on two or more successive occasions: likely loss

Trend-based analysis:
- plots thickness over time to quantify rate of change in:
 - average, superior, and inferior RNFL thickness
 - average C/D ratio
 - average, superior, and inferior GCIPL thickness

Detecting structural progression

Retinal nerve fiber layer (RNFL) thickness
- widening of an existing (inferior-temporal) RNFL defect
- repeatable inter-visit change in average RNFLT ≥5μm
- a rate of average RNFL thinning ≥2 to 3μm/year

Smaller changes are more significant in advanced disease
Allow for age-related thickness loss of up to 0.5μm/year

Detecting structural progression

Retinal nerve fiber layer (RNFL) thickness

- widening of an existing (inferior-temporal) RNFL defect
- inter-visit change in average RNFLT ≥5μm
- a rate of average RNFL thinning ≥2 to 3μm/year

In suspects who go on to develop VF loss (manifest disease), the rate of RNFL loss is ~2µm/year, 4x the normal age-related loss.\(^1\)

Macular (ganglion cell/inner plexiform layer: GCIPL) thickness

- widening of an existing (inferior-temporal) GCIPL defect\(^1\)
- inter-visit change in average GCIPLT ≥4μm\(^2\)
- a rate of average GCIPL thinning ≥1 to 1.5μm/year\(^3\)

The advantage of GCIPL in advanced glaucoma

Case examples:
patient DF
Patient DF

History
• 55 year-old Caucasian woman
• good general health (hormone replacement therapy)
• unremarkable family history
• ocular hypertension (IOPs occasionally in low 20s)

July 2012
• moderate myopia (-4.00) with good BCVA (6/6)
• normal binocularity, pupil reactions, and confrontation VFs
• normal anterior segment structures
• IOPs 16/19
• CCTs 541/539
Retinal nerve fiber layer (RNFL) thickness

Patient DF

<table>
<thead>
<tr>
<th></th>
<th>OD</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average RNFL Thickness</td>
<td>91 μm</td>
<td>97 μm</td>
</tr>
<tr>
<td>RNFL Symmetry</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>Rim Area</td>
<td>1.12 mm²</td>
<td>0.99 mm²</td>
</tr>
<tr>
<td>Disc Area</td>
<td>1.36 mm²</td>
<td>1.46 mm²</td>
</tr>
<tr>
<td>Average C/D Ratio</td>
<td>0.41</td>
<td>0.56</td>
</tr>
<tr>
<td>Vertical C/D Ratio</td>
<td>0.38</td>
<td>0.58</td>
</tr>
<tr>
<td>Cup Volume</td>
<td>0.055 mm³</td>
<td>0.125 mm³</td>
</tr>
</tbody>
</table>

Don't rely solely on global summary parameters: qualitatively assess the scan for accuracy or artifacts, and scrutinize the deviation and thickness maps for focal defects.

Patient DF

July 2012
- treatment initiated with latanoprost HS
- IOP ≤14 and AVF stable for 5 years

October 2017
- suggestion of event-based change on 24-2 O.S.
- concurrent irritation O.D. (both CL- and PGA-related?)
 - discontinued PGA O.D. only: IOP increased to 22
 - treated IOP O.S. also now above target at 16

February 2018
- trialed Lumigan RC
 - better comfort O.D. and IOP decreased to 16/13

July 2018
- structural GPA: possible progression on both RNFL and GCIPL analyses
Patient DF

November 2018

- IOP 14/15 on Lumigan RC
- clinical exam shows expanding superior RNFL defect with small DH, and large inferior DH O.S.
- structural GPA: **likely** progression on both RNFL and GCIPL analyses
Progressive RNFL loss: clinical exam and *en face* imaging

Patient DF

RNFL GPA: July 2012 through November 2018

GCIPL GPA: July 2012 through November 2018
Patient DF

February 2019
- AVF shows expanding inferior arcuate defect O.S.
- functional change commensurate with structural loss
- IOP 20/13 on Lumigan RC
- sporadic use O.D. due to recurrent irritation
- switched to DuoTrav HS
- discontinued after 1 week due to stinging/burning

March 2019
- switched to Lumigan RC HS and Timoptic XE QD (morning)
- adherent and tolerant
- follow-up late March (13/12) and early May (12/12)
Patient DF

Lessons learned

Objective imaging complements the clinical exam\(^1\)

> "... a thorough clinical examination combined with a healthy dose of common sense is superior to imaging technology ..."

Diagnose real disease, not red disease
- at the same time, recognize that green is not always good

Don’t rely solely on summary parameters
- scrutinize thickness and deviation maps for focal defects

Disease progression is not necessarily linear
- stay vigilant and be ready to respond

Case examples:
patient JK
Patient JK

History
• 70 year-old Caucasian man
• good general health (rabeprazole for acid reflux)
• family history significant for glaucoma (3 siblings)
• longstanding bilateral parapapillary atrophy

January 2009
• emmetropic with good BCVA (6/6)
• normal binocularity, pupil reactions, and confrontation VFs
• normal anterior segment structures
• IOPs 18/18
• CCTs 468/484
Patient JK

July 2013
• IOPs 20/20: treatment initiated with latanoprost HS

Patient JK

August 2013
• IOPs remained 20/19 on latanoprost
 • switched to travoprost HS
 • IOPs dropped to 14/16
Patient JK

February 2014

- IOPs increased to 18/19 on travoprost

Patient JK

December 2014

- assumed care: IOPs still elevated at 19/19 on travoprost
Patient JK

December 2014
• switched to DuoTrav HS: IOPs dropped to 11/11

Patient JK: macular structure/function correlation
Patient JK

December 2014 through June 2019

- IOPs ~11 (highest 14/13; 11/11 (June 2019)) on DuoTrav HS
- 10-2 appears stable since late 2014 baseline

Patient JK

Guided Progression Analysis (GPA) is not (yet) available for the 10-2, making statistical determination of progression difficult...
Patient JK

... however, structural GPA is now available for GCIPL scans

<table>
<thead>
<tr>
<th>Baseline 1</th>
<th>Baseline 2</th>
<th>Exam 3</th>
<th>Exam 4</th>
<th>Exam 5</th>
<th>Exam 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GCIPL GPA: stable July 2013 through March 2019

Lessons learned

Aggressive IOP reduction is necessary in advanced disease
- an IOP consistently ≤12 appears to have stabilized both structural and functional status

In advanced disease, macular analyses become more helpful
- at or near the RNFL floor of ~50μm, consider complementary GCIPL and 10-2 AVF analyses

Leverage statistical progression analyses
- GPA is available for structural and functional tests
 - both RNFL and GCIPL scans
 - however, only 24-2, not (yet) 10-2 analyses