# Development and application of a simple non-invasive method for in situ skin volatiles sampling

Ruifen Jiang <sup>1</sup>; Tatjana Abaffy <sup>2</sup>; Erasmus Cudjoe <sup>1</sup>; Barbaba Bojko <sup>1</sup>; Janusz Pawliszyn<sup>1\*</sup>

<sup>1</sup> University of Waterloo, ON, N2L 3G1, Canada; <sup>2</sup> University of Miami, FL, 33146, USA

#### Motivation:

- Compounds released from the skin provide critical information of the skin status which is useful for the disease diagnosis or biomarkers discovery.
- Current skin volatiles sampling methods have major limitations and thus fail to provide accurate information on the skin volatiles.

## Objective:

Develop a simple convenient and non-invasive sampling method specifically for skin volatile compounds using thin film microextraction phase.

# The method development

The motivation and objective

- 1. In vitro and in situ sampling device set-up
- 2. Evaluation of the *in vitro* and *in situ* sampling device
- 3. Comparison of direct and headspace extraction

- 4. Membrane size effect
- 5. Monitoring skin volatiles emission from different part of the body
- 6. Storage method evaluation

# The *in vitro* device set-up and evaluation



In vitro skin mimic system

## Reproducibility of the in vitro skin mimic system

| Compounds    | Inter-membrane<br>RSD% (n=7) | Intra-<br>day/membrane | Inter-day<br>RSD% (n=7) |  |
|--------------|------------------------------|------------------------|-------------------------|--|
|              | 1000 /0 (II=7)               | RSD% (n=6)             |                         |  |
| Hexanal      | 4.8                          | 2.5                    | 3.1                     |  |
| Ethylbenzene | 5.1                          | 4.3                    | 2.3                     |  |
| p-Xylene     | 4.8                          | 3.4                    | 2.2                     |  |
| o-Xylene     | 4.5                          | 3.1                    | 2.0                     |  |
| Decane       | 3.7                          | 2.2                    | 2.7                     |  |
| Octanal      | 7.4                          | 9.8                    | 9.6                     |  |
| D-limonene   | 3.6                          | 2.1                    | 2.6                     |  |
| Undecane     | 3.5                          | 4.0                    | 3.4                     |  |
| Nonanal      | 8.2                          | 8.1                    | 8.5                     |  |
| Dodecane     | 4.0                          | 5.5                    | 4.5                     |  |
| Decanal      | 5.0                          | 4.6                    | 5.4                     |  |
| Tridecane    | 4.6                          | 6.9                    | 5.2                     |  |



- Sample matrix: 0.5 3 mg pure compounds into the 10 g pump oil and 4.5 g DVB mixture.
- Sample time: 5 min
- Sample temperature: 40 °C

### Results:

The in vitro skin mimic system was stable.

The skin sampling device was very reproducible

# The *in situ* device set-up and evaluation

### The reproducibility for the in vivo sampling

| Chemical Name                                                                   | Same sampling time * RSD% (n=4) | Different sampling time ** RSD% (n=4) |
|---------------------------------------------------------------------------------|---------------------------------|---------------------------------------|
| Hexanal                                                                         | 9                               | 13                                    |
| Nonane                                                                          | 2                               | 28                                    |
| Heptanal                                                                        | 10                              | 24                                    |
| 5-Hepten-2-one, 6-methyl-                                                       | 10                              | 18                                    |
| Decane                                                                          | 7                               | 8                                     |
| Octanal                                                                         | 10                              | 10                                    |
| Nonanal                                                                         | 13                              | 13                                    |
| Cyclooctane, methyl-                                                            | 14                              | 13                                    |
| Decanal                                                                         | 6                               | 6                                     |
| 3',4',5,7-Tetramethoxyflavone                                                   | 12                              | 11                                    |
| Undecanal                                                                       | 1                               | 7                                     |
| Dodecanal                                                                       | 7                               | 13                                    |
| 5,9-Undecadien-2-one, 6,10-dimethyl-                                            | 10                              | 21                                    |
| 1-Dodecanol                                                                     | 13                              | 12                                    |
| Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester | 14                              | 16                                    |
| Isopropyl Myristate                                                             | 17                              | 26                                    |
| 4,8,12-Tetradecatrienal, 5,9,13-trimethyl-                                      | 5                               | 29                                    |
| Galaxolide                                                                      | 22                              | 26                                    |
| Nonadecane                                                                      | 8                               | 18                                    |
| Hexadecanoic acid, methyl ester                                                 | 20                              | 19                                    |
| Phthalic acid, butyl 2-pentyl ester                                             | 25                              | 30                                    |
| Eicosane                                                                        | 7                               | 40                                    |
| Isopropyl Palmitate                                                             | 13                              | 64                                    |





# Sample area/position: Forearm

#### Sample time: 60 min

Results: The different time sampling shows higher RSD than the same time sampling. the reason is the influence of the environment changed and the metabolism of the skin.

# Comparison of direct and headspace sampling



Comparison of the chromatograms obtained by direct (Blank dot line) and headspace (red solid line) sampling. 1, Octanal; 2, Nonanal; 3, Decanal; 4, 1-Tetradecanol; 5, Isopropyl palmitate; 6, 1-Octadecanol

Direct sampling (DS): membrane was directly placed on top of the skin surface without using the mesh.

UNIVERSITY OF

**WATERLOO** 

Headspace sampling: a piece of mesh was used to separate the membrane from the contact the skin for sampling of volatiles only.

#### Results:

- Direct contact sampling pick up a lot of heavy compounds.
- For volatile compounds, the extraction amount of DS and HS was similar. However, DS extracts other contaminants which potentially impact on some of the volatiles.

# The membrane size effect

#### The linearity of the membrane size vs extracted amount

Sample area: forearm skin

Sample time: 60 min

Membrane sizes: 5.5 mm, 11mm, 17 mm

The linear equation was obtained by plotting the membrane surface area *vs* the extraction amount from each membrane

#### Results:

The linearity of the membrane size *vs* the extracted amount ranges from 0.9058 to 1.000 which matches the basic principle.

In order to obtain higher sampling sensitivity, larger membrane could be used.

| Compounds                                                                       | Linearity Equation     | R-square |
|---------------------------------------------------------------------------------|------------------------|----------|
| 5-Hepten-2-one, 6-methyl-                                                       | y = 2E + 06x - 278590  | 0.9976   |
| Decane                                                                          | y = 68406x + 110683    | 0.9604   |
| Nonanal                                                                         | y = 1E + 06x + 770754  | 1.0000   |
| Decanal                                                                         | y = 2E + 06x + 962712  | 0.9932   |
| Undecanal                                                                       | y = 170284x + 12978    | 0.9712   |
| 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate                                   | y = 1E + 06x + 144149  | 0.9973   |
| Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester                | y = 2E + 06x + 288271  | 0.9966   |
| 5,9-Undecadien-2-one, 6,10-dimethyl-                                            | y = 4E + 06x - 42816   | 0.9906   |
| 1-Dodecanol                                                                     | y = 4E+06x - 346918    | 0.9886   |
| Lilial                                                                          | y = 394368x + 121190   | 0.9991   |
| Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester | y = 1E+06x + 321910    | 0.9972   |
| Diethyl Phthalate                                                               | y = 5E+06x - 2E+06     | 0.9351   |
| Decane, 4-methyl-                                                               | y = 266256x - 83408    | 0.9474   |
| Cyclotetradecane                                                                | y = 1E+07x - 3E+06     | 0.9769   |
| n-Hexyl salicylate                                                              | y = 816526x - 136187   | 0.9771   |
| Benzoic acid, 2-ethylhexyl ester                                                | y = 310736x + 44068    | 0.9744   |
| Octanal, 2-(phenylmethylene)-                                                   | y = 5E + 06x - 810794  | 0.9802   |
| 2-Ethylhexyl salicylate                                                         | y = 3E+07x - 6E+06     | 0.9641   |
| isopropyl Myristate                                                             | y = 2E+07x - 3E+06     | 0.9724   |
| 4,8,12-Tetradecatrienal, 5,9,13-trimethyl-                                      | y = 3E + 06x - 285504  | 0.9068   |
| Cyclopenta[g]-2-benzopyran, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-       | y = 8E+06x - 872422    | 0.9767   |
| 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester                         | y = 3E + 06x - 773476  | 0.9491   |
| 4-Benzyloxybenzoic acid                                                         | y = 3E + 06x - 583799  | 0.9796   |
| 1-Hexadecanol                                                                   | y = 8E+07x - 2E+07     | 0.9619   |
| Homomenthyl salicylate                                                          | y = 1E + 06x - 429409  | 0.9805   |
| Nonadecane                                                                      | y = 3E + 06x - 530702  | 0.9611   |
| Hexadecanoic acid, methyl ester                                                 | y = 1E+06x - 415879    | 0.9640   |
| Phthalic acid, butyl 2-pentyl ester                                             | y = 9E + 06x - 2E + 06 | 0.9518   |

## Conclusion

- ❖ The developed skin sampling device showed high reproducibility.
- \* The extraction reproducibility for *in situ* sampling may be influenced by the environmental condition and skin metabolism.
- ❖ The proposed *in situ* sampling device can be selectively used for skin volatile and semi-volatiles sampling.
- \* Higher sampling sensitivity can be improved using larger extraction phase depending on project objective.

<sup>\*</sup> Same sampling time: The sampling was conducted at the same time by placing four membranes on top of the skin.
\*\* Different sampling time: Sampling performed sequentially at an hour interval