Fire restoration work is expected to continue into early November. The main stairwell and office wing on both second and third floors of the Physics building will be closed until necessary repairs to the main stairwell are completed.
Administrative offices have been relocated to PHY 345.

Please contact individual faculty members to request appointments, as many faculty have been relocated during this process.
Please do not cross any caution tapes whilst in the building.

You are here

Researchers bring high res magnetic resonance imaging to nanometer scale

Thursday, February 22, 2018

Researchers in the Budakian lab

A new technique that brings magnetic resonance imaging to the nanometer scale with unprecedented resolution will open the door for major advances in understanding new materials, virus particles and proteins that cause diseases like Parkinson’s and Alzheimer’s.

Researchers from the Departments of Physics and Astronomy and Chemistry at the University of Waterloo used a new type of hardware and numerical algorithms to implement high-precision spin control, which allowed them to image proton spins with a resolution below 2 nm.

Traditional MRI revolutionized medical imaging and transformed our understanding of the structure and function of biological systems, but it is limited to the millimetre resolution.

“This work extends the powerful capabilities of MRI to the nanometer scale and provides a whole new lens with which to view the structure and function of complex biomolecules,” said Physics and Astronomy Professor Raffi Budakian, lead investigator on the paper and a member of the Institute for Quantum Computing at Waterloo.

The current work extends the capabilities of Magnetic Resonance Force Microscopy (MRFM) — an ultra-sensitive technique for nanometer scale MRI — by combining it with the ability to precisely control atomic spins. 

"Now that we have a high degree of control on the spins, we can also apply the well-developed MRI techniques on an extremely small scale,” said Budakian. “We now have unprecedented access to understanding complex biomolecules."

The paper, which includes Waterloo doctoral student Holger Haas and Waterloo Chemistry Professor David Cory as well as researchers from the University of Illinois and Northwestern, appears in Physical Review X

  1. 2018 (13)
    1. September (1)
    2. June (2)
    3. May (2)
    4. April (1)
    5. March (4)
    6. February (1)
    7. January (2)
  2. 2017 (19)
    1. December (2)
    2. November (3)
    3. October (1)
    4. September (2)
    5. May (1)
    6. April (4)
    7. March (1)
    8. February (3)
    9. January (2)
  3. 2016 (22)
    1. December (2)
    2. November (1)
    3. October (2)
    4. September (4)
    5. July (2)
    6. June (1)
    7. May (1)
    8. April (2)
    9. March (1)
    10. February (5)
    11. January (1)
  4. 2015 (30)
  5. 2014 (12)
  6. 2013 (7)
  7. 2012 (9)
  8. 2011 (3)
  9. 2010 (7)
  10. 2009 (1)