People profiles

Niayesh Afshordi

Niayesh Afshordi

Associate Professor

Dr. Afshordi dabbles in Astrophysics, Cosmology, and Physics of gravity and is obsessed with observational hints that could help address problems in fundamental physics.

Michael Balogh

Michael Balogh

Professor and Associate Chair

Professor Balogh's research uses the world’s largest telescopes to study the physical properties of distant galaxies.  Through spectroscopy we can learn about the distances, ages, chemical composition and star formation histories of these galaxies. 

Kostadinka Bizheva

Kostadinka Bizheva

Associate Professor

​Dr. Bizheva's research focuses on the development of novel optical imaging technology (Optical Coherence Tomography - OCT) that can be used in clinics to image various part of the human body for diagnostic purposes or for monitoring the outcome of drug therapy or surgery.

Avery Broderick

Avery Broderick

Associate Professor

​Dr. Broderick works to explain the fundamental physics of black holes and their observable characteristics. Black holes are sites where strong gravity dominates everything, from the dynamics of orbiting material to the shape of spacetime itself.  As a result, they are the engines that power some of the brightest objects in the universe. 

Raffi Budakian

Raffi Budakian

Professor; Joint WIN/IQC Nanotechnology Endowed Chair in Superconductivity

​Professor Budakian's work in the past decade has focused on developing the experimental tools for ultra sensitive detection of electron and nuclear spins. He explores the application of these tools to address fundamental questions ranging from biology to quantum information.

Anton Burkov

Anton Burkov

Associate Professor; Associate Graduate Officer

Dr. Burkov is a theoretical condensed matter physicist, currently focusing on the effects of nontrivial electronic structure topology and electron-electron interactions on experimentally observable properties of quantum materials.

Melanie Campbell

Melanie Campbell

Professor; Director, GWPI

Dr. Campbell leads a highly multidisciplinary research group where they study ocular development, eye disease, and linear and non-linear optics of the eye. They investigate the fundamental refractive properties of the eye's components to improve diagnosis and therapy for various ocular conditions.

Jeff Chen

Jeff Z.Y. Chen

Professor and Department Chair

Soft matter is a cross disciplinary research field involving physics, chemistry, biology, and materials science. It studies physical systems that can be deformed relatively easily in response to external and internal physical and chemical conditions.

Kyung Soo Choi

Kyung Soo Choi

Assistant Professor

​Dr. Choi's research focuses on the development and application of the most advanced techniques in cold atom physics and quantum optics to probe the fundamental nature of the quantum world and to investigate macroscopic quantum phenomena with strongly interacting atoms and photons near nanoscale structures.

Mike Fich

Michel Fich

Professor

Dr. Fich is an astronomer specializing in studies of star formation, the interstellar medium, and the structure of galaxies. His recent research activities have focused on “small scale” formation studies of low and intermediate mass stars, circumstellar disks, and the formation of proto-solar systems.

James Forrest

James Forrest

Professor; University Research Chair

Dr. Forrest's research is focused on the behaviour of soft materials at the nanoscale. This includes self assembly of polymers, dynamics in thin films and near surface and interfaces. He has a long standing interest on the dynamics of glassy materials.

Michel Gingras

Michel Gingras

Professor and Canada Research Chair in Condensed Matter Physics & Statistical Mechanics

Professor Gingras’ main interests are in the field of theoretical condensed matter physics, with a focus on systems with random disorder. He is also interested in strongly correlated classical and quantum condensed matter systems subject to strongly competing, or frustrated, interactions.

Bae-Yeun Ha

Bae-Yeun Ha

Professor

On sabbatical until August 31, 2016

In Professor Ha's research group, they explore a few theoretical problems in soft matter and biophysics, namely, chromosomes in living cells and lipid bilayer membranes.

David Hawthorn

David Hawthorn

Associate Professor

The Quantum Materials Spectroscopy group, led by Dr. Hawthorn, studies Quantum Materials using resonant soft x-ray scattering and x-ray absorption spectroscopy at synchrotrons such as the Canadian Light Source. We use these tools to investigate intertwinned order in Quantum Materials and shed light on the long-standing mysteries of high temperature superconductors.

Rob Hill

Robert Hill

Associate Professor and Associate Dean of Graduate Studies, Faculty of Science

Dr. Hill's research is focussed on the experimental study of materials whose exotic properties are dominated by the collective quantum mechanical nature of their electrons and defy explanation using current theoretical paradigms.

Michael Hudson

Michael Hudson

Professor and Associate Dean of Science, Computing

Broadly speaking, Professor Hudson's research is in observational and theoretical cosmology, particularly Galaxy Formation, and measuring the properties of dark matter and dark energy through Gravitational Lensing, Cosmic Flows and Large-scale Structure.

Stefan Idziak

Stefan Idziak

Associate Professor

Office: PHY 250

Phone: (519) 888-4567 ext. 35580

Email: idziak@uwaterloo.ca

Thomas Jennewein

Thomas Jennewein

Associate Professor

On sabbatical until August 31, 2016

Dr. Jennewein's main research passion is how to achieve quantum communications and a Quantum Internet on a global scale. In particular he is currently pursuing the use of satellites to accomplish intercontinental distances, and is possible with today’s technology.

Jan Kycia

Jan Kycia

Professor; Undergraduate Advisor - MNS

Dr. Kycia's group works on the experimental investigation of superconducting and quantum mechanical devices; in particular Superconducting Quantum Interference Devices (SQUIDs), Transition Edge Sensors (TESs) Kinetic Inductance Detectors (KIDs), GaAs quantum dots (Spin Qubits).

Raymond Laflamme

Raymond Laflamme

Professor; Canada Research Chair in Quantum Computing; Executive Director of IQC

Would using quantum mechanics for information processing be an impediment or could it be an advantage? This is the fundamental question in the field of quantum information processing (QIP). QIP is a young field with an incredible potential impact reaching from the way we understand fundamental physics to technological applications. 

Zoya Leonenko

Zoya Leonenko

Professor

Dr. Leonenko leads a nanoscale biophysics research group which uses advanced scanning probe microscopy methods to study biophysics of lipids and lipid-protein interactions, interactions of nanoparticles with lipid membrane and monolayers, and to develop novel application of lipid films in biomedical nanotechnology and biosensing.

Qing-Bin Lu

Qing-Bin Lu

Professor; University Research Chair

Professor Lu’s research programs cross disciplines in physics, chemistry, environment, climate, biology and medicine, particularly focusing on femtomedicine and cancer therapy, as well as the sciences of atmospheric ozone depletion (the ozone hole) and global climate change (“global warming”). 

Adrian Lupascu

Adrian Lupascu

Associate Professor

Dr. Lupascu is an experimental physicist interested in the quantum dynamics of various types of physical systems and the application of quantum effects to build new types of detectors and quantum information processors. His Superconducting Quantum Device lab focuses on experimental research with superconducting devices, ranging from quantum bits for quantum information experiments, to superconducting resonators for loss characterization, among other projects.

Norbert Lütkenhaus

Norbert Lütkenhaus

Professor; Graduate Officer

Professor Lütkenhaus' research group explores the interface between quantum communication theory and quantum optical implementations. They translate between abstract protocols (described by qubits) and physical implementations (described for example by laser pulses); they benchmark implementations to properly characterize quantum advantage and exploit quantum mechanical structures for use in quantum communication.

Robert Mann

Robert Mann

Professor

Professor Mann works on gravitation, quantum physics, and the overlap between these two subjects. He is interested in questions that provide us with information about the foundations of physics, particularly those that could be tested by experiment.  

Matteo Mariantoni

Matteo Mariantoni

Assistant Professor

​Dr. Mariantoni has a strong background in cutting-edge research on superconducting qubits and circuit quantum electrodynamics. He specializes in the experimental realization of low-level microwave detection schemes and pulsing techniques that allow for the measurement of ultra-low quantum signals generated by superconducting qubits coupled to on-chip resonators.

James Martin

James Martin

Associate Professor

Office: PHY 357

Phone: (519) 888-4567 ext. 33201

Email: jddmarti@uwaterloo.ca 

Brian McNamara

Brian McNamara

Professor; University Research Chair in Astrophysics

On sabbatical until December 31, 2016

Giant black holes weighing upwards of one billion times the mass of the Sun are thought to lurk at the centers of all massive galaxies. Energy released by spin breaking and infalling matter onto such supermassive black holes may be regulating the growth of galaxies and clusters of galaxies. 

Roger Melko

Roger Melko

Associate Professor; Canada Research Chair in Computational Many-Body Physics

Dr. Melko's research interests involve strongly-correlated many-body systems, with a focus on emergent phenomena, ground state phases, phase transitions, quantum criticality, and entanglement. He emphasizes computational methods as a theoretical technique, in particular the development of state-of-the-art algorithms for the study of strongly-interacting systems.

Hartwig Peemoeller

Hartwig Peemoeller

Professor

Professor Peemoeller applies nuclear magnetic resonance (NMR) techniques to probe the complex interactions of water in porous materials. For example, studying a wood/water system can lead to improvements in drying frozen lumber, while studying a cement/water system can shed light on better controlling the setting and corrosion of cement. Studying articular cartilage may even lead to detecting osteoarthritis.

Kevin Resch

Kevin Resch

Associate Professor; Canada Research Chair in Optical Quantum Technologies

Dr. Resch uses experimental quantum physics to understand photon entanglement and quantum information science. His work focuses on generating new quantum states of light with applications ranging from quantum computing to future medical imaging.

Joseph Sanderson

Joseph Sanderson

Associate Professor; Physics & Astronomy Teaching Fellow; Undergraduate Advisor

Dr. Sanderson's research and that of his students focuses on the study of how matter interacts with intense Femtosecond laser pulses.

One of the ways which the interaction of matter with femtosecond laser pulses can be utilised is as a means of imaging some of the smallest fastest moving and most complex units of matter, molecules.

Gunter Scholz

Gunter Scholz

Associate Professor

Office: PHY 358

Phone: (519) 888-4567 ext. 32213

Donna Strickland

Donna Strickland

Associate Professor

Dr. Strickland's ultrafast laser group develops high-intensity laser systems for nonlinear optics investigations.

James Taylor

James Taylor

Associate Professor; Associate Graduate Officer

On leave until September 5, 2016

Dr. Taylor is using whatever tools he can, including numerical simulations, astrophysical theory and observational data, to try to figure what dark matter is, where it is, and how it behaves. His research includes gravitational lensing and dynamical studies of galaxy clusters, the properties of the smallest galaxies in the local universe, and the theory behind dark matter halos around galaxies and clusters.

Russell Thompson

Russell Thompson

Associate Professor

Dr. Thompson's research explores block copolymer behaviour using self-consistent field theory (SCFT), one of the best theoretical tools available in soft condensed matter physics. The structures of nanocomposite materials are examined, and nanoscale filler particles are added to the polymer matrix to create hybrid materials. The mechanical properties of both nanocomposite and pure block copolymer systems are also being predicted using the SCFT approach.